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ABSTRACT
We shall intend to contribute to the theory of Generalized Harmonic Analysis (G.H.A.) |

in addition to the hypothesis as for existence of the following limit
(C,) ¢ = Iim—l— f f(x)e ™ dx (Vreal 1)
T—0 QT o

and present here fine and advanced forms and results. This hypothesis is very natural
since it correspond to the existence of the Fourier coefficients in the theory of Fourier

series and almost periodic functions.

Chaptet 1. We shall intend to prove three Theorems 4, Band C. Along to the work of

Prof.N.Wiener[ 1 1, we shall introduce several classes of functions and Generalized
Fourier Transform (G.F.T.) as follows.

Hilbert space W?: The class of function f that belongs to L and exists the

following integral

I P,
1+x?

The Generalized Fourier Transform (G.F.T.) of function f(x)is defined by the

following formula
s(u; f)-\/___j‘f(x)—dx+lzm—[£+i } (x)————a’x

and we have
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1 ¢ 2sinsx _;
s(u+e; f)—s(u—¢e; f)=lim—— x)—e"dx.
(u+e;f)=s(u=g:f) Mﬂ_jAf() .

Class S, The class of function f that belongs to L, and exists the following

integral
1 T
lim — x) [fdx.
lim — j | f(x)]
Class S : The class of function f that belongsto L and exists the following integral

T
go(x,-f):m-z-liij(xn)}‘(T)dt (V real x).

The functiong(x; f) is called the auto-correlation function of f(x).
Class S’ : The class of a function / that belongs to the class S and its auto-correlation
function ¢@(x; f )is continuous for allx .

Then it is clear that
S'cScS,cw?.

1.1 The Relevant Theorems of G.H.A. and Theorem A.

We shall start function f(x) that belongs to the class W?*. Applying the N.Wiener
General Tauberian Theorem in this case the so-called Wiener formula one obtains the
following theorem (c.f. N.Wiener| 1 ],pp.138~140)

Theorem W, Let us supposethat f(x) belongs to the space W?. Then we have

1% 1 %
lim — x)Pdc=lim—— ||s(u+e; f)—s(u—g; f)[ du
MZT_jTIf( )| M%Q (u+s;f)=s(u=g: f)]
in the sense that if either side exists, the other side exists and assumes the same value.

Then, we shall prove the necessary and sufficient condition for the hypothesis(C, ) to

be true. That is as follows.
Theorem A Let us suppose that function f(x) belongs to the classS,. Then we have

for each and all real A

1 Ate

lim % jT f(x)e™ dx = lim T AL {s(u+e f)—s(u—e; f)}du

in the sense that if either side exists, the other side exists and assumes the same value.

Proof of Theorem 4 . Now let us suppose the hypotheses (C,;). Then after N.Wiener,
we should use the identity
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4ab=la+bf —|a-bf +ila+ib[ —ila-ib] =D o|a+wbl

weQ)

where Q= {il, ii} . It might be realized the role to represent the inner product as the

sum of norms as follows. Then we have

f(x)e™ = f(x)e™ = ZGJ|f(X)+we""I

weﬂ

and inversely the term | f(x)+we™ [* could be expanded as follows

| F(x)+ 0™ P=| £(x)F +af (x)e™ + o ()™ +| we™ P.
Therefore we have

Lemma 4, Let us suppose that function f(x) belongs to the classS;. Then the

hypothesis (C,) and the statement f(x)+we™ €S, (VoeQ) are equivalent
for each and all real A.
Next we shall consider the G.FT. of f(x)+we”™, (Vo e Q). First of all we have by

the elementary calculation

~

27 (A-e<u<l+g)

S(u+g;e™)—s(u—s;e* )= < 2n/2 (u=Aits)

L 0 (u<d-¢, A+e<u)

Then applying Theorem W0 , we have

lzm-——-'[ = 0| f(x)+we™ [ dx

T—>® 2T a)eQ

=lZmlzm—-——j)s(u+€ f+we™)—s(u—g; f+we* )| du
42 ae

—lm——j =Y o|{s(ut+e; f)-s(u- ef)}+a){s(u+g er )—s(u—g;;e™ }I du

e-0 41 a)e o)

_lim L | {s(u+e f)- s(u—8,‘f}{s(u+e,‘e""l")—s(u—s,'e'i“)}du

047 =

Ate

J‘ {s(u+e; f)—s(u—g;f)du

=lim

£-0 28' l
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It is easily verified that by the Theorem ¥ ,the estimation of inverse direction is also

true. Therefore we have

Lemma 4, Let us suppose that function f(x) belongs to the classS,. Then the

proposition f(x)+we™ ¢ S’O (Vo € Q) and the existence of the limit

Ate
1

lim i L{s(uw; f)-s(u—g; f)ydu

is equivalent for each and all real 4.

Thus combining two Lemmas 4, and 4, , we have proved Theorem A.

Next we shall state the N.Wiener theorem as a more fine and advanced forms.

Theorem W, Let us suppose that function f(x) belongs to the classS,. Then we
have for each and all real A
1% o 1 %,
lim— [ f(x+t)f(t)dt =lim— [ & | s(u+; f)-s(u—&; f) du
T-» QT r e-0 412 =
in the sense that if either side exists, the other side exists and assumes the same value.
In the first we shall state the following result.
Lemmal¥, Let us suppose that function f(x) belongs to the classS,. Then the two

propositions f € S and f(x+t)+wf(t)e S, (Vo€ Q, Vreal x) are equivalent to

each other.
Let us suppose that f(x+t)+@f(t)e S, (Vo e Q, Vreal x).Since we have

T T
%Elfjf(xw)ﬂ)dr:lh jzm|f(x+t)+mf(t);2dt

—Ilim .L
4750 QT o
we shall conclude that f(x) belongs to the class S .
On the other hand let us suppose that f(x) belongs to the class.S . Since we have

zgn—zlf [17xssarf a

=£ﬁ%:‘;[f(x+t)[2dt+5£11)i—2%:‘;f(x+t)ﬁ)dt

1T — 2. 1 ¢ )
+w;gg°5;£f(x+r)f(tﬂt +lo] ;gfgogf_j;lf(x)l dr,

we shall conclude that f(x+¢)+af(t)e S, (VoeQ).
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Proof of Theorem W,. Let us suppose that f(x) belongs to the classS and let us
consider the G.E.T. of f(x+¢)+ @ f(t). Let us denote after N.Wiener (c.£[ 1], p.156)

—iut —mt

sx(u,'f)z———z\[l—_;[:jf(x+t)—————dt+lzm————[I j} (x+t)

A—>

Then applying Theorem W, ,we have

tim s [1 75+ )+ (0

lzm—.{ls(u+a f(x+t)+of(t)—s(u—g; f(x+t)+of(t)) [ du

>0

o0

= lim—— [ |(s,(u+ef)=s,(u—e: f))+o(s(ute; f)-s(u—& f ) du

0 471

and we have

lzm—j.f(x+t)f(t)dt=——lzm———j Yol f(x+t)+af(t)] dt

T weQd

_-l-lzm——IZa)[(s (u+e f)—s(u—g f))+o(s(u+e f)-s(u—g; 1) du

4 >0 47e o0 WEQ

-zzm—j(s (ute f)—s,(u—e f))s(u+e f)—s(u—e;f))du,

>0

Now we shall quote the N.Wiener result (c.f. [ 1], p158). Thatisif f(x) belongs to

the space W?, then we have
T [I(s(uteif) =5, (u=s: f) =€ (s(u i f)=s(u=s: ) du=0(s")

as € 0.
Then applying the Minkowski inequality we have

1 0

Q_’ﬁ_—;; {s;(ute f)—s,(u—e f){s(u+e f)—s(u—sg; f)}du
—hm—l—we””‘ls(u+£ f)—s(u—g; f) du,
0 47g 7

Therefore we have
T )
lim—— [ Sex w070 =iim [ Iscus:f)=stu=s:1)F du

On the contrary, let us suppose that a function f(x) belongs to the classS, and the
following limit
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lsz e |s(u+e; f)—s(u—g; f)F du
7€ -

exists for all x.
First of all let us remark that the following identity

| ,
etlx=__za)lellx+wi2.

0eQ

Then we shall estimate the following formula
1 7 . :
— [l +aP|stu+e f)=s(u—& f)F du .
dre 7,

Here we shall quote one more the same estimation as for s (u+¢&;f)—s.(u—g,f)

and applying the Minkowski inequality, we have

1 i iux
Z;;ﬁe +oP|s(u+e f)-s(u—g; ) du

:-_I__Tl(ei“" +o)(s(u+e; f)—s(u—g; f))f du
4re =,

0

=L (s (uts: f)=s,(uns:f) =" (s(ute; f)=s(u—e; f )+
dre 7,
e +o)(s(u+e f)-s(u—g; f)F du +O(g*)
:Z—lz]3|(sx(u+g;f)—sx(u—f:;f))+a)(s(u+g;f)—s(u-—£;f))[2 du+0(g*)
7[ -0

=Z‘17;£Ti(S(u+3;f(x+f)+60f(f))—s(u—s;f(x+t)+a)f(t)) P du+0(s*)

as £€—>0.
Therefore we have by the Theorem I

zzm——-j|e"“+m;|s(u+g f)-s(u-e; )} du

-0

—lzm————fls(u+g f(x+t)+of(t)-s(u—¢g; f(x+t)+of(t))} du

&0

— Jim 2
—;ng_lef(x+t)+wf(t)l dt
forall x and Vw €. Then we have by the identity to be stated above
lzm—l—— e |\s(u+e; f)-s(u—sg; f)I du
8-—)047[
—llzm—J‘ZCole”“+a)[ |s(u+e; f)—s(u—e; f)I du

4 :047c oo 9EQ
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_Zmﬁigwwxw)mﬂm dt_zzm—jf(x+t)f(t)dt

Thus we have proved the N.Wiener Theorem such as a more fine and advanced form.
It should be remarked that the half part is the N.Wiener Theorem (c.f.[ 1 ], Theorem 27,
p.158) and the remaining half part is due to by the author.

1.2. The Relevant Theorem of G.H.A. and Theorem B.
Let us define the G.F.T. of the auto-correlation function ¢(x; f) of f(x) asfollows

—A

O'(u;q))z—\/_;—;ﬂ—jw(x;f)—e::x——ldx‘”;_)lz ~J=[I+_[ ](o(x f)—-——dx

As for the spectral analysis of the N.Wiener class S, we shall need to know the
properties of o(u;@). We shall present here the more detailed properties of o(u,; @)
after the same method of N.-Wiener| 1 ] with the assistance of properties of o, (u;¢,)
(g >0) that is defined by the following formula.

Let us denote
1 t fux
0.(x; f)=—[ & |s(u+&; f)=s(u—z;f)[ du
4re =,

and its G.F.T.

o.(u0.)==[o.(x f)——‘dx+lzm——[j+j ]%(x 1) s,

Ao
-4

Then it is clear that the function @, (u; f) is of positive definite in the sense of
S.Bochner[ 3 ] and it is represented as

1 T iux
P.(x:f) == i e™dA,(u)

and by the theorem of the Levy inversion formula we have
1 % e
A,(u)=PV.—— [ 9,(x)
Nord R

On the other hand from the definite formula of @_(x; f) we have directly that

1 -
Ag(u)_2gﬂ£[s(v+g,f)—s(v—g,f)|dv.

Therefore we have

1 3 e —1 1 f
Vol ees ) de = e istvr s f) sty /) Py

7



KSTS/RR-19/001
August 2, 2019
(Third edition, December 6, 2019)

and

1
(*) O.s(u’ ¢g) - 28\/5

where the constant term C, in this formula may readily be verified by the limiting

]'lS(V+8;f)—s(v—s;f) |2dv—C£, ae. u

value

-4 1

-1 4
[ J‘ + .[ }% ( *) i
—IX
as the A tends to infinity through a sequence {Aj} . Here we shall quote the same

method used in the proof of the F. Riesz-Fischer theorem in the theory of I* -space.
Since ¢,(x; f) tends to @(x;f) boundedly as € >0 and ¢, (x; f)/(—ix) tends

in the mean to @(x; f)/(—ix) as & -0 over any range of x to be not containing

the origin. From these facts we shall conclude that
o(u;p)=limo,(u;0,) (L)

on any finite range of % .Because we have by the Plancherel theorem

P [lols)-ets IRy

X

[1o.(wp,)-o(up)f dus 1}( [1o.(x: ) =0(x: 1)) dx]
~N -1

x>t

as £ >0 forany N>0.
It is remarked that definition of o, (u#,@,) on the set of measure 0 may be permitted

to move. Hereafter we shall quote the o, (u;¢,) asthe above formula(*) for allu.
Now we shall quote the Lemma due to Paley-Wiener (c.f.[2], pp.134~5).

Lemma(Paley-Wiener). If we have a sequence of monotone functions { fn} tending to

a function f(x) in the mean, then we have

Su(x) = f(x) ae. (n—>wx)
Then applying the Paley-Wiener Lemma to the sequence of {O'g (u; o, )} we shall
conclude that
o(u,p) =£i_r)130'5(u;¢5) ae. u.

Furthermore we shall intend to consider the more detailed properties of o(u; ¢ )with

the assistance of those of o (u, ¢, ).
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Let us denote the set D of u where the sequence o, (u, @, )is convergent and the
set £ of u where it is not convergent or to be not defined. Then we have DU E=
(-, +0) and m(E)=0.

It is remarkable that hereafter we shall denote o(u%)ando,(u) instead ofo(u,; ¢)

and o_(u;@,) respectively for the sake of simplicity.
We shall also define as follows

o(u)=supo(v), o(u)=info(v) and o(u)=2(0TT)

y<u u<v 2
veD veD
Then we could define o(u) everywhere and it is a bounded, monotone increasing

function of # and first of all we shall prove that it satisfies the following properties
o(u-0)=c(u) and o(u+0)=o(u)
at any point # where we shall denote
it;moa(uts) =o(uxt0) (or o(ut))

respectively. We shall notice also that the number & takes always a positive number.
Now we shall intend to prove the following
Theorem B . Let us suppose that function f(x) belongs to the classS, then we have
1 ut,

lim fls(v+g,-f)—s(v—s,-f) Pdv=o(ut)-o(0t),

#0 22\27 ois

for any point u.
We shall start to prove several properties of 0,(u) and o(u). We shall prove them

by the elementary calculation of Real Analysis and these are required many detailed
estimations. However since it shares of a role of essential part of Theorem C, therefor
we shall prove them step by step for the sake of completeness.

Lemma B,. The o(u) satisfies at any point u
o(u—-0)=o(u) and o(u+0)=0(u)

respectively.
Proof. Since o(u) is bounded, monotone increasing function we have for any pair of

(u',u") suchas u'<u"

o(u')=info(v')= inf o(v')< sup o(v")=supo(v')=oc(u").
u'<v' u'<v'<u” u'<v'<u" vi<u”
v'eD veD v'eD veD

Therefore we have proved for any pair of (v,u) suchas v<u,
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a(v)<o(v)<a(u)

and so

2_(3_)12"_5_(1252(1,),

o(v)=
Then we shall take the limit such as v T u , we have
o(u—0)<o(u)
Next we shall intend to prove the inverse inequality. Since o(u) is a bounded
monotone increasing function, for any pair (u#'u') suchas u’'<u"” <u,we have
o(u)<o(u").
Then we shall take the limit such as u” T u, we have
o(u)<o(u-0)
and so we have

o(u)=supo(u’)<o(u-0).

u'<u
u'eD

Therefore we have
o(u—-0)=0o(u).
Similarly we shall prove

o(u+0)=0c(u).

Lemma B, (i) At any point #, two propositions are equivalent to each

other.
(a) Apoint u belongs tothe set D and o(u) iscontinuous there.

(b) We have g(u)=;(u) at a point #.

(ii) At any point #, two propositions are equivalent to each other.
(c) Apoint u belongstotheset E or D—-D,.

(d) We have g;(u)<g(u) at a point #.

where we shall denote it as [, the set of a point # that satisfies the proposition (a).
Proof. () From (a)to (b) is asfollows. We have at a point u
o(u—-0)=o(u)=0oc(u+0)
by the proposition(a) and

o(u)=c(u—-0) and o(u)=oc(u+0)

by Lemma B,. Thus we have o(u)= ;( u) atthe point u.

10
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From (b)to (a) isas follows. Since o,(u) is bounded and monotone

increasing function of #,for any pair (u’,u") suchas u'<u<u",we have
o, (u) <0, (u) <, (u").

Since the measure of the set £ is 0 and so we shall assume always to u u" € D.

In the first, we shall intend to {8} ) , then we have

O'(u')S.li_mo;(u)éﬁgag(u)ﬁa(u').

>0

Next, we shall apply the definitions of o(u) and E( u ) to the above formula and we

shall notice that o(u) = ;( u) in the proposition (). Thus we shall conclude that

o(u)=o(u)= -o_'(u) and ling o,.(u)=0(u) exists at the point # and it belongs to
£

the set D Applying Lemma B, to the above formula we have
o(u-0)=0o(u)=0o(u+0)
and we shall conclude that o(u) is continuous at the point u.
(i1 ) In this case, the proof can be done by the method of antithesis. Since the
proposition in the case (ii) is nothing but the contraposition of the proposition in the
case (1i).

Therefore we have
o(u)-o(u)>0 (YueEU(D-D,) ).
Now we have proved

(I) In the case o(u)= ;( u) atapoint #.The point # belongs to the set D and

o(u)=Ilimo (u)
-0
exist and continuous at the point #.

(ID In the case ;( u)>o(u) at a point #. The point u belongs to the set £ or

D— D, and we have
o(u+0)—o(u—0)=0o(u)-a(u)>0

Therefore o(u)is discontinuous of the first kind at the point # and the set
(D - D, ) Eis at most countable.

11



KSTS/RR-19/001
August 2, 2019
(Third edition, December 6, 2019)

Author suppose that the set D = D,. However this problem is open at present and he

leave it to the reader. Therefor hereafter we shall treat our theory in the case
DUE =(-w,0),m(E)=0 only for the sake of simplicity. Author suppose that this

hypothesis does not lose the essential part of the theory.

Proof of Theorem B. Let us remark that the following formula

1 ute

5 [ s sif)=s(v-s:f ) dv =0, (ute) -0, (0%e)

and so without loss of generality we shall prove it at a point # =0. That is as follows

limo, (0te;9,)=0(0t9)

(i) In the case of a point 0 € D. Since the sequence { o.(u )} is a bounded monotone

increasing function of u, for any pair (o,u) and &£>0 suchas o<ge<u,ueD, we

have
o.(0)<o.(¢)so.(u).
Then in the first tending & 3 0, we have

G(O)Sli_mas(a)ﬁﬁn_gag(g) <o(u).
£-0 £

In the second we take the least lower bound ofo(u )as for u € D and 0 <u.Then we

have E( 0)=0(0+) by the Lemma B,. In this case the point 0 € D and so we have

6(0+)=0(0) by the proposition(a)of Lemma B, . Because we suppose that D = D,
thus we have
6(0)=0(0+)=0(0)
and we shall conclude
iimoag(g)=a(0+).
We have similarly
limo,(~&)=0(0-)

(ii) In the case a point 0 € E. We have defined o(0) as follows

12
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o(0+)+0(0-)
5 .
Let usput o(0+)—-0(0—)=d >0 and define
o (u)=o(u)—dh(u)

where A(u) is the Heaviside operator, that is as follows
I 1 (u>0)
Wu)={ > (u=0)
2
\L 0 (u<0).

Since we have by the definition
o' (0+)=o(0+)—dh(0+) = o(0-)
o (0-)=0(0-)—dh(0-)=c(0-)
6 (0)=0(0)-dh(0)=0c(0-)

respectively. Thus o (u) is continuous at the point % =0.

o(0) =

Now let us put

ol(u)=0,(u)~dh(u)
Then we have
éi_)n(z)a:(u)=li_r)i(1’0'g(u)—-dh(u)=O'(u)—dh(u) (YueD).

Next we shall consider it at a point 0. For any pair (u'u') suchas O<u’'<e<u”,

(u'u'" e D) ,we have

o.(u)<o.(e)<o.(u").
We shall take it as {8} J 0, then we have

0'*(u9S@a:(a)sﬁ;z‘;az(s)sf(u’ﬂ.

£—>0
Now we shall define

supo’(u)=c"(0) and info (u")=o (0),
u’'<o u'">0

Then applying the same argument as o (% )in the case (i) to ¢ (u)in the case (i), we

have
' (0)=c'(0-) and o (0)=0"(0+)

by the Lemma B, ,we have

13
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o (0-)=0'(0)=0 (0+)
by the continuity of o (u) at u=0.

Thus applying these results to the above formula, we have

lin(z)a:(e )=0(0+)

where o.(¢)=0,(¢)-dh(¢)=0,(¢)—d and & (0+)=0c(-0).

Therefore we have

lingag(+£)=0'(0+).

Similarly we have

Zinga;(—g)=0'*(0—)
whereo,(—¢)=0,(-¢)—dh(—¢) =0, (—¢) and o (0—) = 6(0—). Therefore we have

lin(z]as(—g)za(O—).

Therefore we shall prove by the same argument as above

lin(z)ag(uig)zo(ui-O)

at any point u# respectively. Thus we have proved the Theorem B .

1.3. The Decomposition Theorem on the classS and TheoremC'.
Applying Theorem 4 and Theorem B to function f(x)that belongs to the classS,

we have
Theorem C . Let us suppose that function f(x) belongs to the class S and satisfy the

hypothesis (C, ). Then we shall decompose
f(x)=g(x)+h(x)
with functions g,/ that satisfies the following properties.
(i) The g(x)isa B®-almost periodic function in the sense of A.S.Besicovitch. Let us

denote its Fourier series expansion such as
. 1 & .
g(x)~ce™, ¢, =lim 7 [g(x)e™ax (n=0123,.)
n -7

Then we have

1k - 2. O(®;0)—0(—;p)
;ggﬁ_jrm(x)tdx-;ms .

2z

14
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(ii) The h(x) belongs to the classS and we have

> 2T 4, . 27
Moreover let us suppose that the function f(x) belongs to the class.S’'.Then we have
h(x)=0 ae x and f(x)=g(x) ae. x.
Proof of Theorem C. Let us suppose that a function f(x) belongs to the classS and
the hypothesis('C, )is satisfied. Then we have

At+e
hm——jls(u+gf) s(u—¢, f)[du = “(’“0""\)/;_"(’1‘04’) (Vreal )
T

&0 ﬂ'g

by the Theorem B, Then we have the following formula

Ate

J(s(u+£ f)—s(u—g; f))du

= lzm——jf(x)e b = lim

T-w 2T &0 2

by hypothesis (C,) and Theorem 4.
Then we have by the Schwartz inequality

Ate

e, ['=|lim 28\1[2.; AL (s(u+&; f)—s(u—g; f))dul

Ate
gy = CA+0:0)~0(2-0:0)
<£§gZ7EIIS(u+8 f)=s(u=-g:f)fdu= N »

Therefore we have
Step (i).If ue€ D, the o(u) iscontinuousat u=A4.We have ¢, =0.

Step (ii).If u € E, sincethe o(u) isabounded and monotone increasing function,

the set E is at most countable and we shall present it as follows
E={4} (n=0123,.) and ¢, (=c,,5ay),(n=0123,..)

where 4, =0 and ¢, =0 may be permitted.

f 0 (4eD)
f f(x)g™ax =

L ¢, (A, €k n=0123.)

Thus we have

_1_
*2T
and
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2§ 0(4+0.0)-0(4 -0.p) o(wp)-0)-®9)
Zlcnl 2 \/é; < \/2—”- <

Then there exists the B, -almost periodic function g(x) and its Fourier series

n

expansion is as follows
g(x)~ c.e™ .
Then by the hypothesis (C,) we have
1§ : 17 :
lim— | f(x)e ™ dx=1lim— | g(x)e " dx Vreal A).
lim — j f(x) lim — j g(x) ( )

(c.f. A.S. Besicovitch [6],pp.91~112 and Research report V, 20d ed. p.129).
Step(iii) Then if we put f(x)—g(x)=h(x) say. Then we shall prove that the
function A('x) belongs to the class §. Since functions f(x) and g(x) both belong

to the class S and we have

1 — 17 —_
%ﬁih(xmh(r)dr_mﬁi{f(x+t)-g(x+r)}{f(t)—g(t)}dt
17 — .17 —
=lim o | e )70t lim [ 7 x+ g0

1 % — 1t —
—lim — x+t)f(t)dt + lim— x+1)g(t)dt
lim — j g(x+)f(1)dt + lim — f g(x+1)g(t)
and since g(x)is B’ -almost periodic function, we have also

l T - T .
lim E;_ITf(x +1)g(t)dt = lim 2_1T_ j g(x+1)F(t)dt

T
=lim—— [sCxv0=F e,
(c.f. ibid. IV, pp.105~108). Therefore we have
1 o 1 o 1 —
mﬁih(xﬂ)h(t)dt: =mﬁ_ij(x+r)f(t)dt —mﬁ_jrg(xw)gmdt.

Thus we have proved that a function A(x) belongs to the class.S .

Step (iv) We shall consider auto-correlation functions(x; f),w(x;g), y(x;h) of
f.g.h and their GET. o(u;@),c(u;y),o(u; y) of ¢,,y respectively.

Then we have

o(x; f)=y(x;8)+x(x;h) and o(uw@)=c(uy)+o(u x)

respectively.

We have already proved that the o(u,¢) is bounded monotone increasing function.

The o(u;) is GET. of w(x;g) and yw(x;g) is the auto-correlation function of

B, -almost periodic function g('x), then we have
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/"
2z le, B (u#d,)

A, <u
o(uy)= 4

JEE(Zlc,,F%IcmP] (u=4,)

\_ A <u

and so o(u,;y) is bounded monotone increasing function.
Since o(u;y) is represented as the difference of the two bounded, monotone

increasing functions o(u;@) and o(u;¥ ), it is a function of bounded variation and

we have
1 5% 5 1 X )
ﬁilx(x;hndxs;c(o,-h)=;grgo-2—5,-_jTih(x)|dx, (VT)

by the N.Wiener theorem| 1] (c.f. Theorem 25, p. 154).
It is remarkable that we could apply the N.Wiener theorem[ 1 ] (c.f Theorem 24,
pp.146~149) to the function y(x,;4)and we have

17 (2 +0:0)=0(%=0:p) | o\
lim— [ | x(x;h) P = { n 20 TP e, P
T—w 2T_-[‘ Zn: 272-
In particular if o(u,; @) is continuous everywhere ,then it lead to
2, 0(4,+0,0)-0(4,-0,9)
e, P< -
V27

and we have

0 (n=0123..)

T
ll_r)n%fl (k) Pe=0.
Now let us notice that we have
jl—;(—(—ﬂlz—)ﬁdxs(l+2ﬂ)lim-—l—il 2(x:h) Pdx
5 l+x I—= 2T <,
by the N.Wiener theorem| 11 (c.f. Theorem 20, p.138) and we have y(x;h)=0,ae. x.
Next let us suppose that a function f(x) belong to the class S’, then ¢(x; f)is

continuous everywhere. Moreover since g(x) is a B’ -almost periodic function,

w(x;g) is also continuous everywhere.

We have proved already that
1§ — 1 ¢ — 1 ¢ —
lim— | h(x +t)h(t)dt = lim — x+t)f(t)dt - lim— x+t)g(t)dt
lim — j (x+0)h(t)dt = fim — j f(x+1)f(1)d mzr_ff( )g(t)
and so y(x; h)is continuous everywhere too and we shall conclude that y(x;#)=0 for

all x.
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Thus we have proved
1 2 ) =
ﬁlj’a’oﬁ__[rlh(x)ldx—l((),h)—o-

Then applying the N.Wiener theorem[ 1 ] (c.f. Theorem 20, p.138) to h(x) again ,we
have

h(x)=0 ae. x and f(x)=g(x) ae x.
Thus we have proved Theorem C.

Author suppose that N.Wiener might consider the decomposition theorem of function
f(x) on the classS in the research of his first stage. Therefore hereafter Theorem C

should be called the Paley-Wiener decomposition on the theory of G.H.A.

Remark ( 1) Let us suppose that f(x) belongs to the classS and satisfies the
hypothesis(C, ). Then we have for any constant a,
At

lim—l—— jfls(u+.€:;f)—s(u—g;f)—\/—2—7;a/1L P du

e047e 7

_ o(A+0;¢)-0(1-0;¢9)
27

and therefore the value of this integral attains to minimum if and only if a, =c, and

2 2
—le, I" +le; —a, |

we have

A

lim——l— r|(s(u+8;f)——s(u-8,'f))—\/%cl P du=

0 41

0'(/1+0,'¢)—0'(/1—0;(0)_|c P
\2r t

Since o(u)is bounded and monotone increasing function, there exists the set £ of
countable points A=A4,, (rn=0,1,2,...) at which o(u;@) has jump and continuous
elsewhere. Thus we have the following results.

(i)If A€ D, then we have

1 2, O(A+0,0)-0(A-0;0) )
lim— | |s(u+é¢g;, f)—s(u—g; du = —lc, I’=0.
lim 4”8161 (u+e: f)-s(u~s:1)| N e
(ii)If A€k, thatis A=4,, (n=0,1,2,3,...), then we have
1 R o(A +0)—c(A —0)
lim— s(u+ge, f)-s(u—e, )} —2mc, | du=—"" n ~lc, P
Iy L 5060 )=s(u=0.1 ) =2 | e G|

(c.f. ibid. VI, 3rd ed. pp.141~143).
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Chapter 2. Generalized Hilbert Transforms
This theory had been constructed by the author (c.f. S.Koizumi[10]) about more than
fifty years ago.  Let us suppose that a function f(x) belongs to the Hilbert space W?.
Then Generalized Hilbert Transform of order 1(G.H.T.) of f(x)is defined by the

following formula

7(x):PV(x+i)]'if(t) dt
. =1

t+i x—t
Here we should be remarked that it has been introduced already for the purpose of the
different research by H.Kober (c.f. Research Report I, pp.2~3). Then it can be written as

xX+1 Lt x—t
and since f(x) belongs to the space W?, the G.F.T. 71 (x)is well defined and belongs

to the space W?.
Let us rewrite the multiplier x+i=(7+i)+(x—1), then it can be written formally

as follows

71(x)=P.V.lTMd1+P.V.—1-T1th=7(x)+A(f)
T x—t T b+

where the 7 is the ordinary Hilbert transform of f and the A(f) isa constant to be
not always defined.
2.1 Relevant theorems of G.H.A. and advanced results.

About fifty years ago, the author established the following theorem (c.f. [10] Theorem
49, pp.201~205 ; see also [12] Theorem A)

Theorem K. Let us suppose that f(x) belongs to the class/# *. Then we have for any

positive number &
(i) if |u|> & then we have

s(u+g:f,)—s(u—-g; f,)=(~isign u){s(u+e f)-s(u—g f)}

and
(i) if |u|< & then we have

s(u+£;;’;)—s(u—e;;‘:)= i{s(u+8;f)—s(u—8;f)}+2rl(u+g;f)+2r2(u+g;f)
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where

1 j f()e™ -

t+i =it

n(u f)=Lim.

B—ow

and

rn(u, )= lBl—{g—\/_z——— T —-——ef(t) .

g t+i
We shall intend to estimate remainder terms r(u, f) and r,(u; f) in TheoremK,,.

Asfor r(u; f),if f(x) belongs to the space W, then
1 £
(R) Z‘Il’i(”"’b‘;f)lz du=0(g), (g¢—>0).

(c.f. Research Report I, p.19).
Asfor r,(u; f), we shall require the following condition(R, ).
There exist a constant a( f) such that

(R,) -z-l-giirz(uw;f)— Za(fIF du =0, (5-0).

This condition should be indispensable to reconstruct the theory of G.H.T. under the
assistance of hypothesis (C, )on the cause of the Definition of G.H.T. Then we shall

obtain many fine and advanced forms and rich results as follows.
Theorem 1. Let us suppose that f € S and the hypothesis (C, )and the condition

(R,) are satisfied. Then we have G.H.T. f, €S, and the following equality

m%_jilf:(x) P = lim %II f(x) st licy +a( )P ~|cy P

(c.f. ibid. VI, 34 ed. Theorem B, , pp.148~9).

Proof. We shall intend to estimate the following formula
l < p -~ 2
1=—j|s(u+s,-ﬁ)—s(u—a;f])| du.
dne =,
Then by the Theorem K|;, we have for any positive number &

I=Ej (—i signu) {s(u+e f)-s(u—g; f)} du

u|ze

+T [li{s(u+e:f)=s(u=g f)}+2n(u+& f)+2n(u+e f)f du

lul<e
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=1 +1,,sap.

As for I, we have by the part (i) of Theorem K

I, =--—j|s(u+g f)-s(u—e f)fdu.
47e

lujze

As for I,, we have by the Minkovski inequality and the part (ii) of Theorem K,

I =Il—— I li{s(u+g; f)-s(u—& f)}+2r(u+e f)fdu + o(1) (£-0)
luj<e
and by the use of the condition(R, ) and applying the Minkovski inequality again, we

have

=Ejlz{s(u+a f)—s(u— 8f)}+\/—a(f)| du + o(1) (¢—>0).

luj<e

Moreover we have

1 j |s(u+e f)—s(u—¢g f)[du +i (\/fi)_k,‘[ {s(u+e f)-s(u—g f)}du

de <&

lul<e

"212’1,1,L {suve;f)=s(u—g:f)tdu+la(f)F + o) (£-0).

Here we shall notice that

£

[{stu+e;7)-s(u—s; f)}du

—&

1% 1
¢, =lim— | f(x)dx=Iim
O e 2T_J; £-0 28"27[
by Theorem 4, then we have

Li=— [ stu+e; f)=stu—s:f)Pdu +ic,+a(f)] ~|c,  +o(1) (5->0)

47[ lulse

Therefore we have that

lzm—j|s(u+e Ff)—s(u—e; ) du

-0

_zzm——-j;s(u+g f)=s(u—e; f)P du +lic,+a(f)f -|¢c, [

&0 471g

Since f(x) belongs to the classS,, then if we apply Theorem W, to the above formula,
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we have proved that G.H.T. fl (x) belongs to the classS, and we have

fims [|ROOP = lim o 17000 P ey va( £)F =i

We have
Corollaryl.1. Let us suppose that f belongs to the class S, and satisfies hypothesis

(C, ) and condition( R, ) . Then we shall prove that 71 satisfies the hypothesis

T
@) & =m% [ Fixse™as  (vreal 1)
r

In particular we have
C, =icy+a(f).

Proof. If we apply Theorem A to the results of Theorem1, the existence of the limit

Ate

lim > \/._ljs{s(u+£, fi)=s(u—&,.f)ldu  (Vreal 1)

are derived as follows.
We shall apply Theorem K|, to this problem. If A # 0, we have

Ate At+s

~ ~ . ) 1
Ja{s(u +&,f,)-s(u—&,J,)Jdu = (~isigni Jlim i A_L{s(u +&,f)-s(u—¢, f))du

lim

£09 g\/’——
and if 4 =0, we have

lim

>0 26' /

Therefore if we apply Theorem 4 to fl( x) then we have proved that hypothesis

j{s(u+g F)=s(u- gf)}du—{;%zg\/_f s(u+e,f)-s(u—g,f)du+a(f),

( C. ) are derived and we have
 (-isigni)e, (A#0)

~ . 1 T —idx
cl—;gﬁiﬁ(x)e dr= 4

¢ =icy+a(f) (A=0)
respectively.

Theorem 2. Let us suppose that f € S and hypothesis (C,) and condition (R,)

are satisfied. Then we have G.H.T. ]~"1 € S and the following equality
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1 5. = 1% —_ -
lim — I Fx+0) (0 = lim— j fix+0)f(0dt+15, [ ~|c, P
At the same time , we have

o(u f,)=o(uw; f)+18 P =c P

Proof. We have fl €S, and (C ,) by Theorem 1 and Corollaryl.1. Then we could

apply the same estimation as Theorem 1 to the following formula

1 e |s(u+e; f,)—s(u—e;f,)IF du.
dre 7

Then we have

lim———l——- e |s(u+e f,)-s(u—sg; f,) du
e0 4z 7

1 7, ~
=lim— | ™ |s(u+g; f)~s(u—g; f) du+|& | —lc, | .
£>047g =
Thus we could apply Theorem I to the above formula, we shall prove Theorem 2.

Furthermore we have
Theorem 3. Let us suppose that f € .S'and the hypothesis (C,) and the condition

(R,) are satisfied. Then we have that G.H.T. 71 €S' and we have
1 7= = 1§ e
. i L AR alx PR
iﬁﬁiﬁ(xﬂ)ﬁ(t)dt—]lgg 2T_ij(x+r)f(r)dt leo P +1& [ (V%)
where E; =ic,+a(f).

Proof. By the Theorem 2, we have j~”l (x) tobelong to the classS . Then applying the

theorem of N.-Wiener[ 1] (c.f. Theorem 28, p. 160) and Theorem K|;, we have

L — 1 -4 - -
gﬁgggzﬂ—g_i+£ _|s(u+e;f1)—s(u—a;f1)|2 du
4w -
=lim%—l—— j+_[ |s(u+eg f)—s(u—g; f)f du =0
A-»0 -0 418 % 4 ’ ’ ’

Thus we have proved that ?1 (x) belongs to the classS’.
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We have also
Theorem 4. Let us suppose that f(x) isa B? -almost periodic function and

satisfies condition ('R, ). Let us write its Fourier series expansion as follows

f(x)~che“‘"".

Then its G.H.T. ji( x) is also a function of B”-almost periodic and has its Fourier

series expansion as follows
7 ~ iAx
fi(x)~ D&,
n

where
~

l (—isigni, )c, (n=12,3,..)
c = A

L icy+a(f) (n=0)
(c.f. ibid. VI, 3 ed. TheoremC , p.151).

Remark (2) Let us suppose that f(x) belongs to the classS, and satisfies the

hypothesis(C, ) and the condition (R, ). Then we have by the Corollary of Theorem 1,

G.H.T. ?1 (x) belongs to the class S, and satisfies hypothesis( Ci ).

In the case A =0. Then we have for any constant q,

Ate

lim—l— \(s(u+e; f)—s(u—¢e; f,))—~2xa, | du

>047g 7

:limijl(s(u+£;f)—s(u—8;f))—\/_2—7;a0 P du

£0 4772

_9(+0;9)-0(-0,¢)
V2z

where a, =ia, +a( f ). Therefore the value of the integral attains to minimum if and

—le B +[ey—a, i

only if a, =c, ie. a, =c, isequivalentto g, =¢, and ¢, =ic, +a(f). Thenwe

have

e0 478

lim—l—jr(s(uw;?l)—s(u—e:?ﬂ»—ﬂé; * du
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=11m——j|(s(u+g f)=s(u-¢;f))=2rc, | du

&0

o(+0,9)—0(-0,9)

= ~le,

27

In the case A #0. Then we have for any constant a,

l2

Ate

lxm4L |(s(u+8 fl) s(u*a‘;};))—\/gallzdu

£->0

Ate

~lim—— I(s(u+8 f)=s(u—z;f))—2za, [ du

£-0 47[

_ o(A+0;,¢)—-0c(A-0;¢)
NS

where a, =(—isigni)a,. Therefore the value of the integral attains to minimum if and

-lc, ¥ +]e; —a, ?,

only if a, =c, ie. a, =c,isequivalent to 4, =¢, and ¢, =(—isigni)c,.
Then we have

Ate

lzm—41— |(s(u+8f) s(u—¢:7))-2mea [P du

e—0

Ate

—lmgL ](s(u+s f)=s(u—g&; f))—~2mc, [ du
_o(A+0ip)-o(A=0p) | .
27 *
Therefore we shall conclude that
(i) A€ D. Then we have

Ate

Izm————-_[ls(u+8 Si)—s(u—- a‘f)ldu

&0

1 M o(A+0;,0)—c(A-0;
=§’_’>’$Z;g}£lS(u+8:f)—s(u—s;f)lzd”= . CDjz—,,( 22— e, =0,

(ii) AeE,if A=4,,(n=12,3,...). Then we have
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Ay t+E

lim—— [ |(s(u+e:7,)=s(u-s:F, ) ~N2re, P du
t-0 471e i
1 A,+e
=lingr |(s(u+e; f)-s(u—e;f))—2rc, [ du
e047e 7

— O-(ﬂ'n + O; ¢) - O.(ﬂ’n - 0" ¢) _

NP

where ;:: = (—isigni, )c,.

2
le, |

If A=4, (n=0). Then we have

tim— [\ (s(u+2; 7, ) su—5:F, ) -7y P du

e-0 471g

_o(0+9)-0(0=p) -~ g

+|¢
oy | €

where 2(; =ic,+a(f) (cf Research Report VI, 3 ed. pp.143~145).

2
=] |

2.2 The Decomposition Theorem of G.H.T. Z( x) ontheclassS.

Let us suppose that f(x) belongs to the class S and satisfies the hypothesis(C) )
and the condition (R, ).Then by the Theorem 1, Corollary 1 and Theorem 2, we proved

that its G.H.T. Z( x) belongs to the class S and satisfies hypothesis ( o ). Then with

the assistance of Theorem C, we have the decomposition of G.H.T. Z( x) as follows.

Let us denote
f(x)=g(x)+h(x)
as the decomposition of f(x) in Theorem C ,then as for G.H.T. of them we have

fi(x)=g(x)+h(x)

and it gives the required decomposition of 71( x ) .Therefore we have
Theorem 5. Let us suppose that f(x)belongs to the classS and satisfies hypothesis

(C, ) and condition (R, ). Let us set the decomposition of f(x) as in the TheoremC
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f(x)=g(x)+h(x).

Then we have the decomposition

fi(x)=g(x)+nh(x)

and it satisfies the same properties of f(x)as in the TheoremC'.

Proof. The proof can be done by the same argument as Theorem C . By Theorem 4 the

2{( x) is B’- almost periodic with Fourier series expansion

g(x)~ Y ce™
where
~ 1 %~ 1 %~
— Tiy —id,x = Jimg —— —ik,x =
cn—ﬂr}ozT_J;ﬁ(x)e dx £l—’>?°2T_-£gl(x)e dc (n=012,3..)
and

(—isigni, )c, (n=123,..)

o
]
N\

icoc+a(f) (n=0)
Then we have

[P de=Ya

lim
T—w QT o

3 ot 00)—0(h 09) _o(wig)-o(==ip) _,
: N Var
where
o(4+0,0)-0(4~0,0)

NP

(n=12,3,..)

o(4, +0;0)—0(4, —0;¢0)

2z

£

O—(O+;¢)_O'(O_,‘¢) + I ; |2 _ I C |2 (n — 0)
0 0 :

2z

Therefore since 71( x) belongs to the N,Wiener classS, then E (x) does too by the

-

same argument as Theorem C .

Nowletusdenotesqﬁ(x)=(o(x,fl),z;(x):t//(x,g) and ;((x)=z(x,g) as the
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auto-correlation function of fl , :g: and E respectively and o(u,9),o0(u,y) and
o(u,y) astheir G.F.T. respectively. Then we have
o(x.f1)=y(x.g)+x(x.h) and o(u¢)=c(uy)+o(uj)
In particular we have
lim—l—fmx) P dx= lim—l—ff(x) P dx + limif[ig(x) P dx
T-o QT o 1 To» 2T e & T—» 2T o )
Let us remark that IZ (x) belongs to the classS, o(u; 5 ) and of u;& ) are both

bounded increasing as a function of #.Then o(u, ;? )=o(u; (~0 )—o( u,‘& ) isa

function of bounded variation and its magnitude of jumps are as follows
(i) If Ae D, wehave

o(A+0;0)-0(A-0;0)=0 and o(A+0;)—0c(A=0;p)=0
then we have

o(A+0;x)-0(A-0;,7)=0,

(i) If AeE={4,}(n=0123,..)
We have in the case n=1,2,3,...

(A, +0:0)—0(A, ~0;0)=0(A +0;p)—0(4 —0;p)

oA, +0w)—o(4, -0w)=\2x |c, =27 c,
and

(4, +0:2)=0(2,~0:7)
={0(4 +0:0)~0(4,~0:0)} ~{o(2, +0:9)~ (4, - 0y )|

={o(4,+0;90)-0(4,-0;0)} =27 |c, .
We have in the case n=0

6(0+;0)—0(0~ ) = 5(0+;9)— 5(0~ ) +27m(1¢,  —| ¢, )
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a(0+;y)=o(0~y) =27 | ¢ [
and
o(0+: %)~ 0(0~ 1)
={0(0+;0)~0(0-:0)} ~{o(0+:y) - o(0~p )}
={o(0+:p)~0(0~0)} -2z | ¢, |

Therefore we have

~ ~ 2
1% ~ o(A +0;,0)—c(A -0;p0) ~
lim — x, b ) Pdx = L n ~le, P
sz_fT"“ 7)) Z{ NiT . |

. _ . 2
-y {a(ﬂn +0, %;am,, T2 P}

by the N.Wiener theoreml 1] (c.f. Theorem 24, pp146~149)
In particular, ifo(u; ¢ )is continuous everywhere, then we have

17 TR Ay —
;mELW(x,h)I dx=0

and moreover we have

© T2 T e
I——deZ(x’h‘Z)] S(1+2ﬂ)lim—1—I[;((x,'hl)|2dx=0
s 1+x T>= 2T <

by the N.Wiener theorem| 1 ](c.f. Theorem20,p.138). Thus we have
;((x,itvl) =0 ae x.
In addition, if f(x) belongs to the classS', then since 7;( x) and §;( x) are both

belong to the class S, E (x) does too. Then since y( x;IA'zI ) is continuous everywhere

we have z(x, E )=0 for allx and in particular we have
1 7~ ~
lim — x)P dx=y(0;h)=0
MZT_ITW )P dr=2(0:h)
and repeating the same arguments as above we have by the N.Wiener Theorem/ 1 J(c.f.
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Theorem20, p.138)
}Z (x)=0 aex
and we have

fi(x)=g(x) aex.

Thus we have proved Theorem 5.

Chapter 3. Generalized Harmonic Analysis on the upper-half plane.

We shall reconstruct the theory of Generalized Hardy Space(G.H.S.) in the upper-
half plane as another application of G.H.A.. As for the ordinary Hardy Space, it should
be refered to E.C.Titchmarsh (c.f. [3],Chap.V, pp.119~132).

3.1. Generalized Hardy space H12 and Relevant Theorems.
We shall denote it by H, 12 and it is defined by the set of a function F'(z), (z=x+iy)
that is analytic in the upper half-plane y >0 and the integral

j' LE(x+iy)[ ?

1+ x*

< o0

exists uniformly in y > 0.

Generalized Cauchy Integral. (G.C.I). We shall denote it by C(z;F)and it is
defined for a function F('x ) that belongs to the space W?> by the following formular
z+i ? F(t) dt

Lltit-z

Gz F)= 27i

where z=x+iy, y>0.

Then along just the same arguments as Hardy space H ?(c.f. E.C.Titchmarsh [3],Chap.
V, pp.119~132) we had been constructed the theory of generalized Hardy space H12 by
the author (c.f. S.Koizumi [10 ] and Research Report III, pp. 46~52).

We have

Theorem K, . Let F'(z ) be analytic in the upper half-plane y >0 and belongs to the

class H!.Then we shall find out the boundary function at y =0 to be denoted it by
F(x).Then we have

(i) We have
lingF(x+iy)=F(x), ae. Xx.
Y

If we write f(x) astheReal Part of F(x),then Imaginary Part of F(x)is
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G.H.T. f,(x) and we have F(x)=f(x)+if (x).

(ii) It belongs to the space W?> and we have

lim 5
y=0 I+x

(iii) The F(z)is represented as the G.C.I. of F(x ), that is
z+i T F(t) dt

27i ¢ t+it—z

—a0

UG )=F(x)f

F(z)=C/(z;F)=

where z=x+iy, y>0.

We have the inverse theorem.
Theorem K, . Let us suppose that f(x)belongs to the space W> and let us define

F(x)=f(x)+‘i?](x) and F(z)=C,(z;F).Then we have

(i) The F(x) belongs to the space W?* and F(z ) belongs to the space le .
(ii) The F(x) isthe boundary function of F(z) in the following sense

limF(x+iy)=F(x), ae. x
y—=>0

and

i [LECE D)= P

y=0 1+ x?

We have the spectral decomposition of F(z).
Theorem K, . Let F(z),(z=x+iy) be analytic in the upper —half plane y >0
and belongs to the class H; . Let us denote by F(x) its boundary functionat y=0.
Then we have for any given positive number &
(i) if |u>¢, then
s(u+e; F(z))—s(u—¢g;F(z))
= (1+_szzgnu_)e_y,, {(s(u+e;F)=-s(u—&F))+r,(uye F)}

where

.1
tim=— [ |(u.,e:F)F du=0

lul>e
for every y >0,
(ii) if |u|<é&,then
s(u+e; F(z))—s(u—g;F(z))= in(u+e F)+in(u+s; F)+n(u+sy F)

where
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in(u+e; F)+in(u+e F)=s(u+eF)-s(u—¢gF)
lzm— I |r(u+g;F)f du=0 and lz’ng J‘ |n(u+&y,:F)f du=0

S-—-)O
Iul<€ luj<e

forevery y>0.

3.2. Generalized Harmonic Analysis on the space H;.
We shall intend to reconstruct the theory and present here the more fine and

advanced forms and results.
Let us suppose that a function F'(z) is analytic in the upper-half plane y >0 and

belongs to the class H, 12 . Then by the Theorem K|, there exists the boundary function at
y =0 and we shall denote it by F(x ). Then it is represented as follows

F(x)=f(x)+if\(x)

where f(x)isthe real part of F(x)and 71 (x) is the imaginary part of F(x)and

G.HT of f(x).

Furthermore we have

z+iTF(t) dt

Flz)=GzF)= t+i z~t

- (z=x+iy, y>0)
27i 7 :

Here we shall quote the skew reciprocal formula of G.H.T.

71(3‘)

x+i

f) a1 Ifl(t) di___f(x)

=PV.—
It+zx t t+i x-— t x+i

and it is derived from that of the Ordinary Hilbert Transform . Then we have
F(z)=2C(zf)
with f(x) the real partof F(x).

Now we shall denote
h(z)=C(z f).
Then we should remark that F(z)=2f,(z) and this enable us to argue with f,(z)

instead of F(z) and to set hypothesis(C, ) and condition(R,) on f(x).

We shall state them step by step steadily for the sake of completeness.
Theorem 6 Let us suppose that F(z) belongs to the class le .Let us denote F(x)
as its boundary function at y = 0. Let us suppose that f(x) the real part of F(x)

belongs to the class S and satisfies hypothesis(C, ) and condition ('R, ). Then we have
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(i) if |u|> &, then

s(u+8;F(z))——s(u—£,'F(z))=Q——-I-—‘—9§ig—n—z—l—)-e""‘ {2(s(u+8;f)—s(u—g;f))+r0(u,y,£;F)}

where

1
lim— [ In(u,y,&F)Fdu=0,

[u|>¢
Gi) if |ul< &, then

s(u+sg; F(z))—s(u—gF(z))=2in(u+eg; f)+2n(u+e f)+rn(u+ey, F)
where

iq(u+8,‘f)+ir2(u+£,'f)=s(u+8;f)—s(u—£;f)

iz_r);(z)i _[ \rn(u+e f)f du=0 and éz_r)rgé j. |h(u+e,y;F)Pdu=0
jul<e luj<e

and there exist constant a( f )such as

(R)  tim=— [ In(u+s:f)-\2a(f)F du=0.

€
lu)<e

Proof. We can apply Theorem K, and Theorem K, then we shall obtain the required
results. We shall omit the detailed proof (c.f. S.Koizumi{11],Theorem36,37,pp.192~3 and
Research Report ITI, pp.50~51 and 63~64).

Next we shall prove
Theorem 7. Under the same hypotheses and condition as Theorem 6 , the function

F(z) belongs to the class S forall y>0.
Proof. In the first, we shall intend to prove that F'(z)belongs to the classS as

function of x for all y > 0. This can be done by the application of Theorem#,. We
shall estimate it by the integration by parts and apply Theorem B.
Let us estimate the following integral

1 e |s(u+e; F)—s(u—e;F)I du
4re =,
1 iux |12 1 iux 2
=——0o | &“1]"| du+—-je " du=1+1,, say.
4me jujze luj<e
We have
1 we | (1+signu) _, . ) . 2
11:4— e | e {2(s(u+e; f)-s(u—g; f))+nr(uy,e F)} [ du
”8\u|>s 2
=ije"'“e“2”“|s(u+e,-f)—s(u—g;f)12du+o(1) (£>0)
ne
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by the Minkowski inequality and (R, ). Then we have

J—Te”"‘e‘”" |s(u+e; f)-s(u—g;f)F du-—-{em_zy)u j'ls(v“Lg"f)—S(v_g"f) i dv:l
e e .

€ u=¢g

_(ix—z)’)]:em—zy)u Gl s(v+e f)-s(v-¢& f) vadu
e 2 :

by the integration by parts. Now we have by the Theorem B

17 e g O(2)=0(0)

4”g_£|s(v+e,f) s(v—g; f)Pdv > Nr (6>0)
and

1 ) ms(v—r ) Py — S0 (0F)

4zg£]s(v+£,f) s(v—g; f)Pdv—> Vo ae.u (e-0)

boundedly. Therefore we have

1y =~4ix =2y e DO gy 1) (e 0),

2z

Next we have

I, = 1 j ¢ |s(u+e:F(z)-s(u-e F(z))] du

luj<e

=4L ™ | 2in(u+g; f)+2in(u+e f)+r(uy,e F) du
e

luj<e

and let us remark the following properties

&mo% j |r(u+e,f) du=0 and lgz_)moi j |r(u,y,6;F)F du=0

lujse lul<e

and the condition('R, ). Then we have by the Minkowski inequality

=la(f)l +o(1) (£¢-0)

Therefore we have proved
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-}

lim—— [ & |s(u+e;F(z))-s(u—g;F(z)) du
o0 4775 3

— _ﬂf/_;_;rzl)_ze(ix—znu (o(u)—o(0+))du+|a( f) |2 .

Thus we have proved that /'(z) belongs to the class.S by Theorem W,

Next we shall prove F(z) belongs to the classS'. Applying the Wiener Theorem
(c.f. [ 1], Theorem 28, p.160) with the assistance of Theorem6, we have

-4 o
limﬁ——l—l:j+.f :’Is(u+8;F(z))—s(u—8,jF(z))|2 du

A—w -0 41e Y

_zzmzzm——[j+]° } (“s’g””) e {2 s(u+s; f)-s(u—s;f)) +r,(u,y,& F} } du

A0 -0 418

0

=l,-m17,;,'_1_j e | su+g; f)—s(u—g;f)IF du

Ao >0 7o

<lzme2’Alzm jls(u+g f)—s(u—ge; f)f du=0.

Therefore we have proved that F(z) belongs to the classS'as a function of x for all

y >0 and we have

o3 ()= fims | Fxt, PGy

~-lzm—l— e |s(u+e F(z)—s(u—g;F(z))f du (z=x+iy, y>0).

e047:g 7
Theorem 8 Under the same hypotheses as the Theorem 6, F'( z ) satisfies the
hypothesis(C, ) (V real A)as function of x forall y>0.
Proof For this purpose we shall need the support of Theorem A4 . There we have

Ate

j {s(u+&;F(z))—s(u—-g; F(z))du

Jim —— j F(z)e ™ dx =lim

T—)oo >0 28 . /

where z=x+iy, y>0.Then we shall intend to estimate the formula in the right

hand side with the assistance of Theorem 6.
(i) The case A # 0. We have by Theorem 6

Ate

j {s(u+&F(z))-s(u—¢ F(z))du

lim

&0 25 /
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— lim—L I(I+S2'gnu) e {2(s(u+e; f)-s(u—¢; f))+r(uye F}du

A+e

j(s(u+g f)—s(u—g; f))du = (1+signi)e”c,

= (1+ signA e lim

Thus we have proved
Ate

ltm— _( F(z)e ™" dx =lim j- {s(u+e&;F(z))—s(u—g F(z))du=(1+signi)e™c,.

T->oo &0 26'" /I
-&

(ii) The case A =0.We have by Theorem 6
s(u+e F(z))—-s(u—g; F(z))=2in(u+¢; f)+2in(u+e f)+rn(u+sy F)

and we shall notice the following properties

lzm— I |n(u+e; f)f du=0 and lzm— j |n(u+e,y, F)ldu=0

s—)O

|u(<e |u]<£

and the condition

(R,) lzm——— J. |r(u+e f)- %a(f)[2 du=0.

& wiss

Therefore we have

2.5'\/__,,,‘[8 s(u+&F(z))—s(u—g F(z))du

} 28315; ML( n(u+e;f)=\|>a(f)du+ia(f)+o(1)=ia(f)+o(1) (s0).

Thus we have proved

{s(u+e F(z))—s(u—e F(z))}du=ia(f).

1
ltm—— F(z)dx=lim
T—>oo J. ( ) £—0 26' /2” MJ;E

Thus we have proved

0, (LeD)
izm—jF(z)e"“dx— (1+signi, Je"c,, (A=21,€En=123..)
ia(f), (A=A e€En=0)
where
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T
c, =£Z130%—J;f(x)e'i‘”xdx and 4, €E (n=123,..).

3.3. The Decomposition Theorem of G.C.I. F(z) on the class S .
Now let us suppose that F(z) belongs to the H, 12 on the upper - half plane. Let us
denote F(x) the boundary functionat y =0 and f(x) therealpartof F(x).Let

us suppose that f(x) belongs to the N.Wiener classS and satisfies hypotheses(C, )
and condition(R, ). Let f(x)=g(x)+h(x) be the decomposition in TheoremC and
we shall denote G.C.I. of each function as follows
h(z2)=C(zf), &(z)=C(z;g) and h(z;h)=C/(zh)
respectively.

Then g,(z) is B’-almost periodic function and we have
lzm———jf(z)e """dx—lzm——jgl(z)e"“dx (z=x+iy, y>0)
for allreal A. Let us denote the Founer series expansion of g(x) as follows
g(x)~Yce™
Then we have the Fourier series expansion of g,(z)

gl(Z)~-la(f) Z(I—Jrilg’kue"ﬂ"’c e, (z=x+iy, y>0).

n#0
This is proved as follows.
(i) In the case A # 0. We have by Theorem 4 and part (i) of Theorem K,

A+e

lzm——— j fi(2)e” dx = lim 28\1/_2;1.[2{5(u+8; fi(2)—s(u—g; f(z))}dx

1 ° (1+ signu) o
=lim— Jﬂi ; {(s(ute;f)=stu—g f)+n(uy.e f)}du

- L) ot iy [ Aot 517 stu: 1

_ (1+signi) s;gnﬂ) A lzm j f(x)e ¥ dx.
On the other hand we have by the same argument as before

llm—"jg;(z) —dex (1+S;gn/1) —y,l J‘g(x)e—zﬂxdx
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and
1t 1%
lim — x)e P dx = lim— x)Je " dx
MzT_ij() T»sz_jTg()
by Theorem C . Therefore we have
. 1 T —idx . 1 T —idx .
mﬁij;(z)e dx—%z?oﬁigl(z)e dx, (z=x+iy, y>0).

(ii) In the case A =0.We have by Theorem 4 and part (ii) of Theorem K,

j {s(u+g; fi(z)-s(u—g; f(z))}du

lu|<g

zzm—-—jf(z)dx 1%28\/__

= lim J. {in(u+e f)+in(u+e f)+r(utey; f)du

&0 28‘ ’ |ul<g

T
I{s(u+8;f)—s(u—a;f)}du=£i_)nz%£f(x)dx.

Similarly we have
1% 1%
lim — z )dx =lim — x)dx .
T—>°°2T_J;gl( ) MQTJTg( )
Therefore we have by Theorem C
lzm——- j fi(z)dx = lzm——- j g,(z)dx

where z=x+iy, y>0.0n the other hand we have by the part (i) of Theorem K, and
condition (R,)

lim — j fi(2)d = lim— J— ‘ul_[airz(u +&; f )du

= lim— J_ ;uL(rZ(“g )= Zalf du+ia(£) =il £)

Then we have

—;—ia(f) (n=0)

. 1 T —iA,x -~
;gg-z-;_jTgl(z)e dx= ¢

|
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o |
Ak ) o owogis (n=123,.),

Therefore we have

gl(z)~-—1a(f) ZW eMet  (z=x+iy, y>0).

n=0

Next we have by the same argument as Theorem C

lzm———jhl(x+t+zy)hl(t+zy)dt

T—w®

—lzm—jf(x+t+zy)f(t+zy)dt lzm—jgl(x+t+1y)gl(t+1y)dt

Let us denotes @,(x,y; f,(2)),w,(%,y,g,(z))and x,(x,y,h(z)) as auto-correlation
function of f;(z), g,(z) and A (z)respectively. Let us denoteso(u,y; ¢, ), o(u,y, ;)
and o(u,y; 1) as GET.of @/(x,y; fi(z)),w,(x,y,8(z))and x(x,y;h(z))
respectively.

Then we have

o(xy; [i((2)=pi(x%y:8(2) + j(x.y: h(z))

and
o(uy;p)=o(uy;y)+o(uwy; 1)

Since the o(u,y, ¥, )is represented as a difference of two bounded and monotone
increasing function o(u,y,;¢,) and o(u,y;y,), it is a function of bounded variation
and we can apply to it the N.Wiener Theorem (c.f. [ 1] Theorem 24, pp.146~9).

Let us estimate the magnitude of each jumps. We have by Theorem B

: . _ /1— v 1 A+0
cr(l+0,y,¢1\)/_270'( 0,y (0)_{:—’3;4” Ils(lH'g i fi(z)—s(u— gy,f(z))[ du.

We shall obtain also by Theorem 4 and Theorem K, (c.f. ibid. III, Theorem D, p.47)

the following estimations
(i) Inthe caseA # 0. We have by the part (i) of Theorem K,

L [1stussifiz)=su=si ()P du

A+e

= lim j|(1”’gm’) e {(s(u+&; f)—s(u—&; f))+1 (3,6 f)} [ du
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:(MJ e Jim—— Tlg(u+g f)—s(u—g; f) du

2 e-0 4

_ (1 + sign,zj2 2t O(A+0:9)~0(A-0;p)

2 \2r

(ii) The case A=0. We have also by the part (ii) of Theorem K, , hypothesis (R, )

and the Minkowski inequality
0-(+O: Y, O ) - O'(—O, Y, O )

NGy

—lzm— J' lin(u+e; f)+ir(u+e; f)+r(u+ey; f) du

&0
\u|<s

7. 2 1. 2 1. 2
—ggrg——luignrz(uw F)=\Fia(f)F dux| ia( f)F =\ Sial f)F.

On the other hand we have
1. 2
l-ila(f)l (n=0)

S(A+0,:p,)-0(A=0yp,) _ )

NG

(L signh) ave 2 (pe123,))

L 2
Therefore we have
1k (A +0,v; 7, )—o( A —O,y,';g)}z
lim— x,v,:h(z))f dx= n 1 n 1
fimor [ 1123 h(2)] Z{ N

=z{0(ln +0.y,0)-0(4, -0yp) ok +0.yy)-0o(4, —O,y;%)}z
2z 2z

_ Z(l +s;gnﬁ,,) e {am,, + a-wé_;m,, ~0g) . [2}

Furthermore since F(z) and G(z) are both belong to the class S', and therefore
H(z) doestoo. Then applying the N.Wiener Theorem| 1 ](c.f. Theorem 20,p.138), we

n=0
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have
x(xy,H(z))=0 (ae. x, Vy>0)

and in particular
1T
lim— || H(x+iy)[dx=0 (Vy>0).
TMT_JTI( )| (Vy>0)

Then applying the N.Wiener Theorem(c.f. [ 1], Theorem 20,p.138) to H(x +iy ) again,
we have
H(x+iy)=0 (ae. x, Vy>0)
and therefore we have
F(x+iy)=G(x+iy) (ae. x, Vy>0).
Therefore we shall state these results as a theorem. We have
Theorem 9. Let us suppose that F(z), (z=x+iy, y>0) belongs to the space H;
and let us denote F(x) the boundary functionat y =0 and f(x) the real part of

F(x).Let us suppose that f(x) satisfy hypotheses (C,) and condition (R,) and

let us denote f(x)=g(x)+h(x) the decomposition of f(x) in TheoremC.

Then we have the decomposition of F(z)as follows

F(z)=G(z)+H(z)
where
F(z)=2C/(z;f), G(z)=2C/(z;g) and H(z)=2C/(zh)

respectively and satisfies the following properties.

The G(z) is B?-almost periodic function and its Fourier series expansion is as
follows

G(z)=ia( f)+ Y (1+signi, )c,e™.

nz0

The G(z) and H(z) both belong to the space H; and the N.Wiener class S’and

then we have
T
M%L' H(x+ip)Pdx=0 (¥ y>0).

In particular, if the o(u,; @) is continuous everywhere as for u >0, then we have

H(x+iy)=0 (ae. x, Vy>0)
and then we have

F(x+iy)=G(x+iy) (ae. x, Vy>0).
Thus we have established the theory of decomposition on the generalized Hardy space
H.
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