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Abstract

Linear and nonlinear evolution equations have been formulated to address prob-
lems in various fields of science and technology. Recently, a method called expo-
nential integrator has been attracting some attention for solving these equations.
It requires the computation of matrix functions repeatedly. For this computation,
a new method called the Inexact Shift-invert Rational Krylov method is explored.
This method provides the shifts which realizes a faster convergence than the ex-
isting method called Shift-invert Arnoldi method. Furthermore, it realizes efficient
computation, while guaranteeing accuracy.
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1 Introduction
Evolution equations are used in various fields of science and technology, e.g., the heat
equation in building physics [26] and the Burgers equation in fluid mechanics [19]. Let
Ω ⊆ Rd be an open set, T > 0, l ∈ N, and V ⊆ L2(Ω) be the Hilbert space. Let D be a
linear or nonlinear differential operator on V . Explore u ∈ C l((0, T ])× V which satisfies

∂lu

∂tl
= Du (1)

with some appropriate initial and boundary conditions. A different algebraic equation is
derived from a spatial discretization with the finite element method or finite difference
method: {

Mẏ(t) = F (y(t)),

y(0) = v,
(2)

where M ∈ Rn×n, and F is a vector valued function. It is assumed that M is invertible.
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If D is linear and does not depend on t, F is represented as F (y) = Ly + c, where
L ∈ Rn×n, c ∈ Rn. In this case, equation (2) is the linear ordinary differential equation
of the first order, and its analytical solution is represented as:

y(t) = ϕ0(tM
−1L)(v + L−1c)− L−1c, (3)

where ϕ0(z) := ez [13]. On the other hand, if D is nonlinear or depends on t, time
discretization is also needed for integrating M−1F (y(t)) and finding solution y(t). The
exponential integrator [15, 17, 18] is currently the popular method for time integration [13].
In general, at each step, F is rearranged as F (y) = Liy(t)+ni(y). For the 1-step method,
the scheme is computed as follows:

Yik = ϕ0(ck∆tM−1Li+1)yi +∆t

k−1∑
l=1

akl(∆tM−1Li+1)M
−1ni(Yil),

yi+1 = ϕ0(∆tM−1Li+1)yi +∆t
s∑

k=1

bk(∆tM−1Li+1)M
−1ni(Yik),

(4)

where v ∈ Rn, ∆t is the step size of time, and akl, bk are coefficients which consist of
ϕ-functions. ϕ-function is defined as

ϕ0(z) := ez,

ϕk(z) :=
ϕk−1(z)− 1

(k−1)!

z
, k = 1, 2, . . . .

For the r-step method, the scheme is computed as follows:

yi+1 = ϕ0(∆tM−1Li+1)yi +∆t
r−1∑
k=1

γk(∆tM−1Li+1)M
−1∇kNi , (5)

where Ni := ni(yi), and ∇kNi and γk(z) are defined recursively by

∇0Ni :=Ni , ∇k+1Ni :=∇kNi −∇kNi−1 ,

γ0(z) =ϕ1(z), zγk(z) + 1 =
k−1∑
l=0

1

k − l
γl(z).

Various methods for computing matrix ϕ-functions have been developed [4, 7, 15, 20,
21]. The Krylov subspace methods are efficient, because the matrices resulting from
the spatial discretization of problem (1) usually become large. The most simple and
well-known method is the Arnoldi method. According to Hochbruck and Lubich [15,
Theorem 5], Arnoldi method may require a number of iterations if the numerical range of
∆tM−1Li+1 is widely distributed. The matrices coming from the spatial discretization of
problem (1) often have a wide numerical range, so the Arnoldi method may takes a lot of
time until convergence for computing ϕ-functions in the exponential integrator. In order
to resolve this issue, the Shift-invert Arnoldi method (sia) was proposed by Novati [21],
and the Rational Krylov method (rk) was proposed by Beckermann and Reichel [1]. rk
is a generalization of sia, and it was also proposed by Güttel [11] and Göckler [9]. For
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sia and rk, it can be shown that their convergences are independent of the width of
the numerical range of ∆tM−1Li+1 [9, 10, 21]. However, the sia and rk have drawbacks.
Firstly, solving a linear equation in each step is necessary. The computation cost of
solving this linear equation is significant in the sia and rk. For matrix exponential, to
address this issue, Eshof and Hochbruck [27] proposed the stopping criterion for solving
the linear equations. Gang et al. [8] also proposed the stoppping criterion for Toeplitz
matrix exponential. Hashimoto and Nodera [13] proposed Inexact Shift-invert Arnoldi
method (isia) and gave the stopping criterion for general matrix ϕ-function with different
approach using the decay property of the elements of the matrix. Using these stopping
criteria, we can solve the linear equations efficiently while guaranteeing the accuracy of
the solution. However, these methods are only for sia or for matrix exponential.

The second shortcoming of the sia and the rk is the difficulty of choosing the appro-
priate shifts. Since rk needs different shifts in every step of the Krylov process, choosing
the appropriate shifts is integral. The methods for choosing the appropriate shifts in sia
and rk for ϕ0 and other functions have been discussed at length, for example [6, 12, 24].
However, the optimization problem must be solved for each shift, or they are only suitable
for ϕ0, and not for general ϕ functions. Göckler [9] proposed a simple way of choosing
the shifts for general ϕ-functions of nonsymmetric matrices. However, this shifts involved
complex values. Thus, if matrices M and L are real, we must treat complex values due
to the shifts. This results in increasing the computational cost needlessly.

To resolve these issues, a new method called the Inexact Shift-invert Rational Krylov
method (isirk) is proposed in this study. The Shift-invert Rational Krylov method (sirk)
is used to solve the second problem. The appropriate shifts for ϕ-functions in real value
are determined in a simple way, and this choice of shifts results in a faster convergence
than sia. In addition, the Inexact Shift-invert Arnoldi method (isirk) is used to solve
linear equations in the sirk efficiently. The similar discussion for the isia is also valid for
the sirk. isirk makes the computation of ϕ-functions efficient.

1.1 Notation

The norm is defined as ∥·∥ = ∥·∥2, and the 2-norm condition number of matrix A is defined
as κ(A). ej represents the jth column of identity matrix I. The n× n identity matrix is
also represented as In when its dimension is emphasized. Let C+ := {z ∈ C | ℜ(z) > 0},
and W (A) := {u∗Au | u ∈ Cn, ∥u∥ = 1} be the numerical range of matrix A.

2 Krylov subspace methods for computing ϕ-functions
In this paper, ϕk(A)v is computed to simplify the notation. Throughout this and the next
section, it is assumed that W (γmI − A) ⊆ C+ for all m, and W (γI − A) ⊆ C+.
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2.1 Shift-invert Arnoldi method (sia)

Let β = ∥v∥, and v1 = v/β be the initial vector. The m-step Shift-invert Arnoldi or
Restricted-denominator (RD) Rational Arnoldi process is:

hj+1,jvj+1 = (γI − A)−1vj −
j∑

k=1

hk,jvk ,

hk,j = v∗k

[
(γI − A)−1vj −

k−1∑
l=1

hl,jvl

]
(k = 1, . . . , j),

hj+1,j =

∥∥∥∥∥(γI − A)−1vj −
j∑

l=1

hl,jvl

∥∥∥∥∥ (j = 1, . . . ,m),

where γ ∈ C is a shift. This relation is expressed with matrices as:

V ∗
m(γI − A)−1Vm = Hm, (6)

where Vm = [v1 · · · vm] is an n × m matrix whose columns are orthonormal, and Hm

is an m × m upper Hessenberg matrix. {v1, . . . , vm} is the orthonormal basis of the
Shift-invert Krylov subspace which satisfies:

Span {v1, . . . , vm} = Span
{
v, (γI − A)−1v, . . . , (γI − A)−m+1v

}
=

{
r(A)v | r ∈ Pm−1/(γ − z)m−1

}
,

where Pm is the set of polynomials of a degree less than or equal to m. ϕk(A)v can be
regarded as f̃γ ((γI − A)−1) v, the function of (γI − A)−1, where f̃γ(z) := ϕk (γ − z−1).
Therefore, if Hm is invertible, then the matrix function is:

ϕk(A)v ≈ Vmf̃γ
(
V ∗
m(γI − A)−1Vm

)
V ∗
mv = Vmf̃γ(Hm)V

∗
mv = r(A)v. (7)

for some r ∈ Pm−1/(γ − z)m−1.
The different approximation method is also discussed [9–11]. This method uses the

matrix V ∗
m+1AVm+1 insted of V ∗

m((γI − A))−1Vm = Hm, and ϕk(A) is approximated as:

ϕk(A)v ≈ Vm+1ϕk(V
∗
m+1AVm+1)V

∗
m+1v. (8)

Novati [21, Proposition 12] shows that the error bound of approximation eq. (7) does
not depend on the width of W (A) when A is the sectorial operator. Grimm [10, Corollary
5.1] and Göckler [9, Theorem 5.9] show the same fact for eq. (8) in the case of W (A) ⊆ C−.

2.2 Inexact Shift-invert Arnoldi method (isia)

sia requires solving the equation to compute (γI − A)−1vj in every step of the Krylov
process. Hashimoto and Nodera [13] proposed a method for solving this linear equation
efficiently while guaranteeing that the generalized residual [16] would become smaller
than the arbitrary tolerance. This method is called the Inexact Shift-invert Arnoldi
method (isia), and the exactness needed for solving the linear equation decreases with
each iteration.
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2.3 Rational Krylov method (rk)

Let β and v1 be the same vectors as section 2.1. The m-step Rational Krylov process is:

hj+1,jvj+1 = (γjI − A)−1Vjtj −
j∑

k=1

hk,jvk,

hk,j = v∗k

[
(γjI − A)−1Vjtj −

k−1∑
l=1

hl,jvl

]
(k = 1, . . . , j),

hj+1,j =

∥∥∥∥∥(γjI − A)−1Vjtj −
j∑

l=1

hl,jvl

∥∥∥∥∥ (j = 1, . . . ,m),

where γj ∈ C (1 ≤ j ≤ m) is a different shift in every step, and tj ∈ Cj is an arbitrary
vector. This results in the orthonormal basis {v1, . . . , vm+1} of the Rational Krylov
subspace which satisfies:

Span {v1, . . . , vm+1} = Span
{
v, (γ1I − A)−1v, . . . , (γmI − A)−1v

}
= {r(A)v | r ∈ Pm/qm, qm(z) = (γ1 − z) . . . (γm − z)} .

Let Vm = [v1 · · · vm]. ϕk(A)v is approximated as

ϕk(A)v ≈ Vm+1ϕk(V
∗
m+1AVm+1)V

∗
m+1v = r(A)v, (9)

for some r ∈ Pm/qm, qm(z) = (γ1 − z) · · · (γm − z).
Göckler [9, Theorem 7.8] shows that under the appropriate choice of shifts γj, the

error bound of approximation (9) does not depend on W (A).
The advantage of rk over sia is the possibility of parallelization. The linear equation

(γjI − A)x = Vjtj can be solved in parallel [4, 11, 25].

3 Shift-invert Rational Krylov method (sirk)
We consider extending isia to the rational approximation with more than one pole. How-
ever, before the extention, the shifts for the approximation, is considered. The new
method, sirk, addresses the issue of the shifts.

The m-step Rational Krylov process in the same manner as illustrated in section 2.3
derives the following relations:

VmTm = VmHmDm − AVmHm + (γmI − A)hm+1,mvm+1e
∗
m,

V ∗
m(γmI − A)−1Vm = Hm(Tm −HmDm + γmHm)

−1 =: Km, (10)

where Dm := diag{γ1, · · · , γm}, Tm is the upper triangular matrix whose jth column is
[t∗j 0]∗ ∈ Cm. The methods of setting tj for eigenvalue problem are discussed in, for
example, [4, 22]. The methods for computing matrix function are discussed by Güttel
[11]. In this study, we set

tj = eP ⌊j/P ⌋ ∈ Rj, (11)
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where P is the number of linear equations solved in parallel. In the sirk, the shifts γj =
N − hj ∈ R, where h > 0, and N > 0 satisfies γj > 0 (1 ≤ ∀j ≤ m) are used. If Hm is
invertible, the matrix function ϕk(A)v is approximated as:

ϕk(A)v = fm((γmI − A)−1)v

≈ Vmfm(V
∗
m(γmI − A)−1Vm)V

∗
mv

= Vmfm(Km)V
∗
mv

= Vmϕk

(
γmI − (Tm −HmDm + γmHm)H

−1
m

)
V ∗
mv

= Vmϕk

(
(HmDm − Tm)H

−1
m

)
V ∗
mv, (12)

where fm(z) := ϕk (γm − z−1). Approximation (12) is for the function depending on m
with the matrix depending on m.

The next consideration is the Rational Krylov subspace constructed by the sirk. Let
Xj := (γjI − A)−1 (1 ≤ j ≤ m). γj is defined as γj = N − hj, thus Xj is denoted as:

Xj = (γjI − A)−1 = (I − (γm − γj)Xm)
−1Xm = (I + h(m− j)Xm)

−1Xm. (13)

From relation (13), the Rational Krylov subspace generated by the m-step sirk is repre-
sented as:

Span{v, X1v, . . . , Xm−1v}
= Span{v, (I + h(m− 1)Xm)

−1Xmv, . . . , (I + hXm)
−1Xmv}

= {r(Xm)v | r ∈ Pm−1/qm−1, qm(z) = (1 + hmz) . . . (1 + hz)} . (14)

The following proposition shown by Beckermann and Reichel [1] is valid from relation (14),
and the following theorem regarding the convergence of sirk is deduced:

Proposition 3.1 Let qm(z) := (1+hmz) · · · (1+hz) and Pm be the set of polynomials with
a degree less than or equal to m. Furthermore, let Pm−1/qm−1 := {p/qm−1 | p ∈ Pm−1}.
Then, for ∀r ∈ Pm−1/qm−1,

r(Xm)v = Vmr(Km)V
∗
mv. (15)

Theorem 3.1 Let H(Π) be the set of C-valued holomorphic functions on a closed and
bounded set Π ⊆ C. Let f̂N(z) = ϕ0(N − z−1) for k = 0, and f̂N(z) :=

∫ 1

0
eN−sz−1

(1 −
s)k−1/(k−1)!ds for k ≥ 1. It is possible to choose the closed and bounded set Σ satisfying∪N−1

j=1 W (Xj) ⊆ Σ ⊆ C+. With this Σ, there exists 1 ≤ C ≤ 11.08 such that the error
bound of sirk is

∥ϕk(A)v − Vmfm(Km)V
∗
mv∥ ≤ 2C∥v∥e−hm min

r∈Pm−1/qm−1

∥f̂N − r∥Σ, (16)

for 1 ≤ m ≤ N − 1, where ∥ · ∥Σ is the norm of H(Σ), which is defined as ∥g∥Σ =
supz∈Σ |g(z)|.

Proof : Since W (Xj) ⊆ C+ is satisfied for all j in 1 ≤ j ≤ N − 1, and W (Xj)
are bounded, it is possible to choose a closed and bounded set Σ ⊆ C+ which contains∪N−1

j=1 W (Xj). From the fact ϕk(A) = fm(Xm) and Proposition 3.1,

∥ϕk(A)v − Vmfm(Km)V
∗
mv∥ (17)
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= ∥fm(Xm)v − r(Xm)v − Vmfm(Km)V
∗
mv + Vmr(Km)V

∗
mv∥,

is derived for ∀r ∈ Pm−1/qm−1. Since all the poles of functions in Pm−1/qm−1 are real
and negative, Pm−1/qm−1 ⊆ H(Σ). In addition, fm, f̂N ∈ H(Σ). From equation (10),
W (Km) ⊆ W (Xm), and from Crouzeix [5], there is 1 ≤ C ≤ 11.08 such that:

∥fm(Xm)− r(Xm)∥ ≤ C∥fm − r∥Σ,
∥fm(Km)− r(Km)∥ ≤ C∥fm − r∥Σ.

(18)

Since r ∈ Pm−1/qm−1 is arbitrary, it is deduced that:

∥ϕ0(A)v − Vmfm(Km)V
∗
mv∥

≤ min
r∈Pm−1/qm−1

[∥fm(Xm)− r(Xm)∥ ∥v∥+ ∥fm(Km)− r(Km)∥ ∥v∥] (∵ (17))

≤ 2C∥v∥ min
r∈Pm−1/qm−1

∥fm − r∥Σ (∵ (18))

= 2C∥v∥ min
r∈Pm−1/qm−1

sup
z∈Σ

|eN−hm−z−1 − r(z)|

= 2C∥v∥ min
r∈Pm−1/qm−1

e−hm sup
z∈Σ

∣∣∣eN−z−1 − ehmr(z)
∣∣∣

= 2C∥v∥e−hm min
r∈Pm−1/qm−1

sup
z∈Σ

∣∣∣eN−z−1 − r(z)
∣∣∣ .

If k ≥ 1, ϕk is represented as ϕk(z) =
∫ 1

0
esz(1− s)k−1/(k − 1)!ds. Therefore,

∥ϕk(A)v − Vmfm(Km)V
∗
mv∥

≤ 2C∥v∥ min
r∈Pm−1/qm−1

∥fm − r∥Σ (∵ (18))

= 2C∥v∥ min
r∈Pm−1/qm−1

sup
z∈Σ

|ϕk(N − hm− z−1)− r(z)|

= 2C∥v∥ min
r∈Pm−1/qm−1

sup
z∈Σ

∣∣∣∣∫ 1

0

es(N−hm−z−1) (1− s)k−1

(k − 1)!
− es(N−hm)

(
e−s(N−hm)r(z)

)
ds

∣∣∣∣
≤ 2C∥v∥ min

r∈Pm−1/qm−1

sup
z∈Σ

∣∣∣∣eN−hm

{∫ 1

0

e−sz−1 (1− s)k−1

(k − 1)!
ds−

∫ 1

0

e−s(N−hm)r(z)ds

}∣∣∣∣
= 2C∥v∥ min

r∈Pm−1/qm−1

sup
z∈Σ

∣∣∣∣e−hm

{∫ 1

0

eN−sz−1 (1− s)k−1

(k − 1)!
ds−

∫ 1

0

eN−s(N−hm)ds r(z)

}∣∣∣∣
= 2C∥v∥ min

r∈Pm−1/qm−1

e−hm sup
z∈Σ

∣∣∣∣∫ 1

0

eN−sz−1 (1− s)k−1

(k − 1)!
ds− r(z)

∣∣∣∣ .
□

Choosing γj as N − hj results in the space Pm−1/qm−1 expanding with each iteration,
because qm has the form qm(z) = (1+hmz) · · · (1+hz). Therefore, minr∈Pm−1/qm−1 ∥f−r∥Σ
in error bound (16) becomes smaller as m becomes larger.

Remark 3.1 The value N in sirk plays the similar role with the shift γ in sia. In fact,
we can deduce the following error bound for sia:

∥ϕk(A)v − Vmf̃γ(Hm)V
∗
mv∥ ≤ 2C∥v∥ min

r∈Pm−1/(γ−z)m−1
∥f̃γ − r∥W ((γI−A)−1), (19)
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where f̃γ(z) := ϕk (γ − z−1). Comparing the bound (16) with (19), we expect that the
iteration number for convergence of sirk is the same level or smaller than that of sia
with γ = N due to the factor e−hm. In fact, in the case of k = 0, the functions f̂N and f̃γ
are exactly the same, and the iteration number of sirk is smaller. We confirm this fact
of reducing the iteration number in the section 5 of numerical experiment.

4 Inexact Shift-invert Rational Krylov method (isirk)
At this point, it is possible to extend the isia to the rational approximation with sirk.
It will be shown that a similar discussion for isia is also valid for sirk, and an Inexact
Shift-invert Rational Krylov method (isirk) will be proposed.

For j = 1 . . .m, let x̃j be the inexact solution of the linear equation (γjI −A)xj = vj,
and f sys

j := xj − x̃j be the error vector for solving the linear equation, and let Rsys
m :=

[rsys1 · · · rsysm ], where rsysj := vj − (γjI − A)x̃j is the residual vector for solving the linear
equation. The following relation is derived by computing the m-step sirk process in the
same way as section 3. However, in this case, the linear equations must be solved inexactly
at every step.

(γjI − A)−1Vjtj − f sys
j =

j+1∑
k=1

hk,jvk,

Vjtj =

j+1∑
k=1

hk,j(γjI − A)vk + rsysj ,

VmTm = VmHmDm − AVmHm + hm+1,m(γmI − A)vm+1e
∗
m +Rsys

m ,

(γmI − A)Vm = VmK
−1
m − hm+1,m(γmI − A)vm+1e

∗
mH

−1
m −Rsys

m H−1
m , (20)

where Vm is the n×m matrix with orthonormal columns, Hm is an m×m upper Hessenberg
matrix, and Km = Hm(Tm−HmDm+γmHm)

−1. For the approximation, the same fomula
used by the sirk is employed:

ϕk(A)v ≈ Vmfm(Km)V
∗
mv. (21)

Let f̃m(z) = fm(z
−1). The error of this approximation, using Cauchy’s integral formula,

is

Em = f̃m(γmI − A)v − Vmf̃m(K
−1
m )V ∗

mv

=
1

2πi

∫
Γ

f̃m(λ)
[
(λI − γmI + A)−1v − Vm(λI −K−1

m )−1V ∗
mv

]
d λ

=
1

2πi

∫
Γ

f̃m(λ)e
lin
m dλ, (22)

where Γ is a contour enclosing the eigenvalues of γmI − A and K−1
m , elinm = [(λI − γmI +

A)−1v − Vm(λI − K−1
m )−1V ∗

mv]. Let f̂(z) = 1/(λ − z−1). Then, (λI − γmI + A)−1 =
f̂ ((γmI − A)−1). If sirk is applied to function f̂ , Vm(λI −K−1

m )−1V ∗
mv = Vmf̂(Km)V

∗
mv

is the approximation of f̂ ((γmI − A)−1) v. The error bound of this approximation is
represented in the same manner as Theorem 3.1:

∥f̂((γmI − A)−1)v − Vmf̂(Km)V
∗
mv∥

8
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≤ min
r∈Pm−1/qm−1

[
∥f̂(Xm)− r(Xm)∥ ∥v∥+ ∥f̂(Km)− r(Km)∥ ∥v∥

]
≤ 2C∥v∥ min

r∈Pm−1/qm−1

∥f̂ − r∥Σ, (23)

where Σ is the same set as Theorem 3.1, and 1 ≤ C ≤ 11.08. In this case, f̂ does not
depend on m, so the upper bound (23) decreases as m becomes large. Therefore, this
approximation converges. Using equation (20), the residual rlinm of this approximation for
the linear equation is represented as

rlinm = v − (λI − γmI + A)Vm

(
λI −K−1

m

)−1
V ∗
mv

= v − λVm

(
λI −K−1

m

)−1
V ∗
mv + (γmI − A)Vm(λI −K−1

m )−1V ∗
mv

= v − λVm

(
λI −K−1

m

)−1
V ∗
mv

+
[
VmK

−1
m − hm+1,m(γmI − A)vm+1e

∗
mH

−1
m −Rsys

m H−1
m

] (
λI −K−1

m

)−1
V ∗
mv

= v − Vm(λI −K−1
m )

(
λI −K−1

m

)−1
V ∗
mv

− hm+1,m(γmI − A)vm+1e
∗
mH

−1
m

(
λI −K−1

m

)−1
V ∗
mv

−Rsys
m H−1

m

(
λI −K−1

m

)−1
V ∗
mv

=
[
−hm+1,m(γmI − A)vm+1e

∗
mH

−1
m −Rsys

m H−1
m

] (
λI −K−1

m

)−1
V ∗
mv.

Replacing elinm with rlinm in equation (22), the generalized residual rrealϕ,m [16] of the approx-
imated ϕk(A)v is

rrealϕ,m = −hm+1,m(γmI − A)vm+1e
∗
mH

−1
m f̃m(K

−1
m )V ∗

mv −Rsys
m H−1

m f̃m(K
−1
m )V ∗

mv

= −hm+1,m(γmI − A)vm+1e
∗
mH

−1
m ϕk

(
(HmDm − Tm)H

−1
m

)
V ∗
mv

−Rsys
m H−1

m ϕk

(
(HmDm − Tm)H

−1
m

)
V ∗
mv

= −βhm+1,m(γmI − A)vm+1e
∗
mϕk

(
Dm −H−1

m Tm

)
H−1

m e1

− βRsys
m ϕk

(
Dm −H−1

m Tm

)
H−1

m e1 (24)

In order to evaluate equation (24), the following lemma and propositions are used.

Lemma 4.1 (see [13, Proposition 2]) Let f be the holomorphic function in C+. If the
sequence of the upper Hessenberg matrices {Hm ∈ Rm×m}nm=1 satisfies

W (Hm) ⊆ C+ (1 ≤ ∀m ≤ n), (25)

then there exists α > 0 and 0 < λ < 1 which do not depend on m and satisfy∣∣∣[f(Hm)]i,j

∣∣∣ ≤ αλi−j (i ≥ j). (26)

If f is an entire function, then inequality (26) is satisfied for all the sequence of the upper
Hessenberg matrices {Hm ∈ Rm×m}nm=1.

The proof of Lemma 4.1 is based on Benzi and Boito [2].
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Proposition 4.1 Let {Km ∈ Rm×m}nm=1 be the sequence of matrices satisfying

|(Km)i,j| ≤ αλi−j (i ≥ j), (27)

where α > 0 and 0 < λ < 1 which do not depend on m. If

λ ≤ 1√
2
, (28)

then, there exist a sequence of unitary matrices {Qm ∈ Rm×m}nm=1 and a sequence of
upper Hessenberg matrices {Hm ∈ Rm×m}nm=1 such that Km = Q∗

mHmQm and

|(Qm)i,j| ≤ α′λ|i−j| (i, j ≤ m),

with α′ > 0 which does not depend on m.

Proof : The Householder reflectors for transforming Km into the upper Hessenberg ma-
trix are applied. Let ki1:i2,j be the vector consisting of elements from (i1, j) to (i2, j) of Km,
ηj = ∥kj+1:m,j∥, uj = (kj+1:m,j − ηje1)/∥kj+1:m,j − ηje1∥. Then, Q̃j+1 = −2uju

∗
j is defined.

Im−j + Q̃j+1 is a unitary matrix and satisfies (Im−j + Q̃j+1)kj+1:m,j = ηje1. Thus, the ma-
trix Qm defined as Qm = (Im+Q̂m−1) . . . (Im+Q̂2), where Q̂j+1 = diag{Oj, Q̃j+1}, is a uni-
tary matrix, and there exists an upper Hessenberg matrix Hm such that QmKmQ

∗
m = Hm.

The vectors uj and kj+1:m,j − ηje1 remain the same up to the constant. Vector kj+1:m,j

satisfies condition (27), and all the elements except for the first element of ηje1 are 0. In
addition, ηj satisfies:

ηj ≤

√√√√ ∞∑
k=1

(αλk)2 = α

√
1

1− λ2
λ.

For these reasons, |ui,j| < α̂λi is satisfied for some α̂ > 0, where ui,j is the ith element of
uj ∈ Cm−j. It is deduced that:

|[uju
∗
j ]k,l| = |uk,jul,j| ≤ α̂2λk+l.

Let α̌ = 2α̂2. For l ≥ 2 and l < k1 < k2 < . . . < kr, it is deduced that

|(Q̂kr . . . Q̂k1Q̂l)i,j| ≤
α̌r+1λ−2(l−r−1)

(1− λ2)r
λi+j = α̌r+1α′′(l, r)λi+j (i, j ≤ kr), (29)

|(Q̂kr . . . Q̂k1Q̂l)i,j| = 0 (i > kr or j > kr),

where α′′(l, r) = λ−2(l−r−1)/(1− λ2)r. Inequality (29) is proved by the induction of r. For
r = 1, we have:

|(Q̂k1Q̂l)i,j| ≤
m∑

a=k1

α̌λi−k1+1+a−k1+1α̌λa−l+1+j−l+1

= α̌2λi+jλ−2(k1+l−2)

m∑
a=k1

λ2a

≤ α̌2λ−2(l−2)

1− λ2
λi+j (i, j ≤ k1).
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For r ≥ 2, if inequality (29) is satisfied with r − 1, then we have:

|(Q̂kr . . . Q̂k1Q̂l)i,j| ≤
m∑

a=kr

α̌λi−kr+1+a−kr+1 α̌rλ−2(l−r)

(1− λ2)r−1
λa+j

≤ λi+j α̌
r+1λ−2(kr+l−r−1)

(1− λ2)r−1

m∑
a=kr

λ2a

=
α̌r+1λ−2(l−r−1)

(1− λ2)r
λi+j (i, j ≤ kr).

This is the proof of inequality (29). In inequality (29), if λ ≤ 1/
√
2, then α′′(l, r + 1) ≤

α′′(l, r) for all l. This results in α′′(l, r) ≤ α′′(l, 1) for all r and l.
Qm is represented as:

Qm = (Im + Q̂m−1) . . . (Im + Q̂2)

= Im +
m−1∑
k=3

k−1∑
l=2

∑
(a1,a2,...,ak−l−1)∈{0,1}k−l−1

Q̂kQ̂
a1
k−1Q̂

a2
k−2 . . . Q̂

ak−l−1

l+1 Q̂l +
m−1∑
k=2

Q̂k. (30)

As a result, for 2 ≤ min {i, j} ≤ m− 1, equation (30) and inequality (29) shows that:

|(Qm − Im)i,j| ≤ α̌2

min {i,j}∑
k=3

k−1∑
l=2

[
1 + (k − l − 1)α̌ +

(
k − l − 1

2

)
α̌2 + . . .+ α̌k−l−1

]

× α′′(l, 1)λi+j + α̌2

min {i,j}∑
k=2

α′′(k, 1)λi+j

≤ α̌2

min {i,j}∑
k=3

k−1∑
l=2

(1 + α̌)k−l−1α′′(l, 1)λi+j + α̌2

min {i,j}∑
k=2

α′′(k, 1)λi+j

Therefore, for 2 ≤ min {i, j} ≤ m − 1 and i ≤ j, under the assumption of (28), it is
deduced that:

|(Qm − Im)i,j|

≤
i∑

k=3

(1 + α̌)k−1α̌2λ4

1− λ2
λi+j ((1 + α̌)λ2)−2

((1 + α̌)λ2)−1 − 1
[((1 + α̌)λ2)−k+2 − 1]

+
α̌2λ4

1− λ2
λi+j λ−4

λ−2 − 1
[(λ−2)i−1 − 1]

≤ (1 + α̌)α̌2λ4((1 + α̌)λ2)−1

(1− λ2)|1− (1 + α̌)λ2|
λi+j

[
i∑

k=3

(λ−2)k−2 + i

]
+

α̌2λ4

(1− λ2)2
λi+jλ−2i

≤ α̌2λ2

(1− λ2)|1− (1 + α̌)λ2|

[
λi+j λ−2

λ−2 − 1
(λ−2)i−2 + iλ2iλj−i

]
+

α̌2λ4

(1− λ2)2
λi+jλ−2i

=

[
α̌2λ2

(1− λ2)|1− (1 + α̌)λ2|

(
λ4

1− λ2
+

1

2

)
+

α̌2λ4

(1− λ2)2

]
λj−i (∵ eq. (28))
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=: α′λj−i,

where the sum
∑i

k=3 becomes 0 for k = 2. In a similar manner, it is deduced that
|(Qm − Im)i,j| ≤ α′λi−j for i > j. If min {i, j} = m, then we have i = j = m and

|(Qm − Im)m,m| ≤ α̌2

m−1∑
k=3

k−1∑
l=2

(1 + α̌)k−l+1α′′(l, 1)λi+j + α̌2

m−1∑
k=2

α′′(k, 1)λi+j ≤ α′.

For min {i, j} = 1, {
|(Qm)1,1| = 1

|(Qm)i,j| = 0 (i ̸= 1 or j ̸= 1)

is followed by the definition of Qm. Since Im is a diagonal matrix, redefining α′ as the
sum of 1 and the previous α′ completes the proof.

□

Proposition 4.2 Let {Hm ∈ Rm×m}nm=1 be the sequence of the upper Hessenberg matrices
and {Dm ∈ Rm×m}nm=1 be the sequence of diagonal matrices which consist of shifts of the
isirk, Dm = diag{N − 1, . . . , N −m}. If the matrix Hm satisfies

W (Hm) ⊂ C+ (1 ≤ ∀m ≤ n), (31)

then there exist ˆα > 0 and 0 < λ̂ < 1 such that |[Dm −H−1
m Tm]i,j| ≤ α̂λ̂i−j for i ≥ j. If

such λ̂ satisfies λ̂ ≤ 1/
√
2, then there exist α > 0 and 0 < λ < 1 which do not depend on

m such that: ∣∣∣[ϕk

(
Dm −H−1

m Tm

)
H−1

m

]
i,1

∣∣∣ ≤ 1

2
α(i+ 1)iλi−1. (32)

Proof : Since Hm is the upper Hessenberg matrix and satisfies condition (31), setting
f(z) = z−1 and using Lemma 4.1 derives that there exist α̂ > 0 and 0 < λ̂ < 1 such that:

|[H−1
m ]i,j| ≤ α̂λ̂i−j (i ≥ j). (33)

Dm is a diagonal matrix, and Tm is defined as equation (11). Therefore, redefining α̂ as
the sum of ∥Dm∥ = N − 1 and the previous α̂ leads to:

|[Dm −H−1
m Tm]i,j| ≤ α̂λ̂i−j (i ≥ j), (34)

where α̂ and λ̂ do not depend on m. Let Gexp(α, λ) = {A : square matrix | |(A)i,j| ≤
αλ|i−j| (∀i, j)}. From Proposition 4.1, there exists a unitary matrix Qm and an upper
Hessenberg matrix H̃m such that Dm −H−1

m Tm = Q∗
mH̃mQm and Qm ∈ Gexp(α′, λ̂) with

α′ > 0 which does not depend on m. Thus, it is deduced that:

ϕk

(
Dm −H−1

m Tm

)
H−1

m e1 = ϕk(Q
∗
mH̃mQm)H

−1
m e1,

= Q∗
mϕk(H̃m)QĤme1 (∃Ĥm ∈ Gexp(α̂, λ̂)).

The second equality is held, because from inequality (33), there exists Ĥm ∈ Gexp(α̂, λ̂)
which satisfies H−1

m e1 = Ĥme1. From Benzi and Boito [3, Theorem 9.2], there exist α′′ > 0
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and λ′′ which do not depend on m and satisfy QmĤm ∈ Gexp(α′′, λ′′). In addition, setting
f = ϕk, the entire function, and using Lemma 4.1 derive that there exist α̌ > 0 and
0 < λ̌ < 1 such that |[ϕk(H̃m)]i,j| ≤ α̌λ̌i−j (i ≥ j). Let Σ =

∪n
m=1(Dm − H−1

m Tm). Σ is
closed and bounded, and H̃m satisfies

W (H̃m) = W
(
Qm(Dm −H−1

m Tm)Q
∗
m

)
= W (Dm −H−1

m Tm) ⊆ Σ. (35)

Therefore, |ez| ≤ C ′ for some C ′ > 0 is satisfied when z ∈ W (H̃m), and |ϕk(z)| is bounded
as

|ϕk(z)| =
∣∣∣∣∫ 1

0

esz
(1− s)k−1

(k − 1)!
ds

∣∣∣∣ ≤ |ez|
∣∣∣∣∫ 1

0

(1− s)k−1

(k − 1)!
ds

∣∣∣∣ ≤ C ′

k!
(z ∈ W (H̃m)). (36)

Using the theorem by Crouzeix [5, Theorem 2], condition (35) and inequality (36), there
exists 1 ≤ C ≤ 11.08 such that

∥ϕk(H̃m)∥ ≤ C sup
z∈W (H̃m)

|ϕk(z)| ≤
CC ′

k!
.

Redefining α̌ as the sum of CC ′/(k!) and the previous α̌ leads to:∣∣∣∣[ϕk(H̃m)
]
i,j

∣∣∣∣ ≤ α̌λ̌i−j (i ≥ j), (37)∣∣∣∣[ϕk(H̃m)
]
i,j

∣∣∣∣ ≤ ∥ϕk(H̃m)∥ ≤ α̌ (i < j). (38)

From the upper bounds (37) and (38), it is deduced that:∣∣∣∣[ϕk(H̃m)QmĤm

]
i,1

∣∣∣∣ ≤ i∑
k=1

α̌λ̌i−kα′′λ′′k−1 +
m∑

k=i+1

α̌α′′λ′′k−1

≤ iα̌α′′λ̄i−1 + α̌α′′ λ′′i

1− λ′′

≤ iα̌α′′
(
1 +

λ′′

1− λ′′

)
λ̄i−1

= iᾱλ̄i−1. (39)

where ᾱ := α̌α′′/(1− λ′′), λ̄ := max{λ̌, λ′′} < 1. As a result, using fact Qm ∈ Gexp(α′, λ̂)
and the upper bound (39), it is deduced that:∣∣∣[ϕk(Dm −H−1

m Tm)H
−1
m

]
i,1

∣∣∣ = ∣∣∣∣[Q∗
mϕk(H̃m)QmĤm

]
i,1

∣∣∣∣
≤

i∑
k=1

α′λ̂i−kkᾱλ̄k−1 +
m∑

k=i+1

α′λ̂k−ikᾱλ̄k−1

≤ 1

2
(i+ 1)iα′ᾱλi−1 + α′ᾱ

i+ 1

(1− λ2)2
λi+1

≤ 1

2
(i+ 1)iα′ᾱ

(
1 +

2λ2

(1− λ2)2

)
λi−1
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=
1

2
(i+ 1)iαλi−1.

where α := α′ᾱ(1 + 2λ2/(1− λ2)2) and λ := max{λ̂, λ̄} < 1.

□

If the residual of solving the linear equation satisfies ∥rsysm ∥ ≤ δ for some δ > 0, then
there exist α > 0 and 0 < λ < 1 such that the first term of equation (24) becomes:

β
∣∣hm+1,me

∗
mϕk(Dm −H−1

m Tm)H
−1
m e1

∣∣ ∥(γmI − A)vm+1∥

≤ β|hm+1,m|
∣∣∣[ϕk(Dm −H−1

m Tm)H
−1
m

]
m,1

∣∣∣ ∥γmI − A∥ ∥vm+1∥

≤ β|hm+1,m| ∥γmI − A∥1
2
αm(m+ 1)λm−1 (∵ (32))

≤ β

2
∥(γmI − A)−1vm − f sys

m − h1,mv1 − . . .− hm,mvm∥

× ∥γmI − A∥αm(m+ 1)λm−1

≤ β

2
(∥(γmI − A)−1vm∥+ ∥f sys

m ∥)∥γmI − A∥αm(m+ 1)λm−1

≤ β

2
(1 + ∥rsysm ∥)∥(γmI − A)−1∥ ∥γmI − A∥αm(m+ 1)λm−1

≤ β

2
(1 + δ)κ(γmI − A)αm(m+ 1)λm−1. (40)

Since 0 < λ < 1, the upper bound (40) implies that under the assumption of (28),
if κ(γmI − A) does not increase as m becomes larger, the first term of equation (24)
decreases as m becomes larger.

Concerning the second term of equation (24), the following theorem is deduced:

Theorem 4.1 Let [ϕk(Dm −H−1
m Tm)H

−1
m ]i,j =: gmi,j. Moreover, let tolϕ > 0 be the toler-

ance for computing the ϕ-function and mmax be the maximum number of iterations. Under
the assumptions about Hm and λ̂ in Proposition 4.2, If

∥rsys1 ∥ ≤ tolϕ
2mmaxβ∥ϕk(Dm −H−1

m Tm)H−1
m e1∥

, (41)

∥rsysj ∥ ≤
|gm1,1|
|gmj−1,1|

∥rsys1 ∥ (2 ≤ j ≤ m), (42)

then
β∥Rsys

m ϕk(Dm −H−1
m Tm)H

−1
m e1∥ ≲ tolϕ .

Proof : Based on the above assumptions (41), (42) and Proposition 4.2, the upper bound
is derived:

β∥Rsys
m ϕk(Dm −H−1

m Tm)H
−1
m e1∥

≤ β(|gm1,1| ∥r
sys
1 ∥+ |gm2,1| ∥r

sys
2 ∥+ . . .+ |gmm,1| ∥rsysm ∥)

≤ β

(
|gm1,1| ∥r

sys
1 ∥+ |gm2,1|

|gm1,1|
|gm1,1|

∥rsys1 ∥+ |gm3,1|
|gm1,1|
|gm2,1|

∥rsys1 ∥+
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. . .+ |gmm,1|
|gm1,1|

|gmm−1,1|
∥rsys1 ∥

)
(∵ (42))

= β|gm1,1| ∥r
sys
1 ∥

(
1 +

|gm2,1|
|gm1,1|

+
|gm3,1|
|gm2,1|

+ . . .+
|gmm,1|
|gmm−1,1|

)
≈ β∥ϕk(Dm −H−1

m Tm)H
−1
m e1∥ ∥rsys1 ∥

(
1 + 3λ+ 2λ+ . . .+

m(m+ 1)

(m− 1)m
λ

)
(∵ (32))

≤ β∥ϕk(Dm −H−1
m Tm)H

−1
m e1∥ ∥rsys1 ∥ · 2mmax

≤ tolϕ (∵ (41)).

□

The right-hand side of inequality (42) becomes larger as m becomes larger because of
Proposition 4.2. Thus, Theorem 4.1 implies that the larger m becomes, the solution of
the linear equation (γmI − A)xm = Vmtm becomes more inexact, and the computational
cost decreases compared to the sirk. However, if the linear equations are solved, satisfying
inequalities (41) and (42), then the second term of equation (24) is no longer an issue. In
this scenario, the first term of equation (24), rcomp

ϕ,m , is used as the stopping criterion for
the convergence of isirk.

Remark 4.1 In practical computation, the values depending on m in inequalities (41) and
(42) are unavailable in advance. Thus, for the exponential integrator at the (i+1)th step,
ϕk(Dm − H−1

m Tm)H
−1
m e1 is replaced with the ones in the largest Krylov subspace at the

ith step. For the computation of equation (3):

V ∗
m(γmI − A)Vm ≈ (Tm −HmDm + γmHm)H

−1
m

H−1
m Tm ≈ HmDmH

−1
m − V ∗

mAVm,

since [(γmI − A)−1]
−1

Vmel ≈ VmK
−1
m el for all 1 ≤ l ≤ m. From Lemma 4.1, we have

H−1
m Tme1 = H−1

m e1 ≈ (H−1
m )1,1e1. Thus,

H−1
m e1 ≈ Hmd1,1(H

−1
m )1,1e1 − V ∗

mAVme1

≈ Hm(γ1I)H
−1
m e1 − V ∗

mAVme1

= V ∗
m(γ1I − A)Vme1

Similarly, from Proposition 4.2, ϕk((HmDm − Tm)H
−1
m )e1 ≈ [ϕk((HmDm − Tm)H

−1
m )]1,1e1

is deduced. Therefore,

∥H−1
m ϕk((HmDm − Tm)H

−1
m )e1∥ ≈ ∥H−1

m [ϕk((HmDm − Tm)H
−1
m )]1,1e1∥

≈ ∥V ∗
m(γ1I − A)Vmϕk((HmDm − Tm)H

−1
m )e1∥

≈ ∥(γ1I − A)y(t)∥
≈ ∥(γ1I − A)y(0)∥. (43)

Approximation (43) is employed for inequality (41) in the computation of equation (3).
Moreover, since α and λ do not depend on m, the following approximation is used for
P = 1:

|gm1,1| ≈ |gj−1
1,1 |, |gm1,j−1| ≈ |gj−1

1,j−1| (2 ≤ j ≤ m).
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Algorithm 4.1 isirk method for exponential integrator
Require: A ∈ Cn×n, v ∈ Cn, δ > 0, tolϕ > 0, mmax ∈ N, h > 0, N > hmmax

Ensure: βVmϕk((HmDm − Tm)H
−1
m )e1 such that ∥rrealm ∥ ≤ tolϕ

1: β = ∥v∥, v1 = v/β
2: tolsys1 = tolϕ /(m

maxβ∥f i
m(i)∥)

3: for m = 1, 2, . . . do
4: dm,m = N − hm
5: Compute x̃ such that ∥Vmtm − (dm,mI − A)x̃∥ ≤ tolsysm

6: for l = 1, 2, . . . ,m do
7: hl,m = x̃∗vl, x̃ = x̃− hl,mvl
8: end for
9: hm+1,m = ∥x̃∥, vm+1 = x̃/hm+1,m

10: f i+1
m = H−1

m ϕk((HmDm − Tm)H
−1
m )e1

11: r = |hm+1,m(f
i+1
m )m| ∥(γmI − A)vm+1∥

12: tolsysm+1 = min{tolsys1 |(f i+1
m )1|/|(f i+1

m )m|, δ}
13: if r ≤ tolϕ then
14: m(i+ 1) = m
15: ym(t) = βVmϕk((HmDm − Tm)H

−1
m )e1, break

16: end if
17: end for

In the case of P > 1, if

∥rsysj ∥ ≤
|gm1,1|

|gmP ⌊j/P ⌋,1|
∥rsys1 ∥, (44)

then the condition (41) is satisfied for j. Thus, we solve the linear equation (γjI−A)xj =
Vjtj with the same level of exactness with (γj0I − A)xj0 = Vj0tj0, where j0 = P ⌊j/P ⌋.

Remark 4.2 It is easy to check the assumption of Theorem 4.1, since both of them are
checked through Hm, and m ≪ n. In fact, if P = 1 and γj = γ for some γ ∈ C and
1 ≤ j ≤ m, assumption (31) is always satisfied for sirk [13].

In summary, Algorithm 4.1 is proposed for ϕ-functions in the exponential integrator of
the ith step, where (fm)j is the jth element of fm. For the computation of equation (3),
the second line is replaced by tolsys1 = tolϕ /[2m

maxβ∥(γ1I−A)y(0)∥]. The linear equation
in the fifth line of the algorithm is solved by an iterative method, and the convergence
of its solution is judged by its residual. This facilitates ensuring that the residual of the
solution of the linear equation satisfies the required conditions. Any iterative methods, for
example, the bicgstab [28] or the gmres [23], are viable options. (HmDm − Tm)H

−1
m in

the tenth line is a small matrix, and it can be computed via a direct method inexpensively.
After computing (HmDm−Tm)H

−1
m , ϕk((HmDm−Tm)H

−1
m ) is also computed using a direct

method, such as the scaling and squaring method [14].

5 Numerical experiments
A few typical numerical experiments have been implemented in this section. These ex-
periments were in a collection of problems to illustrate the effectiveness of isirk. All
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numerical computations of these tests were executed with C on an Intel(R) Xeon(R)
X5690 3.47GHz processor with an Ubuntu14.04lts operating system. lapack and blas
were used with atlas for the computations. In addition, open mpi was used for parallel
computations.

The Galerkin method with unstructured first order triangle elements and linear weight
functions, were used to discretize the problems. After the discretization, the gmres
algorithm [23] with an ilu(0) preconditioner were applied to solve the linear equation in
the fifth line of Algorithm 4.1 and in other algorithms. For sia, rk and sirk, the linear
equation was solved with a residual tolerance of 10−14.

Example 1
In order to show the advantages of the sirk and isirk, the convection diffusion equation
in region Ω = ((−1.5, 1.5)× (−1, 1)) \ ([−0.5, 0.5]× [−0.25, 0.25]) ⊆ R2 was implemented:

ρcv
∂u

∂t
= λ∆u− 5

∂u

∂x1

in (0, T ]× Ω,

u= 0 on {0} × Ω,
u= 10 on (0, T ]× ∂Ω1,

−λ
∂u

∂n
= 0 on (0, T ]× ∂Ω2,

(45)

where ∂Ω1 = {−1.5}× [−0.5, 1], ∂Ω2 = ∂Ω\∂Ω1, ρ = 1.3, cv = 1000 and λ = 0.025. After
the discretization, equation (2) with F (y) = Ly+c was obtained with n = 390256. In this
example, the differential operator D = 1/(ρCv)(λ∆−5 ∂u

∂x1
) was linear and did not depend

on t. Thus, the solution was obtained through computing equation (3). Equation (3) was
computed with the sia and sirk. For sirk, we tried P = 1 and P = 2. The cpu times
and iteration numbers were compared. The results are shown in Table 1, Figure 1 and
Figure 2. The relative error tolerance for computing ϕ0(tM

−1L)(v+L−1c) was 10−6, and
t = 270. Here, we used the error instead of the residual in order to consider about the
bound (16). Concerning the shift in the sia and sirk, N = γ = 100/t and N = γ = 200/t.
In order to treat A instead of tA, γj/t was used instead of γj. For N = 200/t, we compared
h = 1/t and h = 2/t. The results show that sirk reduces the iteration numbers compared
with sia with γ = N . On the other hand, the shifted matrices (N − j)I − A in sirk
are more ill-conditioned than γI − A in sia, since γ > N − j, and γ realizes the larger
transformation of the singular values of A. Thus, sirk takes more time for solving the
linear equations than sia. As a result, sirk with P = 1 takes a bit more time than sia.
However, the linear equation in sirk can be solved in parallel while those in sia cannot.
The speed of sirk with P = 2 is about twice as fast as that of sia. As for the choice of
N = γ and h, the result provides the following observation. A larger N results in larger
factors minr∈Pm−1/qm−1 ∥f̂N − r∥Σ and minp∈Pm−1 ∥f̃γ − p∥W ((γI−A)−1) in bounds (16) and
(19). Thus, the iteration number for convergence increases. In addition, a larger h results
in a smaller acceleration factor e−hm in sirk. Thus, the iteration number for convergence
decreases.

Next, the isia, which were previously proposed by Hashimoto and Nodera [13], and
isirk were compared. The cpu times and iteration numbers are shown in Table 2 and
Table 3. The residual tolerance for computing ϕ0(tM

−1L)(v + L−1c), tolϕ was 10−6, and
mmax = 100, δ = 0.01. The results show that the isirk with P = 2 is efficient. Figure 3
shows the residual tolerance for solving linear equations at each Krylov step of the isirk
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Table 1: Example 1, The number of iterations and cpu time of sia and sirk.

sirk (P = 1) sirk (P = 2) sia
Itr. time Itr. time Itr. time

N = γ = 100/t h = 1/t 52 129.76 52 65.73 57 117.51

N = γ = 200/t
h = 1/t 74 113.27 74 57.30

84 112.24
h = 2/t 65 112.50 66 64.34
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Figure 1: Example 1, Iterations versus rela-
tive error (N = γ = 100/t, h = 1/t, P = 2).
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Figure 2: Example 1, Iterations versus rela-
tive error (N = γ = 200/t, h = 2/t, P = 2).

Table 2: Example 1, The number of iterations and cpu time of sia and isia.

isia sia
Itr. time Itr. time

γ = 100/t 63 54.64 63 129.20
γ = 200/t 90 48.53 90 119.80

Table 3: Example 1, The number of iterations and cpu time of sirk and isirk.

isirk(P = 1) sirk(P = 1) isirk(P = 2) sirk(P = 2)
Itr. time Itr. time Itr. time Itr. time

γ = 100/t, h = 1/t 60 71.85 60 158.80 60 37.67 60 80.42
γ = 200/t, h = 2/t 72 55.75 72 132.91 72 29.88 72 67.24

with N = 100/t, h = 1/t and P = 1. It is observed that the exactness needed to obtain a
solution for the linear equation decreases as m becomes larger. The solutions computed
with the isirk are tabulated in Figure 4. Problem (45) represents the flow of heat coming
from boundary ∂Ω1. The temperature in region Ω is 0◦C at t = 0, but at this point, the
heat begins to flow toward the right edge of Ω. The accuracy of the isirk is illustrated
here.

18

KSTS/RR-17/001 
January 27, 2017 
(Revised July 24, 2017)



1e-10

1e-08

1e-06

1e-04

1e-02

 10  20  30  40  50  60

to
l m

sy
s

Iterations

Figure 3: Example 1, Iterations ver-
sus tolsysm .

Figure 4: Example 1, Numerical solutions
of isirk.

Example 2
The next problem is a wave equation in region (−1.5, 1.5)× (−1, 1) ⊆ R2:

∂2u

∂t2
− c2∆u= f(x, t) in (0, T ]× Ω,

u= e−10(x1−0.5)2−10(x2−0.5)2 on {0} × Ω,
∂u

∂t
= 0 on {0} × Ω,

u= 0 on (0, T ]× ∂Ω1,
∂u

∂n
= 0 on (0, T ]× ∂Ω2,

where f(x, t) = −104 sin (t)e(x1−0.8)2+(x2−0.8)2 , c =
√
0.1, ∂Ω1 = [−1.5, 1.5]× {1,−1}, and

∂Ω2 = ∂Ω \ ∂Ω1. After the discretization:{
M̃ ¨̃y(t) = L̃ỹ(t) + b̃(t),

ỹ(0) = ṽ.
(46)

Equations (46) were transformed into equations (2), where:

M =

[
M̃

I

]
, L =

[
L̃

I

]
, b =

[
b̃
0

]
, y =

[
˙̃y
ỹ

]
, v =

[
ṽ
0

]
,

F (y) = Ly + b(t).

In this example, the dimension of the matrices were n = 237378. We used the 1-step
exponential integrator [18] whose scheme was:

yi+1 = yi +∆tϕ1(∆tM−1Li+1)M
−1F (yi).

Table 4 shows the cpu times and iteration numbers of sirk and sia for computing
ϕ1(∆tM−1L)M−1F (y(0)), where ∆t = 0.1 and the relative error tolerance is 10−6. We
used N = γ = 40/∆t, 50/∆t, 60/∆t. For sirk, we set h = 1/∆t and P = 2. In this
example, the iteration numbers of sirk and sia are almost the same. This is because
in the case of ϕ1, the functions f̂N and f̃γ in bounds (16) and (19) are different, and
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Table 4: Example 2, The number of iterations and cpu time of sirk and sia.

sirk sia
Itr. time Itr. time

N = γ = 40/∆t 28 5.66 25 6.05
N = γ = 50/∆t 24 3.65 24 5.33
N = γ = 60/∆t 26 3.62 25 5.23

Figure 5: Example 2, Numerical solution
of t = 1 with ei and sirk.

Figure 6: Example 2, Numerical solution
of t = 2 with ei and sirk.

f̂N(z) > f̃γ(z) for all z. Thus, the factor minr∈Pm−1/qm−1 ∥f̂N − r∥Σ in bound (16) is larger
than minp∈Pm−1 ∥f̃γ − p∥W ((γI−A)−1) in bound (19). However, the factor e−hm cancels the
magnitude of minr∈Pm−1/qm−1 ∥f̂N − r∥Σ in sirk. Moreover, since the linear equations in
sirk can be solved in parallel, its computation is faster than that of sia.

Figure 5 and Figure 6 show the numerical solution of t = 1 and t = 2 computed with
sirk in the exponential integrator. It shows the vibration of the wave, and we see the
exactness of the computation of sirk.

Example 3
The third test problem was a Burgers equation in region Ω = (−1.5, 1.5)× (−1, 1) ⊆ R2

for confirming the effectiveness of isirk:

∂u

∂t
= u

∂u

∂x1

+ v
∂u

∂x2

+
1

Re
∆u in (0, T ]× Ω,

∂v

∂t
= u

∂v

∂x1

+ v
∂v

∂x2

+
1

Re
∆v in (0, T ]× Ω,

u= 0, v = 0 on (0, T ]× ∂Ω1,
∂u

∂n
= 0,

∂v

∂n
= 0 on (0, T ]× ∂Ω2,

u= f, v = −f on {0} × Ω,

where Re = 106 and f(x) = e−10(x1−0.5)2−10(x2−0.5)2 . After the discretization, equation (2)
was obtained with F (y) = Ly + Q(y)y, where L ∈ Rn×n and Q is the matrix valued
function of Rn 7→ Rn×n with n = 29649, 118689. We set Li = L + Q(yi−1) and ni(y) =
F (y) − Liy = Q(y)y − Q(yi−1)y, then used the 2-step exponential integrator [18]. The
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Figure 7: Example 3, Iterations ver-
sus ∥rrealϕ,m∥ and ∥rcomp

ϕ,m ∥ with tolϕ = 10−6.
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Figure 8: Example 3, Iterations ver-
sus ∥rrealϕ,m∥ and ∥rcomp

ϕ,m ∥ with tolϕ = 10−8.
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Figure 9: Example 3, Iterations versus tolsysm .

scheme was:

yi+1 = yi +∆tϕ1(∆tM−1Li+1)F (yi)−∆t
2

3
ϕ2(∆tM−1Li+1)[ni(yi)− ni(yi−1)].

The computations of ϕ2(∆tM−1Li+1)[ni(ui)−ni(ui−1)] in the third time step with ∆t = 0.1
with isirk were observed. The residual tolerance tolϕ for computing ϕ-functions was 10−6

or 10−8 and mmax = 50, δ = 0.01. We also set N = 50/∆t, h = 1/∆t and P = 1. Figure 7
and Figure 8 show the relationship between the number of iterations and the residuals of
isirk with n = 118689. The real residual rrealϕ,m decreases until it reaches tolϕ, but it stops
decreasing after this point. This means that the linear equation is solved efficiently at
each Krylov step. On the other hand, the computing residual rcomp

ϕ,m decreased even after
it had reached tolϕ. Moreover, the behavior of rrealϕ,m and rcomp

ϕ,m were the same before they
reached tolϕ. Thus, rcomp

ϕ,m was an appropriate stopping criterion for isirk. Figure 9 shows
the residual tolerance for solving linear equations at each Krylov step with tolϕ = 10−6

and n = 118689. The exactness for a solution of the linear equation decreased as m
becames larger. Table 5 shows the cpu time of isirk and sirk with tolϕ = 10−6. isirk
was faster than sirk.
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Table 5: Example 3, Comparison of sirk and isirk.

Algorithm n Time(s) Itr.
isirk 29649 0.42 14
sirk 29649 0.59 14
isirk 118689 2.4 16
sirk 118689 3.6 16

6 Conclusion
sirk and isirk were explored in this paper. The advantage of sirk is that it uses the real
shifts and these shifts reduces the iteration numbers of sirk compared to sia. This makes
sirk the effective method for computing ϕ-functions. Furthermore, the computation cost
of solving linear equations in sirk can be improved using isirk. isirk solves linear
equations efficiently while guaranteeing that the generalized residual becomes lower than
the arbitrary tolerance. The exactness needed for solving a linear equation decreased as
the Krylov step progressed, and the stopping criterion for the convergence of sirk was
also valid for that of the isirk.
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