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Abstract

The ILU factorization is one of the most popular preconditioners for the Krylov
subspace method, alongside the GMRES. Properties of the preconditioner derived
from the ILU factorization are relayed onto the dropping rules. Recently, Zhang et
al. [Numer. Linear. Algebra. Appl., Vol. 19, pp. 555–569, 2011] proposed a Flexible
incomplete Cholesky (IC) factorization for symmetric linear systems. This paper is
a study of the extension of the IC factorization to the nonsymmetric case. The new
algorithm is called the Crout version of the flexible ILU factorization, and attempts
to reduce the number of nonzero elements in the preconditioner and computation
time during the GMRES iterations. Numerical results show that our approach is
effective and useful.
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1 Introduction 2

1 Introduction

The preconditioned iterative methods for nonsymmetric linear systems [3, 6, 10, 12] are
effective procedures for solving large and sparse linear systems of equations:

Ax = b, (1)

arises from the discretization of elliptic partial differential equations. Two good precon-
ditioners are known, such as the incomplete LU factorization(ILU) [1, 5, 9, 15] and the
modified incomplete LU factorization [1], each of which makes use of an approximate fac-
torization of the coefficient matrix into the product of a sparse lower triangular matrix
L, and a sparse upper triangular matrix U . It has been observed on an empirical ba-
sis that it generates a linear system with eigenvalues that are mostly clustered near 1.
The effectiveness of both techniques for nonsymmetric linear systems of equations derived
from non-self-adjoint elliptic boundary value problems, has been demonstrated in many
numerical experiments [4, 5, 6, 10, 15].

There are now numerous Krylov subspace methods for solving nonsymmetric linear
systems of equations, e.g. the GMRES, the Bi-CGSTAB, the QMR and the IDR(s)
([11, 13, 14]). In order to be effective, these methods must be combined with a good
preconditioner, and it is generally agreed that the choice of the preconditioner is even more
critical than the choice of the Krylov subspace iterative methods. The GMRES [8] is useful
for a thorough treatment of preconditioned iterative procedures. The preconditioning of
a coefficient matrix is known as one of the methods for improving the convergence of the
GMRES. The preconditioner of the ILU factorization applied to the GMRES is popular
and is considered to be one of the fundamental preconditioners in the solution of large non-
symmetric linear systems of equations. The search for effective preconditioners is an active
research topic in scientific computing. Several potentially successful methods of the ILU
factorizations have been recently proposed [15]. The performance of the ILU factorization
often is dependent on the dropping method to reduce fill-ins. There are some dropping
strategies, for example, the dual dropping strategy which makes it possible to determine the
sparsity of incomplete factorization preconditioners by two fill-in control parameters: (i) τ :
dropping tolerance and (ii) p: the number of p largest nonzero elements in the magnitude
are kept. Recently, Zhang et al. [15] proposed using parameter q to control the number
of nonzero elements in preconditioner L, in the IC factorization. Their proposed scheme
was called IC factorization with a multi-parameter strategy. The parallel implementation
of the ILU factorization is investigated in [6, 7].

In this paper, the general framework of the dropping strategy in an ILU factorization
will be proposed. Further to this, a method for overcoming the shortcomings that a cal-
culating norm is needed to use diagonal elements, will be explored. In section 2, the most
promising approach for preconditioning will be discussed. In section 3, two flexible ILU
factorizations will be proposed and explored. In section 4, the results of extensive numerical
experimentations will be tabulated. The conclusion follows.

2 Preconditioning

The preconditioner M can reduce the number of iterations, because the properties of this
coefficient matrix can be improved through preconditioning [1]. One possibility is to solve
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2 Preconditioning 3

Algorithm 1 Crout Version of the ILU Factorization

1: for k = 1 : n do
2: Initialize row z: z1:k−1 = 0, zk,k:n = ak.k:n

3: for { i | 1 ≤ i ≤ k − 1 and lki 6= 0 } do
4: zk:n = zk:n − lki ∗ ui,k:n

5: end for
6: Initialize column w: w1:k = 0, wk+1:n = ak+1:n,k

7: for {i | 1 ≤ i ≤ k − 1 and uik 6= 0} do
8: wk+1:n = zk+1:n − uik ∗ lk+1:n,i

9: end for
10: Apply a dropping rule to row z

11: Apply a dropping rule to column w

12: uk,: = z

13: l:,k = w/ukk, lkk = 1
14: end for

the left preconditioned system of the equation:

M−1Ax = M−1
b. (2)

In general, the preconditioning matrix M is often chosen so that cond(M−1A) � cond(A),
where cond(Z) is the condition number of matrix Z. A remedy exists when the precondi-
tioner M is available in factored form, e.g., as an incomplete LU factorization M = LU ,
where L is a lower triangular matrix and U is an upper triangular matrix.

2.1 ILU factorization

The ILU factorization is an LU factorization with reducing fill-ins. The ILU factorization
factorizes coefficient matrix A as follows:

A = LU + R, (3)

where L is a lower triangular matrix, U is an upper triangular matrix, and R is an error
matrix. The Crout version of the ILU factorization [15] is presented in Algorithm 1. The
dual dropping strategy was used in line 10 and 11. For a less complex problem, the effect
of the dropping rule is not as important. For large scale problems, however, it is critically
important. The number of iterations appears to be sensitive to the dropping tolerance.
The basic idea of the dual dropping strategy is constituted by the following two steps:

1. Any elements of L or U whose magnitude is less than tolerance τ is dropped:

|uij| ≤ τ × ‖z‖ ⇒ uij = 0, or |lij| ≤ τ × ‖w‖ ⇒ lij = 0

where τ is a dropping tolerance.

2. In the k-th column of L, the number of the p largest nonzero elements in the mag-
nitude are kept. Similarly, the number of the p largest nonzero elements in the k-th
row of U , which includes the diagonal elements, are kept. This controls the total
memory storage that can be used by the preconditioner.
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3 Flexible ILU factorization 4

To study parameter p, a new dropping strategy was proposed which changes p by some pa-
rameters during the computation of the preconditioner. A dynamically changed parameter
q according to the magnitude of elements in the preconditioner L , where q is the number of
nonzero elements kept in the corresponding column of L, was introduced for this exercise.

3 Flexible ILU factorization

Zhang [15] proposed a flexible IC factorization which changed parameter p according to
the norm of the already computed elements of preconditioner L. This idea was explored
to propose a flexible ILU factorization with a new norm, and this will be referred to as the
n-flexible ILU. In the n-flexible ILU factorization, q, the number of nonzero elements kept
in each column of L and each row of U , is determined as follows:

q =





max

(
pmin, p +

[
c log10

‖lj‖

gj

])
, (‖lj‖ < gj),

min

(
pmax, p +

[
c log10

‖lj‖

gj

])
, (‖lj‖ ≥ gj),

(4)

where parameter p is selected as a basic parameter to control the number of nonzero
elements in the preconditioner pmin and pmax that indicate the range of the number of
nonzero elements kept in each column of L and row of U . Moreover, parameter c is a

proportion value and gj =
(∑j

k=1
‖lk‖

)
/j.

The nonzero elements of L were compared with the nonzero elements of L̃, where L was
generated by a fixed ILU factorization and L̃ is generated by n-flexible ILU factorization,
respectively:

nnz(L) ≈ np,

nnz(L̃) ≈ np +
n∑

j=1

[
c log10

‖lj‖

gj

]
.

This results in the following relation:

n∑

j=1

[
c log10

‖lj‖

gj

]
< 0 ⇒ nnz(L) > nnz(L̃). (5)

The next step was to consider the logarithmic function f(x) = log10 x. This function
satisfied the following relation: (i) f ′(x) is a monotonic decreasing function, and (ii) f(1) =
0. From these properties, it was not difficult to prove the following inequality:

log10(1 + d) + log10(1 − d) < 0 (0 < d < 1). (6)

Assuming that ‖lj‖/gj is a symmetric distribution to 1,
∑

[c log10 ‖lj‖/gj] < 0 and nnz(L) >

nnz(L̃), were obtained. The upper matrix U also satisfied the same relation. It was con-
cluded that the n-flexible ILU factorization reduced the nonzero elements of the precondi-
tioner. The n-flexible ILU factorization is characterized by the shortcoming that it needed
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4 Numerical experiments 5

to calculate the norm during each iteration and as a result, increased the computation
time. To overcome this issue, diagonal elements were used instead of ‖lj‖/gj and a diag-
onal flexible ILU factorization was proposed called the d-flexible ILU. The d-flexible ILU
factorization determined the number of nonzero elements as follows:

q =





max

(
pmin, p +

[
c log10

|dj|

g̃j

] )
, (|dj| < g̃j),

min

(
pmax, p +

[
c log10

|dj|

g̃j

] )
, (|dj| ≥ g̃j),

(7)

where g̃j =
(∑j

k=1
|dk|

)
/j. In the next section, it will be verified that the d-flexible ILU

factorization is suitable for practical use.

4 Numerical experiments

Numerical experiments were implemented, based on ITSOL packages [11]. In this section,
the numerical results were used to compare the following methods for solving two examples:
the d-flexible ILU, the d-fixed ILU (ILUC) and the n-flexible ILU. All numerical experi-
ments were done on the DELL Precision T1700 with 3.50GHz and a 16GB main memory,
using C language. In these experiments, x0 = 0 for an initial approximate solution, and
solution xi is considered to have converged if the norm of the residual, ‖ri‖ = ‖b − Ax‖,
satisfied the following convergence criterion:

‖ri‖/‖r0‖ < 1.0 × 10−12 (8)

where ri is the residual vector of the i-th iteration. We denoted the computation time of
the factorization as CPT, the computation time of GMRES as CGT, the total computing
time as the Total, the rational of nonzero elements of L and U to nonzero elements of
original coefficient matrix A as nz(LU)/nz(A), and the iterations of GMRES as Its. These
result were used to illustrate the efficiency of the flexible ILU preconditioning.

4.1 Example 1

The first matrix problem arising from the finite difference discretization of the boundary
value problem of the two-dimensional partial differential equation with Dirichlet boundary
conditions in [4] is calculated as follows:

−∆u + D

{
(y −

1

3
)ux + (x −

1

3
)(x −

2

3
)uy

}
− 43π2u

= G(x, y) on Ω = [0, 1]2, (9)

where u(x, y) = 1 + xy on ∂Ω. The operator was discretized using a five point centered
finite difference scheme to discretize on a uniform grid with a mesh spacing h = 1/128 in
either direction. The parameters were set as follows: p = 15, pmin = p−0.2p, pmax = p+0.2p
and c = 8. Table 1 shows that in each example, the d-flexible ILU factorization reduces the
nonzero elements of the preconditioning matrix without increasing total computation time.
The results show that the d-flexible ILU factorization reduces memory usage efficiency.
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4 Numerical experiments 6

Table 1: Example 1 - Numerical results of the boundary value problem

Preconditioner Dh CPT (sec) CIT (sec) Total (sec) Its nz(LU)/nz(A)
ILUC 0.760 1.990 2.750 35 7.549

n-Flexible 24 0.970 1.700 2.670 25 8.690
d-Flexible 0.640 2.020 2.660 38 6.624

ILUC 0.720 2.740 3.460 45 7.883
n-Flexible 23 0.960 2.240 3.200 34 9.266
d-Flexible 0.620 2.680 3.300 47 6.988

ILUC 0.710 3.910 4.620 60 8.034
n-Flexible 22 0.970 3.100 4.070 44 9.707
d-Flexible 0.620 3.980 4.600 66 7.399

ILUC 0.660 10.610 11.270 172 7.776
n-Flexible 21 0.980 4.310 5.290 58 9.826
d-Flexible 0.620 10.530 11.150 175 7.441

ILUC 0.590 27.750 28.340 473 7.282
n-Flexible 20 0.980 7.780 8.760 107 9.865
d-Flexible 0.590 27.730 28.320 473 7.261

ILUC 0.560 – – – 7.009
n-Flexible 2−1 0.970 30.280 31.250 413 9.860
d-Flexible 0.560 – – – 7.009

4.2 Example 2

The next test problem studied was the Poisson3Db, which is a computational fluid dynamics
problem from the University of Florida Matrix Collection [3]. This problem had a 85623×
85623 real nonsymmetric matrix and the nonzero elements of this coefficient matrix were
2374949. The nonzero pattern of this matrix is shown in Figure 1. The parameters were
set as follows: p = 70, pmin = p − 0.2p, pmax = p + 0.2p and c = 8. Table 2 shows
that the d-flexible ILU factorization was faster than other preconditioned methods and
its preconditioner had the least nonzero elements. Judging from the computation time
vs behavior of residual norm in Figure 2, these were similar to other methods. Figure 3
and Figure 4 show the distribution of ‖lj‖/gj for the n-Flexible ILU factorization and
the distribution of |dj|/g̃j for the d-Flexible ILU factorization, respectively. These figures
suggest that the d-Flexible ILU factorization is the best method for reducing the number
of nonzero elements of the fill-in.

In summary, based on the data in Table 1 and 2, it can be concluded that for these ex-
periments, the proposed scheme of the d-flexible ILU preconditioner appears to be superior
to other schemes in memory requirements especially in terms of the number of nonzero
elements of the preconditioner. Furthermore, for many of these experiments, the GMRES
with a d-flexible ILU preconditioner needed less total computation time compared to the
ILUC and the n-flexible preconditioner with some exceptions. In Table 2, the results of the
experiments are tabulated showing that the proposed scheme executes better or analogous
in total time to the solution.
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Table 2: Example 2 - Numerical results of the Poisson3Db problem

Preconditioner p CPT (sec) CIT (sec) Total (sec) Its nz(LU)/nz(A)
ILUC 3.470 2.500 5.970 38 4.449

n-Flexible 70 4.800 2.620 7.420 37 5.031
d-Flexible 2.950 2.870 5.820 46 3.965

ILUC 3.660 2.580 6.240 38 4.639
n-Flexible 75 5.260 2.670 7.930 36 5.385
d-Flexible 3.190 2.530 5.720 40 4.161

ILUC 3.870 2.660 6.530 38 4.815
n-Flexible 80 5.710 2.870 8.580 37 5.739
d-Flexible 3.390 2.480 5.870 38 4.346

5 Conclusion

The dropping strategy is integral for the ILU factorization to generate an efficient and
reliable preconditioned matrix. The numerical experiments show that the proposed d-
flexible ILU factorization, is able to reduce certain nonzero elements of the preconditioner
as well as the total computation time. The results also suggest that the GMRES with the
d-flexible ILU factorization converges faster than a GMRES with the other classical ILU
factorization.

It can be concluded that d-flexible ILU factorization is a practical and effective method
for solving large sparse sets of nonsymmetric linear systems of equations.

Future studies are necessary for investigating and determining specific parameters, and
finding matrices which can optimize the use of the d-flexible ILU factorization.

References

[1] M. Benzi, “Preconditioning techniques for large linear systems,” J. of Comp. Physics,
Vol. 182, pp. 418–477, 2002. http://dx.doi.org/10.1006/jcph.2002.7176

[2] Chih-Jen, L. and More, J. J., “Incomplete Cholesky factorization with limited
memory,” SIAM,J. on Sci. Comp., Vol. 1, pp. 24–45, 1999.
http://dx.doi.org/10.1137/S1064827597327334

[3] Davis, T., University of Florida Sparse Matrix Collection.
http://www.cise.ufl.edu/research/sparse/matrices/, 2005.

[4] Joubert, W., “Lanczos methods for the solution of nonsymmetric systems of linear
equations,” SIAM, J. on Matrix Anal. Appl., Vol. 13, pp. 926–943, 1992.
http://dx.doi.org/10.1137/0613056

[5] Mayer, J., “Alternating weighted dropping strategies for ILUTP,” SIAM, J. on Sci.
Comp., Vol. 4, pp. 1424–1437, 2006. http://dx.doi.org/10.1137/030602022

KSTS/RR-15/006 
April 13, 2015



References 8

Figure 1: Example 2 - Number of
nonzero elements of Pois-
son3Db’s matrix

Figure 2: Example 2 - Convergence
behavior of residual norm vs
computation time, p = 80

Figure 3: Example 2 - Distribution of
‖lj‖/gj for n-Flexible ILU

Figure 4: Example 2 - Distribution of
|dj|/g̃j for d-Flexible ILU

[6] Moriya, K. and Nodera, T., “Parallelization of IUL decomposition for elliptic
boundary value problem of PDE on AP3000,” Springer, LNCS Vol. 1615, pp.
344–353, 1999. http://link.springer.com/book/10.1007/BFb0094901

[7] Nodera, T. and Tsuno, N., “The parallelization of incomplete LU factorization on
AP1000,” Springer, LNCS, Vol. 1470, pp. 788–792, 1998.
http://link.springer.com/book/10.1007/BFb0057834/page/4

[8] Saad, Y. and Schultz, M. H., “GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., Vol. 7, pp.
856–869, 1986. http://dx.doi.org/10.1137/0907058

[9] Saad, Y., “ILUT: A dual threshold incomplete LU factorization,” Numer. Linear
Algebra Appl., Vol. 4, pp. 387–402, 1994.
http://dx.doi.org/10.1002/nla.1680010405

KSTS/RR-15/006 
April 13, 2015



References 9

[10] N. Li, N., Saad, Y. and Chow, E., “Crout versions of ILU for general sparse
matrices,” SIAM J. Sci. Stat. Comput., Vol. 25 pp. 716–728, 2003.
http://dx.doi.org/10.1137/1064827502405094

[11] Saad, Y., “Iterative methods for sparse linear systems,” 2nd edition, SIAM, 2003.
http://dx.doi.org/10.1137/1.9780898718003

[12] Saad, Y., ITSOL collections. http://www-users.cs.umn.edu/˜saad/software/ITSOL/.

[13] Sonneveld, P. and Van Gijzen, M. B., “IDR(s): A family of simple and fast
algorithms for solving large nonsymmetric systems of linear equations,” SIAM J. on
Sci. Comput., Vol. 31, pp. 1035–1062, 2008.
http://dx.doi.org/:10.1137/070685804

[14] Van Gijzen, M. B. and Sonneveld, P., “Algorithm 913: An elegant IDR(s) variant
that efficiently exploits biorthogonality properties,” ACM Transactions on
Mathematical Software, Vol. 38, pp. 5:1–5:19, 2011.
http://dx.doi.org/10.1145/2049662.2049667

[15] Zhang, Y., Huang, T. Z. , Jing, Y. F. and Li, L., “Flexible incomplete Cholesky
factorization with multi-parameters to control the number of nonzero elements in
preconditioners,” Numer. Linear. Algebra. Appl., Vol. 19, pp. 555–569, 2011.
http://dx.doi.org/10.1002/nla.784

Author addresses

1. Takatoshi NAKAMURA, School of Fundamental Science and
Technology,Graduate School of Science and Technology, Keio University, JAPAN.
mailto:takatoshi@z8.keio.jp

2. Takashi NODERA, Department of Mathematics,Faculty of Science and
Technology, Keio University, JAPAN.
mailto:nodera@math.keio.ac.jp

KSTS/RR-15/006 
April 13, 2015



Department of Mathematics
Faculty of Science and Technology

Keio University

Research Report

2014

[14/001]
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KSTS/RR-14/002, March 12, 2014

2015

[15/001]
　
　

Shiro Ishikawa,
Linguistic interpretation of quantum mechanics: Quantum Language,
KSTS/RR-15/001, January 22, 2015

[15/002]
　
　

Takuji Arai, Ryoichi Suzuki,
Local risk-minimization for Lévy markets,
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