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Abstract

The W-GCV method is one of the iterative methods used to solve a large scale
standard form of the Tikhonov regularization, but it is also necessary for solving the
general form of the Tikhonov regularization. This paper proposes a new solver, called
GKB-GCV, which is an extension of the W-GCV by using the GSVD. Numerical
results are presented to show the usefulness of the GKB-GCV method in large scale
ill-posed problems.

Keywords: GKB, W-GCV, Tikhonov regularization, large scale ill-posed problem, Image
resolution.

1 Introduction

The stable approximate solution for a large scale ill-posed problem of the form:

xLS = argmin
x∈Rn

||b− Ax||22 (1)

is computed, where matrix A ∈ Rm×n, m ≥ n, is ill-conditioned. The right-hand vector
b ∈ Rm contains the following error:

b = Axexact + ε, (2)

where xexact ∈ Rn is the exact solution, and ε ∈ Rm is the unknown noise. A matrix of this
form sometimes comes from image resolutions. Because matrix A is ill-conditioned, xLS is
dependent on noise. The Tikhonov regularization [11] constructs stable approximations of
xexact by solving the least squares problem of the form:

xλ = argmin
x∈Rn

{||b− Ax||22 + λ2||Lx||22}, (3)

where L ∈ Rp×n is the regularization matrix, and λ > 0 is the regularization parameter.
The standard form of the Tikhonov regularization is when L = In, where In is the n × n
identity matrix. The general form of the Tikhonov regularization is when L 6= In. When
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the common space between the null spaces of A and L is the zero space, the regularization
problem (3) has a unique solution. To obtain a good approximate solution for (3), an
appropriate regularization parameter is required. There are many methods for determining
the regularization parameter without knowledge of the noise’s norm ||ε||2, [1, 6, 5].

Solving equation (3) and all the approach selecting parameters of the above is computable
when the GSVD for the pair of matrix (A, L) has been computed. One problem is that the
GSVD is not cost effective when the A or the L is a large scale matrix. For a large scale
problem, iterative methods are used, e.g. the LSQR, the CGLS, or some kind of Krylov
subspace method. Computing good approximate solutions by using iterative methods,
require the parameter λ a priori and a suitable stopping criteria. The hybrid method
solves this issue through combining the projection method with an inner regularization
method. For L = In, there are two hybrid methods, called GKB-FP [2] and W-GCV [4].
These methods do not require identifying the norm ||e||2, and contain a projection over
the Krylov subspace generated by the Golub-Kahan Bidiagonalization (GKB) method.
The difference between these two methods is in the approach in terms of determining the
regularization parameter. The GKB-FP uses the FP scheme, whereas the W-GCV uses
the weighed GCV.

Lampe et al. [8] and Reichel et al. [10] have proposed approaches for L 6= In by mini-
mizing the regularization problem over the generalized Krylov subspace. These approaches
determine the regularization parameter by using the knowledge of the norm ||ε||2. Bazán
et al. [3] proposed an approach without identifying the norm ε, which is created by the
extension of the GKB-FP method.

This paper focuses on the W-GCV method which is a solver for a large scale standard
form of the Tikhonov regularization which does not require identifying the norm of the
noise. This paper proposes applying an extension of the W-GCV to the general form of the
Tikhonov regularization. The approach of the W-GCV is based on the idea of the GKB-FP
and the idea of the AT-GCV [9]. The stopping criteria of the W-GCV and the AT-GCV
are also compared.

This paper is organized as follows: After the introduction, Section 2 summarizes the
framework of the classical W-GCV method. In Section 3, the extensions of the W-GCV
to the general form of the Tikhonov regularization, are described briefly. Following this, a
new scheme of GKB-GCV is proposed. In section 4, the usefulness of the GKB-GCV for
test problems, is illustrated. The conclusions and possible future studies are explored in
Section 5.

2 The W-GCV method

The W-GCV is one of the algorithms for the standard form of the Tikhonov regularization,
which is based on the GKB and weighted GCV. For the standard form, i.e. L = In, the
SVD of matrix A reduces the solution for equation (3) as follows:

xλ =
n∑

i=1

σiu
T
i b

σ2
i + λ2

vi with A = UΣV T

where each U = [u1, ..., um], V = [v1, ..., vn] has left and right singular vectors of A, and
Σ is the singular value of matrix A diagonal with σ1 ≥ ... ≥ σn ≥ 0, and 0 on the non-
diagonal. When we apply k < n GKB steps to matrix A with the initial vector b/||b||2,
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it results in two matrices Yk+1 = [y1, ..., yk+1] ∈ Rm×(k+1), and Wk = [w1, ..., wk] ∈ Rn×k

with orthonormal columns, and a lower bidiagonal matrix as follows.

Bk =




α1

β2 α2

β3
. . .
. . . αk

βk+1



∈ R(k+1)×k,

such that

β1Yk+1e1 = b = β1y1,

AWk = Yk+1Bk,

AT Yk+1 = WkB
T
k + αk+1wk+1e

T
k+1,

where ei denotes the i-th unit vector in Rk+1. Furthermore, columns of Wk are the or-
thonormal basis for the generalized Krylov subsupace Kk(A

T A, AT b). The standard form
of regularization, i.e. L = In, over the generated Krylov subspace is as follows:

x
(k)
λ = argmin

x∈Kk(AT A, ATb)

{||Ax− b||22 + λ2||x||22}. (4)

Since the columns of Wk are the orthonormal basis for the generated Krylov subsupace,
equation (4) is reduced as follows:

x
(k)
λ = Wky

(k)
λ , y

(k)
λ = argmin

y∈Rk

{||Bky − β1e1||22 + λ2||y||22}. (5)

This reduction technique is a good choice for large scale problems, because this approach
reduces the size of the least squares problem: (m + p)× n to (2k + 1)× k.

The GCV and weighted GCV methods determine the regularization parameter. The
GCV determines the regularization parameter by searching for the minimum point of func-
tion as follows:

G
A,b,In

(λ) =
||(Im − AA+

λ,I)b||22
(trace(Im − AA+

λ,In
))2

, (6)

where A+
λ,L = (AT A + λ2LT L)−1AT . Using the SVD for matrix A, equation (6) is written

as follows:

G
A,b,In

(λ) =

∑n
i=1

(
λ2uT

i b
σ2

i +λ2

)2

+
∑m

i=n+1(u
T
i b)2

(
m−∑n

i=1
σ2

i

σ2
i +λ2

)2 .the (7)

The approach of the GCV to the least squares problem is as follows:

GBk,β1e1,Ik
(λ) =

||(Im −Bk(Bk)
+
λ,I)β1e1||22

(trace(Ik+1 −Bk(Bk)
+
λ,Ik

))2
. (8)

However, the optimal parameter determined by equation (8) is unsuitable for equation (3).
Therefore, the weighted GCV for a reduced system of equation (5) is used instead:

G
(ω)
Bk,β1e1,Ik

(λ) =
||(Im −Bk(Bk)

+
λ,I)β1e1||22

(trace(Ik+1 − ωBk(Bk)
+
λ,Ik

))2
. (9)
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Algorithm 1 W-GCV

Require: A, b, ω > 0, tol
Ensure: Regularized solution x

(k)
λ∗

1. Apply GKB step to A with starting vector b at k = 0 and set k = 1.
2. Perform one more GKB step.
3. Compute SVD(Bk). Bk = UkΣkV

T
k .

4: Compute λk by weighted GCV.
5. If stopping criteria is satisfied do

λ∗ = λk.
else do

k ← k + 1
Update the weighted parameter ω
Go to step 2.

end if
6. Solve subproblem y

(k)
λ∗ .

7. Compute the regularized solution x
(k)
λ∗ .

When ω = 1, the weighted GCV is the same as the standard GCV method. Furthermore,
the approximate solution becomes smooth at ω > 1, and less smooth at ω < 1. Similarly,
the SVD for matrix Bk reduces equation (9) as follows:

G
(ω)
Bk,β1e1,Ik

(λ) =

β2
1

(
∑k

i=1

(
λ2uT

i(k)
e1

σ2
i(k)

+λ2

)2

+ (uT
k+1(k)e1)

2

)

(
k + 1− ω

∑k
i=1

σ2
i(k)

σ2
i(k)

+λ2

)2 . (10)

where Bk = UkΣkV
T
k . The SVD for Bk can be computed easily, because the size of Bk is

(k + 1)× k, and smaller than the size of matrix A. The stopping criterion is as follows:

|Ĝ(k + 1)− Ĝ(k)|
|Ĝ(1)| < tol (11)

where Ĝ(k) is an approximation for G
A,b,In

(λ) without a weighted parameter, and tol is
the stopping tolerance.

Ĝ(k) =
||(Im − A(Bk)

+
λ,IŪ

T
k+1)b||22

(trace(Im − A(Bk)
+
λ,IŪ

T
k+1))

2
,

=

β2
1

(
∑k

i=1

(
λ2

kuT
i(k)

e1

σ2
i(k)

+λ2
k

)2

+ (uT
k+1(k)e1)

2

)

(
m−∑k

i=1

σ2
i(k)

σ2
i(k)

+λ2
k

)2 .

The W-GCV method is summarized in Algorithm 1.
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3 GKB-GCV method

The purpose of this section is to identify a working extension of the W-GCV that can be
used with a general form of the Tikhonov regularization. The extension that is proposed
will be referred to as the GKB-GCV. In its general form, i.e. L 6= In, equation (3) is
reduced by the GKB as follows:

x
(k)
λ = Wky

(k)
λ , y

(k)
λ = argmin

y∈Rk

{||Bky − β1e1||22 + λ2||LWky||22}. (12)

In equation (12), the size of the least squares problem is (k + 1 + p)× k.
The same reduction to PROJ-L when solving the general form of the Tikhonov regular-

ization of Bazán [3] is used as follows:

y
(k)
λ = argmin

y∈Rk

{||Bky − β1e1||22 + λ||Rky||22}, (13)

where LWk = QkRk, using the QR factorization. For increasing k, the QR factorization
can be updated computing k + 1 elements by using the summation and a product of the
vectors. This approach can be used without limitation of dimension for L, i.e. for any
number of p, unlike the AT-GCV method which is one of the hybrid methods using the
same GCV. The next step was to consider change points in the GCV. One problem is that
when L 6= In, the SVD for matrix A can not reduce the number of the residual norm and
trace into the GCV function to form at equation (7) and (10). This problem was addressed
by using the GSVD for the pair of matrix (A,L), A = USZ−1 and L = V CZ−1, where
U = [u1, ..., um], V = [v1, ..., vp] are orthogonal, Z is nonsingular matrix , and each S, C
have s1 ≥ ... ≥ sn ≥ 0 and 0 ≤ c1 ≤ ... ≤ cn on its diagonals and 0 on its nondiagonals.
GSVD for the pair of matrix (A, L) reduces the GCV function as follows:

GA,b,L(λ) =

∑n
i=1

(
c2i λ2uT

i b
s2
i +c2i λ2

)2

+
∑m

i=n+1(u
T
i b)2

(
m−∑n

i=1
s2
i

s2
i +c2i λ2

)2 . (14)

Using a similar computation of G
(ω)
Bk,β1e1,Rk

(λ), the equation (14) was reduced as follows by
using GSVD(Bk, Rk):

G
(ω)
Bk,β1e1,Rk

(λ) =

β2
1

(
∑k

i=1

(
c2
i(k)

λ2uT
i(k)

e1

s2
i,(k)

+c2
i(k)

λ2

)2

+ (uT
k+1(k)e1)

2

)

(
k + 1− ω

∑k
i=1

s2
i(k)

s2
i(k)

+c2
i(k)

λ2

)2 .

where Bk = UkSkZ
−1
k , Rk = VkCkZ

−1
k . However, the determination of weight parameter ω

is difficult. The AT-GCV method applies a similar function to Ĝ(k) for the GCV function
at step k [9]:

Gk(λ) =
||(Im − A(Bk)

+
λ,Rk

ŪT
k+1)b||22

(trace(Im − A(Bk)
+
λ,Rk

ŪT
k+1))

2
,

=

β2
1

(
∑k

i=1

(
λ2

kuT
i(k)

e1

σ2
i(k)

+λ2
k

)2

+ (uT
k+1(k)e1)

2

)

(
m−∑k

i=1

σ2
i(k)

σ2
i(k)

+λ2
k

)2 .
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Algorithm 2 GKB-GCV

Require: A, b, L, tol
Ensure: Regularized solution x

(k)
λ∗

1. Apply GKB step to A with starting vector b at k = 0 and set k = 1.
2. Perform one more GKB step and update QR factorization of LWk.

LWk = QkRk.
3. Compute GSVD(Bk, Rk). Bk = UkSkZ

−1, Rk = VkCkZ
−1.

4: Compute minimized point λk of Gk(λ).
5. If stopping criteria is satisfied do

λ∗ = λk.
else do

k ← k + 1
Go to step 2.

end if
6. Solve subproblem y

(k)
λ∗ .

7. Compute the regularized solution x
(k)
λ∗ = Wky

(k)
λ .

This approach does not need to determine weight parameter ω. These two functions have
different purposes. The GCV function in W-GCV determines the appropriate regulariza-
tion parameter for the reduced equation (13), and the GCV function at AT-GCV approxi-
mates the appropriate regularization parameter for the original equation (3). Furthermore,
the AT-GCV uses the residual norm entered when computing the GCV function for the
stopping rule which is different from the W-GCV:

|(||r(k)
λk
||2 − ||r(k−1)

λk−1
||2)|

||r(k)
λk
||2

<
√

tol , (15)

where r
(k)
λk

= Bky
(k)
λk
− β1e1. Numerical experiments were used to illustrate the differences

between these stopping rules. The stopping rule for equation (11) to the GKB-GCV(Ĝ)
and the rule of equation (15) to GKB-GCV(r(k)) were noted. The stopping rule for GKB-
GCV(r(k)) was too severe compared to the stopping rule for GKB-GCV(W). Hence, to
create tolerance with regards to the stopping rule,

√
tol on GKB-GCV(r(k)) was used. In

addition, another stopping rule was used:

|(||r(k)
λk
||2 − ||r(k−1)

λk−1
||2)|

||r(1)
λ1
||2

< tol . (16)

The GKB-GCV was compactly summarized in Algorithm 2.

4 Numerical experiments

The PROJ-L method which is also one of the hybrid methods and an extension of GKB-
FP, was used for the purpose of comparision with the proposed method in this paper. The
2D image deblurring problem which is the procedure for recovering original images from
blurred images using noise from the form equation (2) was considered. Matrix A was the

6

KSTS/RR-15/008  
September 29, 2015



PROJ-L(p0 = 10) GKB-GCV(Ĝ) GKB-GCV(r(k)) GKB-GCV(r(1))
NL = 10−2

λ̄ 0.0819 6.82× 10−3 5.57× 10−3 3.25× 10−3

Ē 0.0821 0.0899 0.0848 0.0806
t̄(sec) 0.416 0.150 0.206 0.399
km(kM ) 27(32) 11(11) 15(15) 27(27)
NL = 10−3

λ̄ 7.11× 10−3 3.22× 10−3 4.90× 10−4 5.43× 10−4

Ē 0.0651 0.0891 0.0681 0.0693
t̄ (sec) 1.45 0.150 0.728 0.592
km(kM ) 94(102) 11(11) 47(48) 41(41)
NL = 10−4

λ̄ 1.16× 10−3 3.15× 10−3 1.41× 10−4 2.24× 10−4

Ē 0.0624 0.0891 0.0645 0.0675
t̄ (sec) 2.03 0.150 1.41 0.734
km(kM ) 124(138) 11(11) 82(88) 49(53)

Table 1: Results for the test problem rice64 with tol = 10−4

blurring operator, e.g. the Point Spread Function(PSF) matrix, and bexact = Axexact are
blurred images without any noise. All computations of numerical experiments were carried
out in MATLAB R2013b, and generated noise vectors ε by the MATLAB code randn and
NL = ||ε||2/||bexact||2. N × N images with N2 × N2 Gaussian PSF matrices as a blurring
operator were used. The Gaussian PSF was defined by A = (2πσ2)−1T ⊗ T , where σ
was the parameter used to control the width of the Gaussian PSF, and T was an N × N
symmetric banded toeplitz matrix with generators of the form:

z= [exp(-([0:band-1].^2)/(2*σ^2));zeros(1,N-band)]

from Kilmore et al. [7]. In our tests, we used σ = 2 and band = 16. A regularization
matrix lowering the gap between adjacent points was chosen:

L =

[
IN ⊗ L1

L1 ⊗ IN

]
, L1 =




1 −1
1 −1

. . . . . .

1 −1


 ∈ R

(N−1)×N .

4.1 Test problem 1: rice64

The interpolation data of MATLAB, rice image were used in test problem 1. Firstly, a
64× 64 sub-image of rice and rice64 were used to compare noise levels. A ∈ R4096×4096 and
L ∈ R8064×4096, and the condition number was cond(A) ≈ 2.14× 1016. These experiments
used ten noise vectors for each noise level: NL = 10−2, 10−3 and 10−4. To simplify the
notation, λ̄, t̄ and Ē denoted the average value of the regularization parameter, time and
relative error, and km(kM) denoted the minimum (maximum) number of steps required.
The computation of the FP method on PROJ-L started with p0 = 10 and µ = 1. The
stopping criteria was set to tol = 10−4.
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PROJ-L(p0 = 15) GKB-GCV(Ĝ) GKB-GCV(r(k)) GKB-GCV(r(1))
NL = 10−2

λ̄ 0.0874 1.22× 10−3 9.54× 10−4 5.37× 10−4

Ē 0.0831 0.0928 0.0830 0.0860
t̄ (sec) 3.38 0.906 1.90 4.89
km(kM ) 26(26) 7(7) 14(14) 36(38)
NL = 10−4

λ̄ 6.98× 10−3 6.82× 10−4 1.09× 10−4 1.09× 10−4

Ē 0.0659 0.0925 0.0698 0.0697
t̄ (sec) 21.0 0.925 6.18 6.25
km(kM ) 137(137) 7(7) 44(44) 45(45)

Table 2: Results for the test problem rice with tol = 10−4

All proposed methods converged faster than the existing method PROJ-L from Table 1.
Previous experiments suggested to us that PROJ-L converged comparatively faster in all of
the solvers for the general form of the Tikhonov regularization, and were dependent on the
noise level. The GKB-GCV(r(k)) and the GKB-GCV(r(1)) also were dependent on noise
level. The GKB-GCV(r(k)) had the same dependence as the PROJ-L. The dependence
of the GKB-GCV(r(1)) was smaller than that of the GKB-GCV(r(k)). The results for the
GKB-GCV(r(1)) were not much different for NL = 10−2 and 10−3. Regarding numerical
precision, all results of the proposed methods were worse than PROJ-L, except for the
results of the GKB-GCV(r(1)) for NL = 10−2. Because the GKB-GCV(Ĝ) is independent
of noise levels unlike the other methods, the relative error did not decrease with the noise
level. The relative error of the GKB-GCV(Ĝ) was about 1.5 times as more than the
PROJ-L when the noise level was small.

4.2 Test problem 2: rice

The next step was to create a 256 × 256 original image of rice. A ∈ R65536×65536, L ∈
R130560×65536 and cond(A) ≈ 3.40 × 1016. The same experiment was performed using
NL = 10−2 and 10−3 this time. The same notation was used for the case of rice64. The
computation of the FP method on PROJ-L started with p0 = 15 and µ = 1, and tol = 10−4,
for the stopping criteria.

Similar results were obtained for rice64, with the exception of GKB-GCV(r(1)) for NL =
10−2. Results from the GKB-GCV(r(1)) for NL = 10−2 was slow with less numerical
accuracy than the GKB-GCV(r(k)) and the PROJ-L. One of the reason for this, is that
hybrid methods do not have properties of monotone convergence. The stopping rules of
hybrid methods must not be too severe or too easy. An easy approach for solving this
problem was employed, which used two stopping rules. Specifically, both equations (15)
and (16) were applied to the stopping rule. Please see Figure 1 for the original image,
deblurred image, and resolution images.
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original image(xexact) deblurred image(bexact) PROJ-L

GKB-GCV(Ĝ) GKB-GCV(r(k)) GKB-GCV(r(1))

Figure 1: Resolution image of rice with NL = 10−2

5 Conclusion

The GKB-GCV is a new solver for the general form of the Tikhonov regularization problem;
it is based on the W-GCV. The GKB-GCV was compared to the PROJ-L and the GKB-
GCV, using different stopping rules by using two image deblurring problems. The results of
the numerical experiments showed that each of the proposed methods had good advantages.
The GKB-GCV(Ĝ) was the fastest, although its numerical precision was the worst in all
scenarios. This was because the GKB-GCV(Ĝ) does not depend on noise level. Secondly,
the GKB-GCV(r(k)) was very fast, but had less accuracy compared to the PROJ-L for
all noise levels, while it had the the same dependency on noise levels to PROJ-L. Lastly,
the GKB-GCV(r(1)) had a smaller dependence on noise level than GKB-GCV(r(k)) and
PROJ-L.
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KSTS/RR-14/002, March 12, 2014

2015

[15/001] Shiro Ishikawa,
Linguistic interpretation of quantum mechanics: Quantum Language,
KSTS/RR-15/001, January 22, 2015

[15/002] Takuji Arai, Ryoichi Suzuki,
Local risk-minimization for Lévy markets,
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