
Research Report

KSTS/RR-16/002
May 6, 2016

Inexact shift-invert Arnoldi method for evolution
equations

by

Yuka Hashimoto
Takashi Nodera

Yuka Hashimoto
School of Fundamental Science and Technology
Keio University

Takashi Nodera
Department of Mathematics
Keio University

Department of Mathematics
Faculty of Science and Technology
Keio University

c©2016 KSTS
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan

Inexact Shift-invert Arnoldi Method for Evolution
Equations

Yuka Hashimoto ∗ Takashi Nodera †

Abstract

Linear and nonlinear evolution equations with a first order time derivative, such
as the heat equation, the Burgers equation, and the reaction diffusion equation have
been used to solve problems in various fields of science. Differential algebraic equa-
tions of the first order are derived after space discretization. In the simplest case,
the computation of one matrix exponential with a special form is required. In the
most complex case, the computation of matrix functions related to its exponentials
needs to be implemented repeatedly. When computing large matrix functions, the
Krylov subspace methods is a viable alternative. The most well-known method is
the Arnoldi method, but it may require a number of iterations depending on the
condition of the matrix. As a solution to this issue, we propose the Inexact Shift-
invert Arnoldi method to do this more efficiently. The results of pertinent numerical
experiments have been documented to evaluate the effectiveness of this proposed
algorithm.

Key Words. Shift-invert Arnoldi, φ-function, exponential integrator
AMS(MOS) subject classifications. 65F60, 65M22

Contents

1 Introduction 2
1.1 Background . 2
1.2 Notation . 3

2 Numerical methods for evolution equations 3
2.1 Exponential integrator . 3
2.2 Shift-invert Arnoldi method (SIAP) . 4

3 Inexact Shift-invert Arnoldi method (ISIAP) 5

4 Numerical experiments 8

5 Conclusion 12

∗School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio
University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan. Email: yukahashimoto
@keio.jp

†Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan. Email: nodera@math.keio.ac.jp

1

KSTS/RR-16/002
May 6, 2016

1 Introduction

1.1 Background

Evolution equations are used in various fields, for example, the heat equation in building
physics [18], the Burgers equation in fluid mechanics [12], and the reaction diffusion
equation in chemistry [13]. In this paper, the following typical initial boundary value
problems defined in [0, T]× Ω are explored:

∂u

∂t
=Du in (0, T]× Ω,

u= ξ on {0} × Ω,
u= η on (0, T]× ∂Ω1,

∂u

∂nb

= τ1u+ τ2 on (0, T]× ∂Ω2,

(1)

where Ω ⊆ Rd is an open set, ∂Ω = ∂Ω1 ∪ ∂Ω2, u ∈ V ⊆ L2([0, T] × Ω), nb is a unit
normal vector, D is a differential operator on V , and ξ, η, τ1, τ2 are known functions. If
we discretize the equation in terms of space using a finite element method, the following
differential algebraic equation can be derived:

{
Mẏ(t) = F (t, y(t)),
y(0) = v,

(2)

where M ∈ Rn×n, and F is a vector valued functional. Without a loss of generality, it
can be assumed that equation (2) is an autonomous system, that is F = F (y(t)).

In the simplest case, such as in the heat equation, F can be represented as F (y) =
Ly+c, where L ∈ Rn×n and c ∈ Rn. Both of them are constants. In this case, the solution
of equation (2) is as follows, if M and L are invertible:

y(t) = etM−1LM−1v +

∫ t

0

e(t−τ)M−1LM−1c dτ,

= φ0(tM
−1L)(v + L−1c)− L−1c, (3)

where φ0(z) := ez. The solution can be obtained through computing the matrix expo-
nential once. Otherwise, time discretization is also needed for integrating M−1F (t, y)
and finding solution y(t). There are various integrators for this kind of problem includ-
ing classical methods like the explicit and implicit Euler methods [2, pp. 61–65], the
Runge-Kutta method [2, pp. 93–104], etc. Recently, the exponential integrator [4, 7–9]
has been the popular method for solving this problem. This method is more suitable for
stiff problems versus the explicit and implicit Euler methods [9, 10]. In general, at each
step, φk(∆tM

−1L) is required, where:

φ0(z) := ez,

φk(z) :=
φk−1(z)− 1

(k−1)!

z
k = 1, 2, · · · ,

and L is the part which is regarded as “linear” in every time step, such as the Jacobian
matrix, and ∆t is the step size of time.

2

KSTS/RR-16/002
May 6, 2016

Various methods for computing the matrix exponential and φ functions are introduced
[5, 6, 10, 14–17]. The Krylov subspace methods are efficient, because the matrices usually
become large. The most simple and well-known method is the Arnoldi method for the
φ-function (AP). Hochbruck and Lubich [10] obtained error bounds for φ0 and φ1. This
means AP requires a number of iterations if ||tM−1L|| is large. In order to deal with this
difficulty, the Shift-invert Arnoldi method for φ-function (SIAP) was proposed [15, 17].
According to Novati [17], the SIAP converges independently of ||tM−1L||. Moreover, the
SIAP is suited to problems like equation (2) which is explored in this paper. With this
in mind, a new method for computing φ-functions based on SIAP, called the Inexact
Shift-invert Arnoldi method for φ-function (ISIAP), will be explored.

In this paper, the exponential integrator and SIAP are introduced in Section 2, and the
ISIAP is proposed in Section 3, where the theoretical aspect of this method is discussed.
Numerical results are given in Section 4 to show the effectiveness of our method.

1.2 Notation

The norm is defined as: || · || = || · ||2, and the 2-norm condition number of matrix A
is defined as κ(A). ej represents the j-th column of identity matrix I. Moreover, let
C− := {z ∈ C; <(z) < 0}, and W (A) := {u∗Au; u ∈ Cn, ||u|| = 1}, the numerical range
of n× n matrix A.

2 Numerical methods for evolution equations

2.1 Exponential integrator

At the i-th step, the exponential integrator rearranges F as follows:

F (y) = Liy(t) + n(y), (4)

where Li is the pseudo linear part of the i-th step. For example, Li = ∂
∂y
F (y(t0)) for the

Exponential Runge-Kutta method, Li = ∂
∂y
F (y(ti−1)) for the Exponential Rosenbrock

method, and n(y) = F (y) − Liy for t ∈ (ti, ti+1]. The solution is approximated at the
i+ 1-th step as follows:

y(t) = etM−1Li+1yi +

∫ t

0

e(t−τ)M−1Li+1M−1n(yi) dτ t ∈ (ti, ti+1], (5)

where ti = i∆t (i = 0, · · · , N), tN = T , and yi is the approximation of y(ti) at the
i-th step. The following approximation scheme of the one-step method is obtained: for
1 ≤ i ≤ s,

Yik = φ0(ck∆tM
−1Li+1)yi + ∆t

k−1∑

l=1

akl(∆tM
−1Li+1)M

−1ni(Yil),

yi+1 = φ0(∆tM
−1Li+1)yi + ∆t

s∑

k=1

bk(∆tM
−1Li+1)M

−1ni(Yik),

(6)

where ck are scaler coefficients, and akl, bk are coefficients which consist of φ-functions
with the appropriate order condition.

3

KSTS/RR-16/002
May 6, 2016

The approximation of the simplest case of s = 1, is as follows:

yi+1 = φ0(∆tM
−1Li+1)yi + ∆tφ1(∆tM

−1Li+1)M
−1n(yi)

= yi + ∆tφ1(∆tM
−1Li+1)M

−1F (yi). (7)

For a larger s, various ways of choosing akl, bk, and ck have been suggested. Please see
Hochbruck etc. [9] and the references there for more detail.

The multi-step method was also explored. The approximation scheme of the multi-step
method is as follows:

yi+1 = φ0(∆tM
−1Li+1)yi + ∆t

r−1∑

k=1

γk(∆tM
−1Li+1)M

−1∇kNi, (8)

where Ni := n(yi), and ∇kNi and γk(z) is defined recursively by

∇0Ni := Ni, ∇k+1Ni := ∇kNi −∇kNi−1,

γ0(z) = φ1(z), zγk(z) + 1 =
r−1∑

k=0

1

r − k
γk(z).

The approximation of the simplest case of r = 1, becomes equation (7).

2.2 Shift-invert Arnoldi method (SIAP)

In this subsection, the SIAP is used to compute φk(tM
−1L)M−1v, in the same manner

that the φ-functions appear in equations (3), (6), and (8). In the case of equation (3), v
is replaced with M(v + L−1c).

Let β = ||M−1v||. Then, compute the m step Arnoldi process for (I − γM−1L)−1 =
(M − γL)−1M with the initial vector v1 = M−1v/β from which the following relation is
derived:

(M − γL)−1MVm = VmHm + hm+1,mvm+1e
T
m, (9)

where Vm = [v1 · · · vm] is an n×m matrix whose columns are orthonormal, and Hm is an
m ×m upper Hessenberg matrix. If Hm is invertible, φk(tM

−1L)M−1v is approximated
as follows:

φk(tM
−1L)M−1v ≈ βVmψk(H

−1
m)e1 =: um(t),

where ψk(z) := φk(t(1− z)/γ).
The following proposition regarding the error bound of this approximation is proved

[17, Proposition 12].

Proposition 2.1 Let 0 ≤ θ < 0.48124, and Sθ := {z ∈ C−; | arg (−z)| ≤ θ}. If
W (M−1L) ⊆ Sθ and t/γ = (m+ k)/ cos θ, then the following error bound is held:

||φk(tM
−1L)v − um(t)|| ≤ 11Cρ(θ)m, (10)

where

ρ(θ) :=
(
1 +

√
2(1− cos θ)

) cos θ

4 cos θ − 2

π

π − θ
,

and 1 ≤ C ≤ 11.08.

Note that the right hand side of inequality (10) only depends on θ. Thus, proposition 2.1
implies that if γ is chosen accurately, the convergence will not depend on ||tM−1L||.

4

KSTS/RR-16/002
May 6, 2016

3 Inexact Shift-invert Arnoldi method (ISIAP)

In this section, the ISIAP is used to compute φk(tM
−1L)M−1v. Throughout this section,

the assumption is that W ((I − γM−1L)−1) ⊆ C−. Computing this with AP requires a
product of M−1L and a vector vm at the m-th step, so it is necessary to solve one linear
equation: Mxm = Lvm for xm. The computation with the SIAP also required solving
one linear equation (M − γL)xm = Mvm. The computational costs for one step are
approximately the same for both. Because SIAP converges independently of ||tM−1L||,
it is the efficient choice for computing φ-functions. However, even with the SIAP, linear
equations must be solved at every step and this results in a high computational cost. An
attempt is made to reduce this, by solving the linear equation inexactly with an iterative
method.

Let Fm := [f1 · · · fm], where fm := xm − x̃m is the error vector for solving the linear
equation at the m-th step, and let Rm := [rsys,1 · · · rsys,m], where rsys,m := Mvm− (M −
γL)x̃m is the residual vector for solving the linear equation. The following relation is
derived by computing the m step Arnoldi process for (M − γL)−1M with the same initial
vector as Section 2.2:

(M − γL)−1MVm − Fm = VmHm + hm+1,mvm+1e
T
m, (11)

MVm −Rm = (M − γL)VmHm

+ hm+1,m(M − γL)vm+1e
T
m, (12)

where Vm is the n×m matrix whose columns are orthonormal, and Hm is an m×m upper
Hessenberg matrix. Note that the Vm and Hm in equation (11) and (12) are different
matrices from equation (9). If Hm is invertible, φk(tM

−1L)M−1v is approximated as
follows:

φk(tM
−1L)M−1v ≈ βVmψk(H

−1
m)e1 =: um(t). (13)

The error of this approximation Em is represented using Cauchy’s integral formula:

Em = ψk(M
−1(M − γL))M−1v − βVmψk(H

−1
m)e1,

=
1

2πi

∫

Γ

ψk(λ)
(
(λI −M−1(M − γL))−1M−1v − βVm(λI −H−1

m)−1e1
)
dλ,

=
1

2πi

∫

Γ

ψk(λ)
(
(λM − (M − γL))−1v − βVm(λI −H−1

m)−1e1
)
dλ,

=
1

2πi

∫

Γ

ψk(λ)em dλ, (14)

where Γ is a contour enclosing the eigenvalues of M−1(M − γL) and H−1
m . βVm(λI −

H−1
m)−1e1 is the approximation of the solution of (λM−(M−γL))x = v, and em represents

the error of this approximation for the linear equation. The residual of this approximation
for the linear equation rm is represented as follows:

rm = v − (λM − (M − γL))βVm(λI −H−1
m)−1e1,

= v − βλMVm(λI −H−1
m)−1e1 + β

(
MVmH

−1
m

+ RmH
−1
m − hm+1,m(M − γL)vm+1e

T
mH

−1
m

)
(λI −H−1

m)−1e1,

= v − βMVm(λI −H−1
m)(λI −H−1

m)−1e1

5

KSTS/RR-16/002
May 6, 2016

+ (βRmH
−1
m − βhm+1,m(M − γL)vm+1e

T
mH

−1
m)(λI −H−1

m)−1e1,

= (βRmH
−1
m − βhm+1,m(M − γL)vm+1e

T
mH

−1
m)(λI −H−1

m)−1e1.

Replacing em with rm in equation (14), the generalized residual rreal
exp,m [11] of approximat-

ing φk(tM
−1L)M−1v is obtained:

rreal
exp,m = −βhm+1,m(M − γL)vm+1e

T
mH

−1
m ψk(H

−1
m)e1

+ βRmH
−1
m ψk(H

−1
m)e1. (15)

In order to evaluate equation (15), the following proposition is used:

Proposition 3.1 Let f(z) := βz−1ψ(z−1). If

W (Hm) ⊆ C− (16)

then, there exist K > 0 and 0 < λ < 1 which do not depend on m and satisfy
∣∣∣(f(Hm))i,j

∣∣∣ ≤ Kλi−j (i ≥ j). (17)

Proof: Because of the boundedness of W (Hm) and the assumption, there is a simply
connected compact Jordan region F which satisfies the condition W (Hm) ⊆ F ⊆ C−.
Let C̄ = C ∪ {∞}. Due to Riemann’s mapping theorem, there is a biholomorphism Φ :
C̄\F 7→ {w ∈ C̄; |w| > ρ} which satisfies the condition Φ(∞) = ∞, limz→∞(Φ(z)/z) = 1.
ρ > 0 is denoted as a logarithmic capacity of F . Due to Carathéodory’s Theorem [3], Φ

can be extended to C̄\F as a homeomorphism. Let Ψ be the inverse of Φ. Because of the
continuity of Ψ, there exists R0 > ρ such that the Jordan region of Ψ

({w ∈ C̄; |w| = R0}
)

does not include {0}. Let I(CR0) be this Jordan region. Since f is regular in I(CR0), and
Hm is an upper Hessenberg matrix, the proposition follows that of Benzi’s Theorem [1,
Theorem 11] ¤.

This proposition means that if condition (16) is satisfied, the entries of f(Hm) decays
exponentially along the diagonal. If ||rsys,m|| ≤ δ, (δ > 0), the upper bound of the first
term of equation (15) can be estimated as follows:

∣∣hm+1,m

(
eT

mf(Hm)e1
)∣∣ ||(M − γL)vm+1||

≤ |hm+1,m|
∣∣∣(f(Hm))m,1

∣∣∣ ||M − γL|| ||vm+1||,
≤ |hm+1,m|||(M − γL)||Kλm−1,

≤ ||(M − γL)−1Mvm − fm − h1,nv1 − · · · − hm,mvm|| ||M − γL||Kλm−1,

≤ (||(M − γL)−1Mvm||+ ||fm||)||M − γL||Kλm−1,

≤ (||M ||+ ||rsys,m||)||(M − γL)−1|| ||M − γL||Kλm−1,

≤ (||M ||+ δ)κ(M − γL)Kλm−1.

Because 0 < λ < 1, the first term of equation (15) becomes smaller as m becomes larger.

Remark 3.1 If Fm = O, W (Hm) satisfies the condition W (Hm) ⊆ W ((I−γM−1L)−1) ⊆
C−. Thus, if Hm does not satisfy condition (16), a smaller δ should be chosen to minimize
the error in solving the linear equation, or a smaller γ should be chosen to separate
W ((I − γM−1L)−1) from the origin in the complex plain.

6

KSTS/RR-16/002
May 6, 2016

In the second term of equation (15), the following theorem can be deduced:

Theorem 3.1 Let (f(Hm))i,j =: gm
i,j, and let tolphi > 0 be the convergence threshold for

computing the φ-function. If

||rsys,1|| ≤ tolphi

mmax||f(Hm)e1|| , (18)

||rsys,j|| ≤
|gm

1,1|
|gm

j−1,1|
||rsys,1|| (2 ≤ j ≤ m), (19)

then we have:
||Rmf(Hm)e1|| ≤ tolphi.

Proof: Let mmax be the largest number of iterations. Based on the above assumptions
(18), (19) and Proposition 3.1, the following upper bound is derived:

||Rmf(Hm)e1|| ≤ |gm
1,1| ||rsys,1||+ |gm

2,1| ||rsys,2||+ · · ·+ |gm
m,1|||rsys,m||,

≤ |gm
1,1| ||rsys,1||+ |gm

2,1|
|gm

1,1|
|gm

1,1|
||rsys,1||

+ |gm
3,1|
|gm

1,1|
|gm

2,1|
||rsys,1||+ · · ·+ |gm

m,1|
|gm

1,1|
|gm

m−1,1|
||rsys,1||, (∵ (19))

= |gm
1,1| ||rsys,1||

(
1 +

|gm
2,1|

|gm
1,1|

+
|gm

3,1|
|gm

2,1|
+ · · ·+ |gm

m,1|
|gm

m−1,1|
)
,

≤ ||f(Hm)e1|| ||rsys,1|| (1 + λ+ · · ·+ λ) , (∵ (17))

≤ ||f(Hm)e1|| ||rsys,1|| ·mmax,

≤ tolphi. (∵ (18)) ¤

Note that the right hand side of inequality (19) becomes larger as m becomes larger
because of Proposition 3.1. Thus, the theorem implies that the larger m becomes, the
solution of linear equation (M − γL)xm = Mvm becomes increasingly inexact, and the
computational cost decreases. However, if the linear equations are solved, satisfying
inequalities (18) and (19), the second term of equation (15) is no longer an issue. In this
scenario, the first term of equation (15), which we have defined as rcomp

phi,m, can be used as
the stopping criterion for the convergence of ISIAP.

Remark 3.2 For φ0, the following standard residual is available [5]:

rreal
phi,m = −β

γ
hm+1,m

(
eT

mH
−1
m ψ0(H

−1
m)e1

)
(I + γA)vm+1 +

β

γ
RmH

−1
m ψ0(H

−1
m)e1.

We can apply the same discussion for this residual.

Remark 3.3 In practical computation, the values depending on m in equations (18) and
(19) are unavailable in advance. Thus, the following approximation for computing equa-
tion (3) is used:

||f(Hm)e1|| ||rsys,1|| ≈ ||βV T
mM

−1(M − γL)Vmψk(H
−1
m)e1|| ||rsys,1||, (∵ (11))

7

KSTS/RR-16/002
May 6, 2016

Algorithm 1 Inexact Shift-invert Arnoldi method (ISIAP)

Require: L,M ∈ Rn×n, v ∈ Rn, t ∈ (0, T], γ > 0, δ > 0, tolphi > 0, mmax

Ensure: um(t) such that ||rreal
exp,m|| ≤ tolphi

β = ||M−1v||, v1 = M−1v/β
tolsys,1 = tolphi/(mmax||f i

m(i)||)
for m = 1, 2, · · · ,mmax do

Compute x̃ such that ||Mvm − (M − γL)x̃|| ≤ tolsys,m

for l = 1, 2, · · · ,m do
hl,m = x̃Tvl

x̃ = x̃− hl,mvk

end for
hm+1,m = ||x̃||, vm+1 = x̃/hm+1,m

f i+1
m = H−1

m ψk(H
−1
m)e1

r = |hm+1,m(f i+1
m)1|||(M − γL)vm+1||

tolsys,m+1 = min{tolsys,1|(f i+1
m)1|/|(f i+1

m)m|, δ}
if r ≤ tolphi then
m(i+ 1) = m
ym(i+1)(t) = Vm(i+1)ψk(H

−1
m(i+1))e1, break

end if
end for

≈ ||M−1(M − γL)y(t)|| ||rsys,1||, (∵ (13))

≈ ||M−1(M − γL)(v + L−1c)|| ||rsys,1||.
The matrices and vectors in the m dimensional Krylov subspace are approximated with
the ones in the original space. y(t) with y(0) are also approximated. For computing
equation (6) and (8) for the exponential integrator at the i+ 1-th step, these are replaced
with the ones in the largest Krylov subspace at the i-th step. Concerning inequality (19),
K and λ in inequality (17) do not depend on m, so the following approximation is used:

|gm
1,1| ≈ |gj−1

1,1 |, |gm
1,j−1| ≈ |gj−1

1,j−1| (2 ≤ j ≤ m).

In summary, we propose Algorithm 1 for φ-functions in equation (6) and (8), where (fm)j

is j’s element of fm. The algorithm for computing equation (3) can be obtained through
replacing the second line with tolsys,1 = tolphi/(mmax||M−1(M − γL)(v + L−1c)||).

4 Numerical experiments

In this section, a few typical numerical experiments were implemented in a collection of
problems to illustrate the effectiveness of the ISIAP. All numerical computations of these
tests were done with MATLAB 2015a on an Intel(R) Xeon(R) E3-1270 V2 processor with
a CPU of 3.50GHz with a Ubuntu14.04LTS operation system.

The Galerkin method with unstructured first order triangle elements and linear weight
functions, were used to discretize the problems. After the discretization, the BiCGStab
algorithm [19] with an ILU(0) preconditioner were applied to solve (M + γL)xm = Mvm,
or Mxm = Lvm in every iteration in the AP, SIAP, and ISIAP. For the AP and SIAP, the
linear equation was solved with a residual tolerance of 10−14.

8

KSTS/RR-16/002
May 6, 2016

Table 1: Example 1, Comparison of ISIAE, SIAE, and AE.

n Algorithm CPU time(sec) Iterations Relative error
1925 AE 0.30 106 2.1e− 09

SIAE 0.18 50 6.1e− 09
ISIAE 0.12 50 6.1e− 09

7561 AE 1.72 183 8.2e− 09
SIAE 0.53 54 1.9e− 07
ISIAE 0.34 54 1.9e− 07

29969 AE 15.44 339 3.3e− 08
SIAE 2.18 55 1.6e− 07
ISIAE 1.29 55 1.6e− 07

Example 1
The convection diffusion equation in region Ω = ((−1.5, 1.5) × (−1, 1)) ⊆ R2 is first
described as:

ρcv
∂u

∂t
= λ∆u−∇ · cu in (0, T]× Ω

u = 300 on {0} × Ω

−λ∂u
∂n

= α(u− 280) on (0, T]× ∂Ω1

−λ ∂u
∂nb

= −1 on (0, T]× ∂Ω2

where ∂Ω2 = {0.5} × [−1, 1], ∂Ω1 = ∂Ω \ ∂Ω1, c = [5 0], ρ = 1.29, cv = 1000, λ = 0.025,
α = 9.3. After the discretization, equation (2) with F (y) = Ly + c is obtained. The
solution is obtained through computing equation (3). Equation (3) is computed with
the AP, SIAP, and ISIAP, after which the CPU time, iteration numbers and relative
errors, are compared. Please refer to Table 1 for detailed results. The relative residual
tolerance tolphi for computing φ0(tM

−1L)(v + L−1c) is 10−8, and t = 300. rcomp
phi,m is

replaced with rcomp
phi,m

′ := rcomp
phi,m/||M−1(v + L−1c)|| to obtain relative residuals. For the

SIAP and the ISIAP, γ = 5 is used, and for the ISIAP, δ = 10−2 and mmax = 100
are used. The solutions with AP with a residual tolerance 10−14 are used as the exact
solution to estimate the relative errors. The results suggests that the larger n becomes,
the more iterations AP needs. This is because ||tM−1L|| becomes larger as n becomes
larger. On the other hand, the number of iterations the SIAP and the ISIAP needed
are almost the same in all n. Moreover, the ISIAP is the fastest of all three algorithms,
while there is no noticeable difference in terms of relative error. Figure 1 shows the
relationship between the number of iterations and the relative residuals. The real relative
residual rreal

phi,m
′
:= rreal

phi,m/||M−1(v+L−1c)|| decreased until it reached tolphi, but it stopped
decreasing after this point. It means that the linear equation can be solved efficiently at
each Arnoldi step. On the other hand, the computing residual rcomp

phi,m
′ decreased even after

it reached tolphi. Moreover, the behavior of rreal
phi,m

′
and rcomp

phi,m
′ are the same before they

reach tolphi. Thus, rcomp
phi,m

′ is appropriate for the stopping criterion. Table 2 shows the
residual tolerance for solving linear equations at each Arnoldi step for n = 29969. We can
see that the exactness needed to obtain a solution for the linear equation decreases as m
becomes larger. Figure 2 shows the solution computed with the ISIAP, n = 29969. The
exactness of the computing is illustrated here.

9

KSTS/RR-16/002
May 6, 2016

Table 2: Example 1, n = 29969: The residual tolerance tolsys,m for solving linear equations
at each Arnoldi step m.

m tolsys,m m tolsys,m m tolsys,m

1 7.4e− 11 26 7.8e− 10 51 1.5e− 04
2 5.2e− 10 27 1.1e− 09 52 6.4e− 05
3 4.9e− 10 28 2.1e− 09 53 5.2e− 04
4 5.3e− 10 29 6.2e− 09 54 1.4e− 04
5 5.4e− 10 30 3.8e− 08 55 1.5e− 03

Iterations
0 20 40 60 80 100

R
el

at
iv

e
re

si
du

al

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

||r real
exp,m

'||

||r
exp,m
comp '||

Figure 1: Example 1, n = 29969, Itera-
tions vs. ||rreal

phi,m
′|| and ||rcomp

phi,m
′||.

Figure 2: Example 1, n = 29969: Com-
putational solution.

Example 2
The second test problem is Burgers equation in region Ω = (0, 1)× (0, 1) ⊆ R2:

∂u

∂t
= u

∂u

∂x1

+ v
∂u

∂x2

+
1

Re
∆u,

∂v

∂t
= u

∂v

∂x1

+ v
∂v

∂x2

+
1

Re
∆v,

in (0, T]× Ω,

u = uanal(0, x)
v = vanal(0, x)

on {0} × Ω,

u = uanal(t, x)
v = vanal(t, x)

on (0, T]× ∂Ω,

where Re = 100, uanal = 3/4 − 1/(4 + 4eRe(−t−4x1+4x2)/32) and vanal = 3/4 + 1/(4 +
4eRe(−t−4x1+4x2)/32). The analytic solution of this problem is uanal and vanal [12]. After
the discretization, equation (2) is obtained with F (y) = Ly +Q(y)y + n(t). To show the
effectiveness of the exponential integrator, the solution computed with the Semi Implicit
Euler (SIE) and Exponential Integrator of s = 1, r = 1 (EI), are compared. The following
scheme is used for SIE:

B
yi+1 − yi

∆t
= Li+1yi+1 + n(ti)

(B −∆tLi+1)(yi+1 − yi) = F (yi), (20)

where Li = L + Q(yi−1). The linear equation (20) is solved with the BiCGStab with
an ILU(0) preconditioner. The same pseudo linear part Li is used for EI. Note that the

10

KSTS/RR-16/002
May 6, 2016

n
1234 5090 20674 83330

R
el

at
iv

e
E

rr
or

×10 -3

2

3

4

5

6

7

8

SIE
EI

Figure 3: Example 2, The relative error of
SIE and EI of ∆t = 10−1.

n
1,234 5,090 20674 83,330

R
el

at
iv

e
er

ro
r

×10 -4

2

3

4

5

6

7

8

9

10

11

12

SIE
EI

Figure 4: Example 2, The relative error of
SIE and EI of ∆t = 10−2.

Table 3: Example 2, Comparison of ISIAP, SIAP, and AP.

n Algorithm CPU time(sec) Relative error
1234 AP 1.62 1.1e− 03

SIAP 1.29 1.1e− 03
ISIAP 1.01 1.1e− 03

5090 AP 7.50 5.4e− 04
SIAP 6.95 5.4e− 04
ISIAP 4.71 5.4e− 04

20674 AP 42.44 3.4e− 04
SIAP 46.08 3.4e− 04
ISIAP 26.91 3.4e− 04

cost of computing the exact Jacobian matrix is prohibitively high. Because of this, the
approximation of the Jacobian-vector product is often used for EI [4]. Unfortunately,
using this approximation requires the evaluation of F for many points when the ISIAP
is used. For problems like equation (2), this evaluation is also costly. This suggests that
constructing the explicit pseudo linear part during each step is important for the effective
use of ISIAP. For this reason, the pseudo linear part Li = L + Q(yi−1) is set to have
one function evaluation for each step. Moreover, an ISIAP of γ = 10−2, mmax = 100,
δ = 10−2 are used to compute φ-functions in EI. A residual tolerance of 10−8 is chosen for
the φ-functions of the EI and the linear equation of SIE at each time step. Figures 3–4
show the relative errors at matrix dimension n = 1234, 5090, 20674, 83330 and time step
∆t = 10−1, 10−2. The accuracy of SIE worsens as n becomes larger. On the other hand,
that of EI improves as n becomes larger. Next, the ISIAP, SIAP, and AP are compared,
for computing φ-functions in the EI. The same γ, mmax, δ, and residual tolerance are used
for φ-functions. The time step is set to ∆t = 10−2. Table 3 shows the CPU time and the
relative error of each algorithm. ISIAP is the fastest for all n, while the relative error is
more or less the same for all algorithms.

Example 3
The next test problem explores using the reaction-diffusion Brusselator equation in region

11

KSTS/RR-16/002
May 6, 2016

Table 4: Example 3, Comparison of the ISIAE, SIAE, and AE.

n 5266 n 20898
α Algorithm CPU time(sec) α Algorithm CPU time(sec)

1/50 AP 11.75 1/50 AP 61.92
SIAP 10.69 SIAP 65.74
ISIAP 6.61 ISIAP 34.38

1/100 AP 8.89 1/100 AP 44.46
SIAP 8.48 SIAP 44.77
ISIAP 5.31 ISIAP 26.55

1/500 AP 6.16 1/500 AP 25.23
SIAP 5.02 SIAP 21.78
ISIAP 3.90 ISIAP 16.38

Ω = (−1, 1)× (−1, 1) ⊆ R2:

∂u

∂t
= B + u2v − (A+ 1)u+ α∆u

∂v

∂t
= Au− u2v + α∆v

in (0, T]× Ω

u = u0

v = 1
on {0} × Ω

u = 0
v = 0

on (0, T]× ∂Ω1

∂u

∂nb

= 0

∂u

∂nb

= 0

on (0, T]× ∂Ω2,

where A = B = 1, ∂Ω1 = [−1, 1] × {−1}, ∂Ω2 = ∂Ω \ ∂Ω1, and u0 is the {0, 2}-value
function shown in t = 0 in Figure 5. The discretization results in equation (2) with
F (y) = Ly + n(t). The solution of t = 5 is computed with the exponential integrator
of s = 1, r = 2, and Li = L. The AP, SIAP, and ISIAP are used to compute the φ-
functions in equation (8), after which the different CPU times at α = 1/50, 1/100, 1/500
are compared. Please see Table 4 for detailed results. For the SIAP and the ISIAP,
γ = 0.1, and for the ISIAP, δ = 10−2 and mmax = 100. The residual tolerance is 10−8 for
φ-functions. The time step ∆t = 5× 10−2 is used for all the algorithms. The SIAP is the
fastest. Figure 5 shows the solutions computed with ISIAP, n = 20898 and α = 1/500.
The exactness of the computational results can be seen here.

5 Conclusion

In this paper, the ISIAP method was proposed to compute φ-functions in the exponential
integrator. The ISIAP solves linear equations that appear in each Arnoldi step efficiently
while guaranteeing that the generalized residual remains lower than the arbitrary toler-
ance. It was shown that the exactness needed for solving a linear equation decreased as

12

KSTS/RR-16/002
May 6, 2016

Figure 5: Example 3, α = 1/500, n = 20898: Computational solution.

the Arnoldi progressed. Because the computational cost of each Arnoldi step decreased,
it was possible to compute the φ-function faster than when using the SIAP. Moreover, it
was shown that the stopping criterion for the convergence of SIAP was also valid for the
convergence of the ISIAP. In the future, it will be interesting to extend the ISIAP to the
rational Krylov method with more than one pole.

References

[1] Benzi, M. and Boito, P., Decay properties for functions of matrices over C∗-algebras.
Linear Algebra and its Applications, 456(1): 174–198, 2014. http://dx.doi.org/
10.1016/j.laa.2013.11.027

[2] Butcher, J. C. Numerical methods for ordinary differential equations, second edition.
John Wiley & Sons, Chichester, England, 2008.

[3] Carathéodory, C., Über die gegenseitige Beziehung der Ränder bei der konformen
Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis. Mathematische
Annalen, 73(2): 305–320, 1913.

[4] Carra, E. J., Turner, I. W. and Perré, P., A variable-stepsize Jacobian-free ex-
ponential integrator for simulating transport in heterogeneous porous media: Ap-

13

KSTS/RR-16/002
May 6, 2016

plication to wood drying. Journal of Computational Physics, 233: 66–82, 2013.
http://dx.doi.org/10.1016/j.jcp.2012.07.024

[5] Gang, W., Feng, T. and Yimin, W., An inexact shift-and-invert Arnoldi algorithm
for Toeplitz matrix exponential. Numerical Linear Algebra with Applications, 22(4):
777–792, 2015. http://dx.doi.org/10.1002/nla.1992

[6] Gallopoulos, E. and Saad, Y., Efficient solution of parabolic equations by Krylov
approximation methods. SIAM Journal on Scientific Statistics, 13(5):1236–1264,
1992. http://dx.doi.org/10.1137/0913071

[7] Hochbruck, M., A short course on exponential integrators. Series in Contemporary
Applied Mathematics, 17: 29–49, 2015.

[8] Hochbruck, M. and Ostermann, A., Exponential Runge-Kutta methods for parabolic
problems. Applied Numerical Mathematics, 53(2–4): 323–339, 2005. http://dx.doi.
org/10.1016/j.apnum.2004.08.005

[9] , Exponential integrators. Acta Numerica, 19:209–286, 2010. http://dx.
doi.org/10.1017/S0962492910000048

[10] Hochbruck, M. and Lubich, C., On Krylov subspace approximations to the matrix
exponential Operator. SIAM Journal on Numerical Analysis, 34(5): 1911–1925, 1997.
http://dx.doi.org/10.1137/S0036142995280572

[11] Hochbruck, M., Lubich, C. and Selhofer, H., Exponential integrators for large systems
of differential equations. SIAM Journal on Scientific Computing, 19(5):1552–1574,
1997. http://dx.doi.org/10.1137/S1064827595295337

[12] Hongqing, Z., Huazhong, S. and Meiyu, D., Numerical solutions of two-dimensional
Burgers’ equations by discrete Adomian decomposition method. Computers & Math-
ematics with Applications, 60(3): 840–848, 2010. http://dx.doi.org/10.1016/j.
camwa.2010.05.03

[13] Kamel, A. K., Numerical study of Fisher’s reaction-diffusion equation by the Sinc
collocation method. Journal of Computational and Applied Mathematics, 137(2):
245–255, 2001. http://dx.doi.org/10.1016/S0377-0427(01)00356-9

[14] Lee, S., Pang, H. and Sun, H., Shift-invert Arnoldi approximation to the Toeplitz
matrix exponential. SIAM Journal on Scientific Computing, 32(2): 774–792, 2010.
http://dx.doi.org/10.1137/090758064

[15] Moret, I. and Novati, P., RD-rational approximations of the matrix exponential.
BIT Numerical Mathematics, 44(3): 595–615, 2004. http://dx.doi.org/10.1023/
B:BITN.0000046805.27551.3b

[16] Moler, C. and Van Loan, C. F., Nineteen dubious ways to compute the exponential
of a matrix, Twenty-Five Years Later. SIAM Review, 45(1): 3–49, 2003. http:

//dx.doi.org/10.1137/S00361445024180

14

KSTS/RR-16/002
May 6, 2016

[17] Novati, P., Using the restricted-denominator rational Arnoldi method for exponential
Integrators. SIAM Journal on Matrix Analysis and Applications, 32(4): 1537–1558,
2011. http://dx.doi.org/10.1137/100814202

[18] Svoboda, Z., The convective-diffusion equation and its use in building physics. In-
ternational Journal on Architectural Science, 1(2): 68–79, 2000.

[19] Van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems. SlAM Journal on Scientific and
Statistical Computing, 13(2): 631–644, 1992. http://dx.doi.org/10.1137/0913035

15

KSTS/RR-16/002
May 6, 2016

Department of Mathematics
Faculty of Science and Technology

Keio University

Research Report

2015

[15/001] Shiro Ishikawa,
Linguistic interpretation of quantum mechanics: Quantum Language,
KSTS/RR-15/001, January 22, 2015

[15/002] Takuji Arai, Ryoichi Suzuki,
Local risk-minimization for Lévy markets,
KSTS/RR-15/002, February 2, 2015

[15/003] Kazuma Teramoto, Takashi Nodera,
Lanczos type method for computing PageRank,
KSTS/RR-15/003, March 9, 2015

[15/004] Yoichi Matsuo, Takashi Nodera,
Block symplectic Gram-Schmidt method,
KSTS/RR-15/004, March 9, 2015

[15/005] Yuto Yokota, Takashi Nodera,
The L-BFGS method for nonlinear GMRES acceleration,
KSTS/RR-15/005, March 9, 2015

[15/006] Takatoshi Nakamura, Takashi Nodera,
The flexible incomplete LU preconditioner for large nonsymmetric linear systems,
KSTS/RR-15/006, April 13, 2015

[15/007] Takuro Kutsukake, Takashi Nodera,
The deflated flexible GMRES with an approximate inverse preconditioner,
KSTS/RR-15/007, April 15, 2015

[15/008] Dai Togashi, Takashi Nodera,
The GKB-GCV method for solving the general form of the Tikhonov regularization,
KSTS/RR-15/008, September 29, 2015

[15/009] Shiro Ishikawa,
The projection postulate in the linguistic interpretation of quantum mechanics,
KSTS/RR-15/009, November 8, 2015

2016

[16/001] Shiro Ishikawa,
Linguistic interpretation of quantum mechanics: Quantum Language [Ver. 2],
KSTS/RR-16/001, January 8, 2016

[16/002] Yuka Hashimoto, Takashi Nodera,
Inexact shift-invert Arnoldi method for evolution equations,
KSTS/RR-16/002, May 6, 2016

KSTS/RR-16/002
May 6, 2016

	title_16-002
	list
	hn_anz_pap0620

