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Abstract

This paper explores the application of the generic Tikhonov regularization used
to stabilize large scale ill-posed problems in deblurring, hyper resolution and other
applicable situations. Recently, a new solver for the generic Tikhonov regularization,
called the GKB-GCV method was proposed by D. Togashi et al. [GSTF JMSR, Vol. 3,
No. 2, pp. 53–58]. This paper, analyzes the convergence properties of the GKB-GCV
method.
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1 Introduction

The stable approximate solution for a large scale ill-posed problem of the form:

xLS = argmin
x∈Rn

‖b − Ax‖2
2, (1)

is computed, where matrix A ∈ Rm×n, m ≥ n, is ill-conditioned. The right-hand vector
b ∈ Rm contains the following error:

b = Axexact + ε, (2)

where xexact ∈ Rn is the exact solution, and ε ∈ Rm is the unknown noise. A matrix
of this form sometimes comes from image resolutions, e.g. image deblurring or hyper
resolution. Because matrix A is ill-conditioned, xLS is dependent on noise. The Tikhonov
regularization [7] constructs stable approximations of xexact by solving the least squares
problem of the form:

xλ = argmin
x∈Rn

{‖b − Ax‖2
2 + λ‖Lx‖2

2}, (3)
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where L ∈ Rp×n is the regularization matrix, and λ > 0 is the regularization parameter.
The standard form of the Tikhonov regularization is when L = In, where In is the n × n
identity matrix. The general form of the Tikhonov regularization is when L 6= In. When
the common space between the null spaces of A and L is the zero space, the regularization
problem (3) has a unique solution. To obtain a good approximate solution for (3), an
appropriate regularization parameter is required. There are many methods for determining
the regularization parameter without identifying the norm of the noise: ‖ε‖2, [1, 5].

For L = In, there are two hybrid methods, called GKB-FP [2] and W-GCV [4]. These
methods do not require identifying the norm ‖e‖2, and contain a projection over the Krylov
subspace generated by the Golub-Kahan Bidiagonalization (GKB) method. The difference
between these two methods is in the approach, i.e. in terms of determining the regulariza-
tion parameter. The GKB-FP uses the FP scheme, whereas the W-GCV uses the weighed
GCV. Bazán et al. [3] proposed an approach without identifying norm ε, which is created
by the extension of the GKB-FP method. In a recent study, the W-GCV method was
extended to a general form of the Tikhonov regularization. This was called the GKB-GCV
method [8].

This paper explores the uses of the GKB-GCV method which is a solver for a large scale
general form of the Tikhonov regularization. A convergence property of the GKB-GCV
was analyzed, and it was proven that when the norm of the noise converged to 0, the
GKB-GCV method converged to produce the exact solution at most n iterations.

This paper is organized as follows: After the introduction, Section 2 summarizes the
framework of the GKB-GCV method. In Section 3, the convergence analysis of the GKB-
GCV is described succinctly. The conclusions are summed-up in Section 4.

2 The GKB-GCV method

The GKB-GCV is one of the algorithms for a general form of the Tikhonov regularization,
which is based on the GKB and GCV. When k < n GKB steps are applied to matrix A
with the initial vector b/‖b‖2, it results in two matrices Yk+1 = [y1, . . . , yk+1] ∈ Rm×(k+1)

and Wk = [w1, ..., wk] ∈ Rn×k with orthonormal columns, and a lower bidiagonal matrix
as follows:

Bk =


α1

β2 α2

β3
. . .
. . . αk

βk+1

 ∈ R(k+1)×k,

such that,

β1Yk+1e1 = b = β1y1,

AWk = Yk+1Bk,

AT Yk+1 = WkB
T
k + αk+1wk+1e

T
k+1,

where ei denotes the i-th unit vector in Rk+1. Columns of Wk are the orthonormal basis
for the generalized Krylov subsupace Kk(A

T A, AT b). The general form of regularization
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over the generated Krylov subspace is as follows:

x
(k)
λ = argmin

x∈Kk(AT A, AT b)

{Ax − b‖2
2 + λ‖Lx‖2

2}. (4)

Since the columns of Wk are the orthonormal basis for the generated Krylov subsupace,
equation (4) is rewritten as follows:

x
(k)
λ = Wky

(k)
λ , y

(k)
λ = argmin

y∈Rk

{‖Bky − β1e1‖2
2 + λ‖LWky‖2

2}. (5)

GKB-GCV uses the same reduction to PROJ-L when solving the general form of the
Tikhonov regularization of Bazán [3]. By using the reduction QR factorization for matrix
products LWk, equation (5) is rewritten as follows:

y
(k)
λ = argmin

y∈Rk

{‖Bky − β1e1‖2
2 + λ‖Rky‖2

2}. (6)

where QkRk = LWk and Qk has orthogonal columns. To increase k, the QR factorization
can be updated computing k + 1 elements by using the summation and a product of the
vectors. This reduction technique is a good choice for large scale problems, because this
approach reduces the size of the least squares problem: (m + p) × n to (2k + 1) × k.

The GCV determines the regularization parameter for equation (3) by searching for the
minimum point of function as follows:

G(λ) =
‖(Im − AA+

λ,L)b‖2
2

(trace(Im − AA+
λ,L))2

, (7)

where A+
λ,L = (AT A+λLT L)−1AT . Using the GSVD for the matrix pair (A, L), equation (7)

is written as follows:

G(λ) =

∑n
i=1

(
c2i λuT

i b

s2
i +c2i λ

)2

+
∑m

i=n+1(u
T
i b)2(

m −
∑n

i=1
s2
i

s2
i +c2i λ

)2 . (8)

where A = USZ−1, L = V CZ−1. At the k step, the GKB-GCV uses the same approach
as AT-GCV [6] for determining λ. The regularization parameter λ is chosen to minimize
the following function:

Gk(λ) =
‖(Im − AWk(Bk)

+
λ,Rk

Y T
k+1)b‖2

2

(trace(Im − AWk(Bk)
+
λ,Rk

Y T
k+1))

2
,

=

β2
1

(∑k
i=1

(
λkuT

i(k)
e1

σ2
i(k)

+λk

)2

+ (uT
k+1(k)e1)

2

)
(

m −
∑k

i=1

σ2
i(k)

σ2
i(k)

+λk

)2 .

where Bk = UkSkZ
−1
k , Rk = VkCkZ

−1
k by using the reduction GSVD(Bk, Rk).

The GKB-GCV method is compactly summarized in Algorithm 1.
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Algorithm 1 GKB-GCV Method

Require: A, b, L, tol
Ensure: Regularized solution x

(k)
λ∗

1. Apply the GKB step to A with starting vector b at k = 0 and set k = 1.
2. Perform one more GKB step and update the QR factorization of LWk.

LWk = QkRk.
3. Compute GSVD(Bk, Rk). Bk = UkSkZ

−1, Rk = VkCkZ
−1.

4. Compute the minimized point λk of Gk(λ).
5. If the stopping criteria is satisfied do

λ∗ = λk.
else do

k ← k + 1
Go to step 2.

end if
6. Solve subproblem y

(k)
λ∗ .

7. Compute the regularized solution x
(k)
λ∗ .

3 Convergence property

It will be assumed that when λk = argmin Gk(λ), λk will not have a monotone convergence.
Therefore, the following theorem must be proven to analyze the convergence property of
the GKB-GCV method.

Theorem 3.1 Assume rank(A) = q < m and Axexact 6= 0. Whenever the noise’s norm
converges to 0, the regularization parameter determined by GKB-GCV method converges to
0 at the q step:

(‖ε‖2 → 0) ⇒ (λq → 0).

Proof: 1 At the q step, the GKB method generates these matrices:

Bq =


α1

β2 α2

β3
. . .
. . . αq−1

βq αq

0

 =

[
B̂q

0

]
with αq 6= 0,

b = β1Yq+1e1 = Axexa + ε,

A = Yq+1BqW
T
q = YqB̂qW

T
q ,

The reduction GSVD for matrix pair (B̂q, Rq) is considered, and then the diagonal matrix
Dq is defined as follows:

[Dq]i,i = [C̃q]
2
i,i/([S̃q]

2
i,i + λ[C̃q]

2
i,i) with B̂q = ŨqS̃qX̃q, Rq = ṼqC̃qX̃q.
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From the triangle inequality, it follows that:

‖rq,λ‖2 = ‖(Im − YqB̂q(B̂
T
q B̂q + λRT

q Rq)
−1B̂T

q Y T
q )b‖2,

= ‖(Im − YqŨqS̃
2
q (S̃

2
q + λC̃2

q )−1ŨT
q Y T

q )b‖2,

≤ ‖(Im − YqŨqS̃
2
q (S̃

2
q + λC̃T

q )−1ŨT
q Y T

q )Axexa‖2,

+ ‖(Im − YqŨqS̃
2
q (S̃

2
q + λC̃2

q )−1ŨT
q Y T

q )ε‖2.

Since YqŨqŨ
T
q Y T

q is an orthogonal projection from Y T
q Yq = ŨT

q Ũq = Iq, the following in-
equalty is approved:

‖(Im − YqŨqS̃
2
q (S̃

2
q + λC̃2

q )−1ŨT
q Y T

q )ε‖2

≤ ‖(Iq − S̃2
q (S̃

2
q + λC̃2

q )−1)ŨT
q Y T

q ε‖2 + ‖ε‖2,

= ‖λC̃2
q (S̃2

q + λC̃2
q )−1ŨT

q Y T
q ε‖2 + ‖ε‖2,

= ‖λDqŨ
T
q Y T

q ε‖2 + ‖ε‖2,

≤ 2‖ε‖2.

The last inequality comes from ‖λDqf‖2 ≤ ‖f‖2. This follows for all λ and f from the
definition of the Dq.

From A = YqB̂qW
T
q , and Y T

q Yq = ŨT
q Ũq = Iq,

‖(Im − YqŨqS̃
2
q (S̃

2
q + λC̃2

q )−1ŨT
q Y T

q )Axexa‖2,

= ‖(Im − YqŨqS̃
2
q (S̃

2
q + λC̃2

q )−1ŨT
q Y T

q )YqŨqS̃qX̃qW
T
q xexa‖2,

= ‖YqŨq(Iq − S̃2
q (S̃

2
q + λC̃2

q )−1)S̃qX̃qW
T
q xexa‖2,

= ‖λC̃2
q (S̃2

q + λC̃2
q )−1S̃qX̃qW

T
q xexa‖2,

= ‖λDqŨ
T
q Y T

q YqŨqS̃qX̃qW
T
q xexa‖2,

= λ‖DqŨ
T
q Y T

q Axexa‖2.

Note that since ‖DqŨ
T
q Y T

q Axexa‖2 > 0 from the assumption and the definition of the ma-
trices, it has a minimum value 0 at λ = 0. Therefore, from Gk(λ) ≥ 0 for all k and
trace(A(AT A)+AT ) = m − q > 0,

(‖ε‖2 → 0) ⇒ (‖rq,0‖2 ≤ 2‖ε‖2 → 0) ⇒ (λq → 0).

Theorem 3.2 Assume that rank(A) = q < m, xexact ∈ (Ker(A))⊥. Then, if the ‖ε‖ → 0,
GKB-GCV method converges to a true solution at most q iterations. That is:

(‖ε‖2 → 0) ⇒ (xq,λq → xexa).

Proof: 2 At the q step, from the triangle inequality:

‖xq,λq − xexa‖2 ≤ ‖(Wq(B̂
T
q B̂q + λqR

T
q Rq)

−1B̂T
q Y T

q A − In)xexa‖2,

+ ‖Wq(B̂
T
q B̂q + λqR

T
q Rq)

−1B̂T
q Y T

q ε‖2.
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From A = YqB̂qW
T
q , and WqW

T
q xexa = xexa, the first term in the inequality rewrites:

‖(Wq(B̂
T
q B̂q + λqR

T
q Rq)

−1B̂T
q Y T

q A − In)xexa‖2,

= ‖(Wq(B̂
T
q B̂q + λqR

T
q Rq)

−1B̂T
q B̂qW

T
q − In)xexa‖2,

= ‖(WqX̃
−1
q (S̃2

q + λqC̃
2
q )−1S̃2

q X̃qW
T
q − In)xexa‖2,

= ‖X̃−1
q ((S̃2

q + λqC̃
2
q )−1S̃2

q − Iq)X̃qW
T
q xexa‖2,

= ‖ − λqX̃
−1
q DqX̃qW

T
q xexa‖2,

= λq‖X̃−1
q DqX̃qW

T
q xexa‖2.

From Theorem 3.1: (‖ε‖2 → 0) ⇒ (λq → 0). So,

λq‖X̃−1
q DqX̃qW

T
q xexa‖2 → 0 (‖ε‖2 → 0)

From the property of the norm, it follows that:

‖Wq(B̂
T
q B̂q + λqR

T
q Rq)

−1B̂T
q Y T

q ε‖2,

= ‖WqX̃
−1
q (S̃2

q + λqC̃
2
q )−1S̃qŨ

T
q Y T

q ε‖2,

= ‖B̂−1
q Ũq(S̃

2
q + λqC̃

2
q )−1S̃2

q Ũ
T
q Y T

q ε‖2,

≤ ‖B̂−1
q ‖2 · ‖(S̃2

q + λqC̃
2
q )−1S̃2

q‖2 · ‖ε‖2 → 0.

In the last limits, this is used since B̂q is a full rank and in Theorem 3.1: ‖(S̃2
q +λC̃2

q )−1S̃2
q‖2 →

1. From the above,

‖xq,λ − xexa‖2 ≤ λq‖X̃−1
q DqX̃qW

T
q xexa‖2 + ‖B−1

q ‖2 · ‖ε‖2,

→ 0 (‖ε‖2 → 0).

4 Conclusion

The GKB-GCV algorithm was explored and the convergence property of the GKB-GCV
algorithm was analyzed. As a result, it was proven that when rank(A) is less than m, the
norm of the noise converged to 0 and the true solution is orthogonal to the kernel of A,
then the GKB-GCV algorithm converges to produce the true solution at most matrix size
iterations. The results show that if the GKB-GCV is applied to well-posed problems, the
computed solution converges to a true solution.
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