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Abstract

The limited-memory BFGS (L-BFGS) method is considered for the nonlinear
generalized minimal residual (N-GMRES) for unconstrained nonlinear optimization.
In this paper, a universal preconditioning approach for the N-GMRES that can be
applied to a quasi-Newton procedure is explored. Numerical experiments on opti-
mization problems suggest that the L-BFGS is able to speed up significantly, the
convergence of the N-GMRES.
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1 Introduction

The nonlinear GMRES (N-GMRES) method with the steepest decent [8] is an efficient
preconditioner for solving general unconstrained optimization problems. This method ac-
celerates the convergence of the alternating least squares (ALS) optimization method for
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the canonical tensor approximation problem. The N-GMRES method can be used as a
simple wrapper around any other iterative optimization process to accelerate this process.
Steepest descent optimization is particularly suited for solving optimization problems un-
der appropriate conditions. However, this method converges a little bit slowly, because the
steepest descent is characterized by a property of linear convergence. The conventional
steepest descent algorithm may require an extremely large number of iterations, func-
tions and gradient evaluations. To overcome this issue, the quasi-Newton method must
be obtained in the framework of the unconstrained minimization of quadratic functions.
The quasi-Newton method which is also known as the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) method, is explored in this paper. A more universal precondi-
tioning approach for the N-GMRES method used in combination with the new accelerator
L-BFGS is proposed in this study.

Consider the following unconstrained nonlinear optimization problem with associated
first-order optimal equations:
Optimization Problem:

find * that minimizes f(z).

First-Order Optimal Equations:

Vf(z) =g(z) =0. (1)

The N-GMRES optimization algorithm, which is illustrated in Algorithm 1, consists of three
steps that can be summarized as follows. In the first step, a preliminary new iteration z;,
is generated from the last iteration x; using a one-step iterative update process M(.). This
is a preconditioning process. In this paper, an L-BFGS preconditioning for M(.) has been
employed. In the second step, an accelerated iteration z;,; is obtained through combining
the previous iterations in a window size w, using a nonlinear GMRES approach. In the
third step, a line search is performed that minimizes objective function f(x) on a half line
starting at the preliminary iteration Z;,; and it connects with the accelerated iteration
Z;11 to obtain the new iteration x; .

This paper is organized as follows: Section 2 is an outline of the N-GMRES optimization
with a steepest descent preconditioning proposed by Sterck [9]. Section 3 details the L-
BFGS preconditioner for the N-GMRES optimization algorithm. In Section 4, results of
the numerical experiments obtained through running the codes of N-GMRES with the L-
BFGS preconditioning, applied to two nonlinear optimization problems are documented.
Section 5 is the conclusion.

2 N-GMRES Algorithm

A simple example of the N-GMRES algorithm with steepest descent preconditioning is
documented in this section. Two variants of the steepest descent preconditioning for Step
1 of the N-GMRES have been proposed by [9] :

Steepest Descent Preconditioning:

Tip1 = Tj — ﬁivﬂxi)

IV £ (@) I
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Algorithm 1: N-GMRES Optimization Algorithm (window size w)

Input: w initial guess xg, T1, ..., Ty 1
Output: f* x*
1i:=w-—1;
2 repeat
3 Step 1 : generate preliminary iteration by one-step update process M (.).;
4 Tipy1 = M(x;) ;
5 Step 2 : generate accelerated iteration by nonlinear GMRES step;
6 Tip1 = GMIeS(Ti—wpi1, - - - Tis Tig1);
7 Step 3 : generate new iteration by line search process;
8 if ;01 — x;41 1s search direction then
9 ‘ xip1 = linesearch(z; 41 + B(Ziv1 — Tiy1))
10 else
11 ‘ Tip1l = Tit1;
12 end

13 until convergence criterion satisfied;

where we can choose parameter 3 as follows:

Option A : 3 = Byas, (2)
Option B : = fsq = min(4, ||V f(x:)]])- (3)

For Option A, [.q is the step size which is obtained through a line search procedure
satisfying the Wolfe conditions [1, p. 307]. Next, for Option B, [ is the minimum of a
small positive constant ¢ and the gradient norm. The preconditioning process A is usually
considered to be a stand-alone optimization method, and the N-GMRES can be used to
accelerate the convergence to find the optimal solution, rapidly. It has a strong convergence
property, but it requires evaluating the number of functions and gradient f/g.

The preconditioning process B requires no additional f /g evaluations, but its convergence
is not guaranteed. The role of the preconditioning process is to provide new directions
for the nonlinear generalization to the Krylov space, and the iteration can be driven to
convergence by N-GMRES minimization. In the initial step, the (4 chosen must be no
larger than a small constant because the linear case suggests that a small constant is
sufficient to provide a new direction for the Krylov space, and the minimization of the
residual norm is based on a linearization argument; small steps tend to lead to small
linearization errors.

3 Limited-memory BFGS Algorithm

This section is a study of the Limited-memory BFGS method. A preconditioner of the
N-GMRES using the L-BFGS method will be examined. This method accelerates the
convergence for reaching the optimal solution, rapidly. The L-BFGS method is one of
the quasi-Newton methods. The L-BFGS method resolves the issues of massive computer
memory use Moré et al. [5]. The BFGS formula is as follows:

HkSk(BkSk)T 4 yk(yk)T

H = H, — .
s g (Sk)THkSk (Sk)Tyk

(4)
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Rewriting equation (4), results in following equation:

T T A
SkYk Yk Sy, SkSp
H..1=11- He (I — + . 5)

e < y%k) k( ykTSk> ?JkTSk )

Set Vi, = I — pryrsk, pr = 1/yl'sy and this results in equation (6).
Hyy = V' Hy Vi + prsesi.- (6)

Using formula (6), Hy, can be expanded recursively, and this results in the following equa-
tion:
Hpoo = (VE ... VHH, (V... Vi)
+po(ViE .. V) sest (Vi ... Vi)
+ o (VE V) sist (Voo Vi)

+ pksksf. (7)

The recursive formula of the Hessian matrix consists of an initial matrix Hy and = and
V f at each iteration. If the problem size is n, we require only O(kn) computer memory.
Since the L-BFGS method iterates only m steps, the required computational memory of x
and V f are needed O(mn). Then, using the information of only m steps, equation (7) is
rewritten as follows:

Hepr =V VE YHy(Vieen - Vi)
T pO(VkT T Vkaerl)SOSoT(Vk—mH Vi)
T pl(VkT T Vkam+2)3131T(Vk—m+2 Vi)

+ PrSkS} - (8)
An algorithmic description of the L-BFGS process is given below:
1. Choose an initial guess zy, window size w, parameter 0 < ' < 1/2, 5" < f < 1, SPD

matrix Hy, and set k := 0.

2. Compute dy, = —HV f(xr), Try1 = @ + apdy. o satisfying the Wolfe conditions |1,
p. 307] here.

3. Set w = min (k,w — 1) and compute Hy by using yg, s, w + 1 times.
4. Set k :=k + 1 and go to Step 2.

3.1 L-BFGS Preconditioning

As mentioned in Section 1, the N-GMRES method with the steepest descent preconditioner
has only a linear convergence property and for this reason it converges slowly. The proposal
is to use the L-BFGS as a precondtioner of the N-GMRES to accelerate convergence of
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the objective function using a quadratic convergence property of a Newton-like method.
In Step 1, the L-BFGS algorithm generates a sequence of iterates {x} by

_ d;

S P ¥
Here vector d; is a search direction vector computed in each iteration, and parameter (3
is a step size which is obtained through line search. As can be seen from the figures
of the numerical experiments in Section 4, the convergence of the stand-alone L-BFGS
method is faster than the steepest descent method. Through choosing the L-BFGS method
as a preconditioner of the N-GMRES, a significant improvement of convergence can be
expected. In addition, as mentioned above, the L-BFGS preconditioner has a few memory
requirements. Therefore, using this method as a preconditioner for the N-GMRES, a better
convergence property is possible, minimizing extra memory cost.

4 Numerical Experiments

Some numerical experiments for the N-GMRES algorithm with a L-BFGS preconditioner
have been compared with the N-CG, L-BFGS, and N-GMRES algorithms with steepest
descent preconditioners.

e OS : Windows 7 Professional (64-bit)

CPU : Intel(R) Core-i7 2700K(3.5GHz, TB3.9GHz)
e Memory : 16GB

e Precision : double precision

e Program Language : MATLAB R2013a

The “SD” and the “SDLS” were proposed by Sterck [9] and these use the steepest descent
method as preconditioners, but are different in terms of the choice of parameter 5. In the
former 5 = min (4, ||V f(x;)]|) is used, and in the latter the step size that is obtained from
the line search is used. In both tests, the Moré-Thuente line search method [5] were used
as well as the N-CG and L-BFGS optimization methods as implemented in the Poblano
toolbox for MATLAB [2]. For all experiments, the Moré-Thuente line search parameters
were as follows:

Function value tolerance: ¢; = 10™*

Gradient norm tolerance: ¢y = 1072

Starting search step length: =1

e Maximum number of f/g evaluation: 20

All initial guesses are determined uniformly and randomly with components in interval
[0,1].
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Figure 1: Example A (n = 1000) - Comparison of convergence. (a) convergence tof*, (b)
convergence behavior of the gradient norm, (c) convergence to f* with f and ¢

evaluations, and (d) convergence behavior of the gradient norm with f and g
evaluations.

Table 1: Example A - Average number of f/g evaluations needed to reach |f(x;) — f*| <

10-10
size(n) SDLS SD N-GMRES-LBFGS N-CG L-BFGS
5000 409 246 199 237 293
10000 470 231 208 245 290

4.1 Example A

Extended Rosenbrock Function:

n/2

Fla) =" [100(23,_, — w2:)” + (22021 — 1)] (10)

i=1
e Minimum f(z*) =0 at z* = (1,1,...,1)"

In Figure 1, the numerical results for example A are shown. It can be seen that the N-
GMRES method using the L-BFGS preconditioning is significantly faster than the stand-
alone L-BFGS method in terms of iterations and f/g evaluations. In addition, the N-
GMRES with a L-BFGS preconditioning was faster compared to classical procedures.

In Table 1, the average number of f/g evaluations that were required to reach |f(z;) —
f*] < 107 for random instances of example A with different sizes, were tabulated. The
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Figure 2: Example B (n = 1000), Comparison of Convergence. (a) convergence tof*, (b)
convergence behavior of the gradient norm, (c) convergence to f* with f and g

evaluations, and (d) convergence behavior of the gradient norm with f and g
evaluations.

Table 2: Example B - Average number of f/g evaluations needed to reach |f(z;) — f*| <

10-10

size(n) SDLS SD N-GMRES-LBFGS N-CG L-BFGS
5000 2474 1361 1594 1738 692
10000 3582 2089 2286 2554(2) 979

figures in this table suggest that the N-GMRES with a L-BFGS preconditioning requires
less f/g evaluations than the other four methods.

4.2 Example B
Sphere Function:

flx) =) af (11)
e Simple convex function
e Minimum f(z*) =0 at z* = (0,0,...,0)"

In Figure 2, the numerical results for example B are tabulated. From this figure, we can
see that the stand-alone L-BFGS method is faster than the N-GMRES with a L-BFGS
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preconditioning. The N-GMRES method is unable to accelerate the classical L-BFGS
method for a simple convex function.

In Table 2, the average number of f/g evaluations that were required to reach |f(z;) —
f*] < 10710 for random instances of example B with different sizes were tabulated. How-
ever, it should be noted that B and the N-GMRES with LBFGS preconditioning required
approximately double the number of iterations. This was the result of a failure to determine
parameter J through a line search. Consequently, in the neighbor of the optimal solution,
the number of f/g evaluations by line search was significantly increased.

5 Conclusion

In this paper, a hybrid method combining the N-GMRES and the L-BFGS precondition-
ing was proposed. Numerical experiments showed that the proposed method accelerates
the stand-alone method very significantly for a certain objective function. The most im-
portant property of the N-GMRES is that its convergence speed is not dependent on the
initial guess, and that it guarantees global convergence. Depending on the choice of the
preconditioner, this method can be applied to various optimization problems.
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