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Abstract

This is a study of a preconditioning technique, based on an approximate inverse,
which can be considered to be a type of a flexible GMRES (FGMRES). The FGMRES
plays an important role in modern iterative solvers for large sparse nonsymmetric lin-
ear systems of equations. Morgan [SIAM J. Sci. Comput., Vol. 24, pp. 20–37, 2002]
developed a new method that deflates the smallest eigenvalues and improves eigen-
value distribution. Several preconditioning methods have been exploited in numerous
papers. This study explores a new deflated FGMRES which uses an approximate in-
verse preconditioner. The results of the numerical experiments for test matrices were
tabulated to show that this approach was effective and robust in solving a wide range
of problems.
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1 Introduction 2

1 Introduction

For solving a large sparse nonsymmetric linear system of equations:

Ax = b, x ∈ Rn. (1)

The GMRES [13] is now a standard Krylov subspace iterative method. The GMRES uses
the Arnoldi process to build an orthonormal basis for a Krylov subspace given by:

Km(A, r0) = span{r0, Ar0, . . . , A
m−1r0}, (2)

where r0 (= b − Ax0) is a initial residual vector, and x0 is an initial guess to the solution
of equation (1). If exact arithmetic is used, the GMRES will converge at most n iterations.
Since the GMRES is expensive both in terms of computation and in its memory require-
ments, a restart version is often used, in which a Krylov subspace is restricted to be a fixed
dimension m. The Arnoldi process is restarted using the last iterate xm as a new initial
approximation for a restart. Unfortunately, it can be very difficult to select m a priori. If
too small a value is selected, its convergence may stall. It is known that a small eigenvalue
of A slows down the convergence. Several adaptive techniques of the restart were devel-
oped in a number of papers [15, 8, 17]. Recent works on the convergence behavior of the
GMRES relates to the superlinear convergence of Ritz values [16]. Basically, convergence
occurs as if at each iteration of the GMRES the next smallest eigenvalue in the magnitude
is removed from the system of linear equation. Unfortunately, if the GMRES(m) is used,
the information of the smallest eigenvalues and corresponding eigenvectors are lost at each
restart and as a result, the superlinear convergence may be lost. For this reason, different
methods of reducing the negative effects of a restart were explored.

Recently, several schemes that improve the convergence of the GMRES(m) were de-
veloped successfully. One of the new techniques explored in this paper employs defla-
tion [6, 3, 4]. This method uses eigenvalues information at the restart mainly to improve
the convergence of the GMRES(m). Deflation is defined as when an invariant subspace
corresponding to the smallest eigenvalues is approximated, and the influence on the com-
ponent of the residual vector is eliminated.

This new proposal is a modification of techniques derived from the Deflated FGMRES [2]
and Deflated GMRES(m, k, l) [8, 14]. This new algorithm is referred to as the Deflated
FGMRES with an approximate inverse of the Sherman-Morrison formula (AISM) precon-
ditioner.

In section 2, the Deflated GMRES is explored briefly. In section 3, the approximate
inverse preconditioner which is based on the Sherman-Morrison formula is discussed. In
section 4, a new deflated FGMRES with an AISM preconditioner is explored. In section
5, the results of numerical experiments for the test matrices are tabulated. The conclusion
follows.

2 Deflated GMRES(m, k)

Morgan [6] developed the Deflated GMRES(m, k) in 2002. The Deflated GMRES(m, k) is
normally used to solve large sparse nonsymmetric linear systems [6, 3, 4, 7]. The Deflated
GMRES has two parameters m and k, where m is the maximum dimension of the subspace
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2 Deflated GMRES(m, k) 3

Algorithm 1 GMRES-DR(m, k)

1: Input: a coefficient matrix A
2: Select an initial guess x0 , parameter m and k
3: set r0 = b − Ax0 and β = ‖r0‖
4: v1 = r0/‖r0‖
5: Generate Vm and Hm with Arnoldi method
6: Solve min‖c − Hmy‖ for y

m
, where c = β e1

7: xm = x0 + Vnym, rm = b − Axm

8: Compute the k smallest eigenpairs (θ̃i,g̃i
) of Hm + β2 H−T

m
emeT

m

9: Set Qk+1 from Gk = [g1 g2 . . . gk]
10: Set V new

k+1
= Vk+1Qk+1 and H

new

k
= QH

k+1
HmQk

11: Extend V new
k+1

and H
new

k
to Vm+1 and Hm with Arnoldi method

12: if ‖rm‖ < tol then
13: stop iteration
14: end if
15: set x0 = xm

16: Go to line 3

and k is the number of eigenvectors used at the restart. Firstly, Vm and Hm are computed
in the same manner as the GMRES(m). Then, let (θi, gi) be the harmonic Ritz pairs.
These are the pairs of eigenvalues and eigenvectors of matrix Hm + β2H−T

m
emeT

m
, where

β = ‖r0‖ and em is a vector where the m-th element is 1 and the other is 0. The next
step was to select k eigenvectors corresponding to the k smallest eigenvalues. Here, we
have an m harmonic Ritz pair and the eigenvalues θ1, . . . , θk (θ1 ≤ θ2 ≤ · · · ≤ θk), and the
corresponding eigenvectors g1, g2, . . . , gk are selected. Let Gk be a matrix such that:

Gk = (g1, g2, . . . , gk
), (3)

and generating Gk+1 such that,

Gk+1 =

((

Gk

01×k

)

, c − Hmy

)

. (4)

Using Qk+1 by QR factorization, Vk+1 and Hk are generated, where Vk+1 is n by k + 1
matrix and Hk is k by k matrix. They are not large enough to be used in the least
squares method. Therefore, it becomes necessary to extend Vk+1 and Hk to Vm and Hm

by the Arnoldi method that starts at the k + 1-th iteration. This method is called the
GMRES-DR(m, k), which is shown in Algorithm 1.

2.1 AISM preconditioner

Preconditioner M can reduce the number of iterations, because the properties of the matrix
is improved by preconditioning. Right preconditioning is done through multiplying M from
the right of A in the left hand side of equation (5) such that:

AMy = b, (5)

x = My.
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3 Deflated FGMRES 4

Algorithm 2 Approximate Inverse based on Sherman-Morrison formula (AISM)

1: Input a matix A = [a1, a2, . . . , an] and a parameter s
2: for k = 1 : n do
3: Set xk = ek, yk = (ak − s ek)

T

4: uk = xk

5: vk = yk

6: for i = 1 : k − 1 do

7: uk = uk −
(vi)k

s ri

ui;

8: vk = vk −
yk

T ui

s ri

vi;

9: end for
10: for i = 1 : n do
11: if |(uk)i| < tolU dropoff (uk)i

12: if |(vk)i| < tolV dropoff (vk)i

13: end for
14: rk = 1 + (vk)k/s
15: end for
16: Define U , V and Ω = diag(r1, r2, . . . , rn)
17: Set M = s−1 In − s−2 UΩ−1V T

In general, the preconditioning matrix is often chosen such that AM = In where In is
the identity matrix. In other words, M will be selected to M ≈ A−1. Therefore, an
approximate inverse matrix of A is often calculated and used as a right preconditioning
matrix M . One way of calculating an approximate inverse matrix is by using the Sherman-
Morrison formula [1]. This method called the Approximate Inverse based on the Sherman-
Morrison formula, will be referred to as the AISM method from hereforth. In Algorithm 2,
the AISM method was used for computing an approximate inverse matrix. An efficient
parallel implementation of this method was given in papers [10, 18]. In this scenario, s
was a parameter of a scalar and often used as s = 1.5‖A‖∞ ([1, 10, 18]). The non-zero
elements were dropped off by the threshold value tol for keeping U and V a sparse matrix.
By dropping off the non-zero elements, both computation costs and memory requirements
were saved. Through the AISM method, the approximate inverse matrix M was obtained
such that:

A−1 ≈ s−1In − s−2UΩ−1V T , (6)

where Ω = diag(λ1, λ2, . . . , λn).

3 Deflated FGMRES

The Deflated FGMRES was first proposed by Giraud et al. [2]. Please refer to this paper
for additional details. If preconditioner M is an approximate inverse matrix of A, then the
preconditioned matrix AM is clearly close to identity matrix In. Because all the eigenvalues
of the identity matrix is 1, it is thought that most eigenvalues of AM gather around 1.
Please see Figure 1 for further details. The eigenvalue distribution of the original matrix A
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Figure 1: Sherman3 - Distribution of
eigenvalues of original coeffi-
cient matrix A
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Figure 2: Sherman3 - Distribution of
eigenvalues of AM using
AISM preconditioner

named sherman3 was obtained from the Matrix Market [5]. Figure 2 shows the eigenvalue
distribution of the preconditioned matrix AM . In Figure 2, eigenvalues were close to 1.
Focusing on this point, in the deflation method, the eigenvalues away from the cluster were
selected, instead of the smallest eigenvalues.

The deflation method retains the k eigenvectors associated with eigenvalues such as
|1 − λi| of the largest magnitude. With this choice, eigenvalues located away from a
cluster around the eigenvalue of the perfect preconditioned operator AM with M = A−1

were targeted. This possibly allowed the simultaneous deflation of eigenvalues of both
the smallest and largest magnitude. This method is called the GMRES-DRC. In general,
the GMRES-DRC needs another preconditioner, because numerous eigenvalues must be
clustered around 1, applying good preconditioning techniques. For efficient preconditioning,
the aforementioned AISM method can be applied. The Flexible GMRES-DRC with an
AISM preconditioner is given in Algorithm 3.

4 Numerical experiments

In this section, numerical results will be presented comparing the two methods described
in the previous sections on the two test problems. All computations of the numerical ex-
periments were done on a PC with 2.93GHz and an 8 Gbyte main memory using MATLAB
R2012b. These results were tabulated to illustrate the efficiency of the proposed method.

In these experiments, x0 = 0 for an initial approximate solution, and a solution xi is
considered to be converged if the residual norm satisfies the following convergence criterion:

‖ri‖2/‖b‖2 < 1.0 × 10−12, (7)

where ri is the residual vector of the i-th iteration.

4.1 Example 1

For the first example, matrix Sherman3 [5] taken from an oil reservoir simulation was
used. It was 5005 by 5005 and had 20033 non-zero elements and its condition number was
6.90 × 1016. In producing an approximate inverse matrix through the AISM method, the
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4 Numerical experiments 6

Algorithm 3 Flexible GMRES-DRC(m, k) with AISM preconditioner

1: Input: a coefficient matrix A
2: Select an initial guess x0 , parameter m and k
3: Compute preconditioner M with AISM method
4: set r0 = b − Ax0 and β = ‖r0‖
5: v1 = r0/‖r0‖
6: Generate Vm and Hm with Flexible Arnoldi method
7: Solve min‖c − Hmy‖ for ym, where c = β e1

8: xm = x0 + Vnym
, rm = b − Axm

9: Compute the k eigenpairs away from Cluster (θ̃i, g̃i) of Hm + β2 H−T

m
emeT

m

10: Set Qk+1 from Gk = [g1, g2, . . . , gk
]

11: Set V new
k+1

= Vk+1Qk+1 and H
new

k
= QH

k+1
HmQk

12: Extend V new
k+1

and H
new

k
to Vm+1 and Hm with Arnoldi method

13: if ‖rm‖ < tol then
14: stop iteration
15: end if
16: set x0 = xm

17: Go to line 4

Table 1: Example 1 - Nonzero elements and computation time for AISM

AIMS preconditioner FGMRES
tol nnzU nnzV time (sec) iter time (sec) Tct (sec)

– 3167626 4178274 62.0 — — —
0.001 1304243 3183793 39.7 3 0.5 40.2
0.010 205002 2321427 26.8 5 0.7 27.5
0.100 20890 1142553 20.8 30 1.6 22.4
0.200 11184 775633 2.1 57 20.4 22.5
0.500 6574 584420 2.1 74 18.8 20.9
1.000 5005 517114 18.1 — — —

threshold parameter tol was changed by dropping off the non zero elements of matrices
U and V , and the effect on the convergence of residual norms in Table 1 were observed.
In this table, “—” indicates that dropping off should not be implemented, and time(sec)
is necessary to produce an approximate inverse matrix by the AISM method. Both nnzU
and nnzV indicate the number of non-zero element of matrices U and V , and time(sec)
is the computation time for arriving at the approximate solution without producing a
preconditioning matrix. Iter refers to the iteration numbers of algorithms, and “—” shows
that the algorithm was not able to converge. It can be seen that the total computation
time (Tct) for tol = 0.5 was the smallest. Figure 3 shows a comparison of the iteration
numbers for FGMRES(m), FGMRES-DR(m, k) and FGMRES-DRC(m, k). The AISM
preconditioner with parameter tol = 0.5 was used. In Figure 3, it can be seen that the
iteration number of FGMRES-DRC(m, k) with the AISM preconditioner was the smallest.
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5 Conclusion 7

Figure 3: Example 1 - The behavior of residual norms vs iterations for
each Deflated FGMRES

Table 2: Example 2 - Iterations and Computation Time (sec) for the Deflated
FGMRES with preconditioner

preconditioner
method none ILU(1) AISM

iter time (sec) iter time (sec) iter time (sec)

FGMRES(10) 14266 73.9 3167 72.3 1644 19.9
FGMRES-DR(10,1) 15927 156.8 345 7.6 192 3.0

FGMRES-DRC(10,1) 17201 168.8 835 17.1 165 2.6

4.2 Example 2

The second example is the Sherman5, which is an oil reservoir simulation challenge matrix
from the Matrix Market (Harwell-Boeing Collection) [5]. This problem has a 3312 × 3312
real nonsymmetric matrix and the condition number is 3.9 × 105. Figure 4 shows the
distribution of eigenvalues of the original matrix A. The distribution of eigenvalues of a
preconditioned matrix AM is also displayed in Figure 5. It presents both positive and
negative separated real eigenvalues and a cluster of eigenvalues around (1, 0). Table 2
compares the number of successful convergence cases for the different preconditioners al-
lowed. Two preconditioners are employed. Overall, it was observed that the Deflated
FGMRES-DRC(10, 1) with the AISM preconditioner converged significantly faster than
other FGMRES solvers.

5 Conclusion

The development of efficient and reliable approximate inverse preconditioners is important
for the successful application of scientific computation for solving large and sparse sets of
linear systems of equations.

Numerical experiments show that the proposed method, FGMRES-DRC, reduced the
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Figure 4: Example 2 - Distribution of
the eigenvalues of the origi-
nal coefficient matrix A

Figure 5: Example 2 - Distribution of
the eigenvalues of AM using
the AISM preconditioner

numbers of iterations and sped up the convergence of the residual. However, it should
be noted that a heuristic estimate of most parameters of the Flexible GMRES-DRC are
needed.

Future work is necessary to obtain more experimental results which can find a solution
for possibly selecting these appropriate parameters automatically.

References
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