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Abstract

For large scale linear problems, the symplectic Lanczos method which uses the
Symplectic Gram-Schmidt (SGS) method to compute symplectic vectors, is often
used. However, previous studies have shown that the selection process of the param-
eter in the SGS method is flawed, as it results in a partially destroyed J-orthogonality
of the J-orthogonal matrix.

In this paper, we have explored a block type SGS and a new condition for the
reorthogonalization to maintain .J-orthogonality. Applying the block size scheme to
this method, we have developed a new procedure for computing symplectic vectors.

KeyWords. symplectic block Gram-Schmidt, optimal block size, J-orthogonality
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1 Introduction

The orthogonalization process or the QR factorization by the Gram-Schmidt (GS) method
is arguably one of the most important processes in linear algebraic computation and there
are numerous studies on this subject [3, 5, 6, 9, 10].
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The GS procedure is also used in the Symplectic methods which are structure-preserving
methods for solving eigenvalue problems arising from special matrices like the Hamiltonian
matrix. In scientific computation, the eigenvalue problem of the Hamiltonian matrix is
such an important topic that many studies have been published on this topic [1, 2, 4].
Applications of this symplectic method are, for instance, used to solve the Ricatti equation
arising from the control theory. The symplectic methods enable us to compute eigenvalues
faster by using the structure of a matrix unlike the QR or Lanczos method. For a given
coefficient matrix A, the SGS method computes the symplectic matrix S and triangular
matrix R which satisfy A = SR. Since this method preserves the important structure of
the given matrix, it enables us to comupute eigenvalues more rapidly. According to Van
Loan [4], particularly when comparing the Hamiltonian matrix to the QR algorithm in
terms of the number of floating-point operations, this method requires only about 25 %
storage.

The SR procedure is very similar to the Householder QR algorithm. Salam [8] have
proven that this is an equivalent to the modified symplectic Gram-Schmidt (MSGS)
method. Another is the SR factorizaton by the classical symplectic Gram-Schmidt (CSGS)
and the proposed MSGS method [7]. However, there are less numerical experiments doc-
umented on the SGS compared to the GS decomposition for the QR, Arnoldi and Lanczos
methods.

In this paper, we have explored the possibility of using the Block Symplectic Gram-
Schmidt (BSGS) method by blocking the CSGS method. The Block Gram-Schmidt
(BGS) algorithm is a standard generalization of the classical Gram-Schmidt algorithm.
A study by Stewart [10] and Matsuo et al. [5] illustrates how the computation time of the
QR factorization can be shortened by employing the BGS method. The CSGS method is
blocked into the BSGS method. The BSGS method, then enables the computation of the
SR factorization more rapidly. Moreover since the optimal block-size m is not consistent
when employing the BGS method, it is necessary to determine m. There is no unique
m for any matrix X when the BGS method is being used, and m must be determined
accurately, through trial and error.

Section 2 is a summary of the SGS method. In section 3, a BSGS method will be
proposed. In section 4 and section 5, numerical experiments are given to evaluate the
effectiveness of our proposed algorithm, and our conclusion follows.

2 Symplectic Gram-Schmidt Method

The first step is to define matrix J € R?*"*2?" with the following equation:

=[5 0l w

where JT = J~! = —J. Then, the J-product is defined for the vectors =,y € R?>" by the
following equation:
<z,y>;=xJy. (2)

Let M7 be
M7= J"M"J, (3)
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Algorithm 1: Elementary SR Factorization
Data: A; = [a1, as]
Result: Sl = [81, SQ], R1 = [7’11, 2,721, 7’22]
1 begin
2 Choose 11 € R, 81 = ay/r11;
3 Choose r15 € R, y = ay — 1r1281;
4 rog = 31TJ’£/;
5
6

8o = Y /T29;
end

and let matrix S be symplectic or J-orthogonal when
S7S = Jrstjs =I. (4)

Next, the elementary symplectic factorization (ESR) , which J-orthogonalizes vectors
X =@, ®s],2; € R*,i = 1,2 into S; = [81, 3] by the following equations is introduced:

T
S = —
11
Y =T — 71281 5
_ TJ ()
Tog = 81 JY
oy
8o = )
T22

where r1; and ri, are arbitrary real values. Note that there are several selections of 71,
T19:

e ESRI: 1 = ||:131||, T2 = 0
e ESR2: T = ||:131||, T19 = s{:cg
e ESRS3: M1 = ||$?J$2||, T19 = 0.

According to Salam [8], the selections of r1; and 75 is an influential factor in determining

the accuracy of the J-orthogonality of the SR factorization and it is reported that the

ESR2 method is the most stable, because s; becomes orthogonal when set against ss.
From equation (5), matrix X, satisfies the following relation:

Xl - SlRl, (6)

where S is the J-orthogonal matrix and R; is the upper triangular matrix. The ESR
method is illustrated in Algorithm 1.

The classical symplectic Gram-Schmidt (CSGS) algorithm is very similar to the CGS
algorithm. Let X be a matrix with 2n x 2n. The CSGS method factorizes X into the
J-orthogonal matrix S and upper triangular matrix R through the following equation:

H12 = SJX
Y = X — SHy, (
Y - SR (by ESR). (

—~
© o =~
~— ~— ~—
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From equations (7) and (8), it can be seen that the CSGS method is very similar to the
CGS method. However in the CSGS method, the vectors are normalized by the ESR
instead of by the norm of vectors. Repeating this results in the following relations:

A=SR. (10)

The J-orthogonalized vectors S, ..., Sp, S; = [82;_1, 82;] in the CSGS method satisfies the
following relations:

So: 1 Jsy=1, i=1,....n, (11)

0, i#j
Silsj:{l zij (12)

The CSGS method, then creates a series of basis vectors:

dim span{S,...,S,} = 2n. (13)

3 Block Symplectic Gram-Schmidt Method

In this section, a block type of the CSGS method to speed-up computation of the SR
factorization is explored. First, matrix X in equations (7) and (8) are replaced with
Xblock = [®1, T2, -, x,]| to create a block type algorithm of the CSGS method. This
results in the following equations:

H12 - SJXblock; (14)
Y — Xblock - Sng. (15)

By using equations (14) and (15), a J-orthogonal matrix Xpjee can be created against the
previous J-orthogonalized matrix S. However these steps alone are not enough for creating
a J-orthogonalized matrix because the vector in the Y is not J-orthogonalized against other
vectors in Y. This makes it necessary to add one more step to create J-orthogonalization
in every vector in Y against each other:

Y = SR ( by CSGS). (16)

By relation (16), Y can be J-orthogonalized completely. The block symplectic Gram-
Schmidt (BSGS) algorithm is illustrated in Algorithm 2.

3.1 Re-orthogonalization

According to Stewart [10], employing full re-orthogonalization is enough for maintaining
the orthogonality of computed vectors when employing the GS method. The condition for
re-orthogonalization is as follows:

- 1
91> 2l (17)

If an orthogonalized vector § does not satisfy this condition, re-orthogonalization is em-
ployed.
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Algorithm 2: Block Symplectic Gram-Schmidt Algorithm
Data: X:[Xblockla te ;Xblockn]
Result: S=[S1,---,S,,R

1 begin

2 Xbloclq = SlR(l : 2, 1: 2),

3 fori=2:ndo

4 for j=1:1—1do

5 | H;; = ST Xotock;;

6 end

7 Y; = Xpjock, — >0y SiHij;
8 R(1:2(i—1),2 —1:2) = Hj;
9 Y; = S;R by CSGS method;
10 R(2—1:2i,2i—1:2i) =R,
11 end
12 end

However when running the SGS method, this condition may fail because the norm of
J-orthogonalized vectors tends to increase as the SGS steps proceed. This is because the
SGS method is unable to normalize computed vector ¢ and to address this issue, the ESR
method must be utilized instead. The sq; ; vector especially satisfies the following relation:

[82i[l = 1. (18)

Even though the computed vector § lacks .J-orthogonality, § satisfies condition (17). This
makes it possible to propose a new condition for re-orthogonalization:

1
19l < 5l (19)

Through this condition, the norm of the computed vectors can be controlled, and re-
orthogonalization can be employed.

3.2 Optimal Block Size

Through using a blocking procedure, it is possible to compute SR factorization quickly.
However, the computation time is dependent on block size m. Moreover since the optimal
block-size m is not consistent when employing the BSGS, it is mandatory to determine
m. There is no unique m for any matrix X when the BSGS is used, and it is necessary to
determine m accurately, through trial and error. The next step is to combine determining
optimal block size by estimating computation time from the sample of a one step BSGS
and computation cost of the BSGS method. The determination method of block size used
is from Matsuo et al. [6]. The new method used to estimate optimal block size is illustrated
in Algorithm 3.
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Algorithm 3: The New Method for Estimating Optimal Block Size
Data: : X € R™"

Result: m
1 begin
2 for i1 =1:5do
3 my =271
4 for 7=0:1do
5 start := gettimeofday();
6 Block Symplectic Gram-Schmidt step;
7 end := gettimeofday();
8 tij = end — start;
9 end
10 a = (tio — tin)/my;
11 bli] := (1/2) n?a + tiy — a(h — m);
12 for j=5:1 do
13 | Alij] =m] ™
14 end
15 end
16 solve Ax = b;
17 f(m) = zm* + xom® + x3m? + x4m + x5;
18 solve m := minme[oémf(m);

19 end

4 Numerical Experiments

In this section, the BSGS with Algorithm 2 and Algorithm 3, CSGS and modified sym-
plectic Gram-Schmidt (MSGS) method [7] are evaluated. The numerical environment is
as follows:

e CPU : Intel(R) Xeon(R) CPU E3-1270 V2 3.50GHz
e Memory : 16GB

4.1 Experiment 1

Firstly, it will be shown how the J-orthogonality of the SGS method is unstable and how
our new re-orthogonalization condition is effective in addressing this. These numerical
experiments were implemented by MATLAB2013B and the test matrices were Hamiltonian
matrices H with sizes 20 x 20, 40 x 40, ..., 200 x 200 respectively with random values.
The CGS and the CSGS methods were employed to calculate orthogonality and the J-
orthogonality of the computed matrices by the following equations respectively:

17— Q"Qll2 [l = S7S]l2. (20)

Numerical results are shown in Figure 1 and 2. The results suggest that the .J-orthogonality
of the CSGS method is very unstable. For small size problems, the accuracy of the .J-
orthogonality is approximately 107'°. However, even for a 200 x 200 size Hamiltonian
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Figure 1: J-Orthogonality of the CSGS  Figure 2: J-Orthogonality of the CSGS

Method with Re-Orthogonalization
Table 1: Ex. 1: CSGS, MSGS, BSGS: Table 2: Ex. 2: CSGS, MSGS, BSGS:
Hamiltonian matrix H; Hamiltonian matrix Hy
Method m  t,  Accuracy Method —m t,m,  Accuracy
CSGS 2 0.104 8.70e-06 CSGS 2 2124 1.55e-04
MSGS 2 0.107 4.65e-06 MSGS 2 2140 1.03e-04
BSGS 10 0.039  2.80e-06 BSGS 40  2.50  3.74e-05

BSGS 100 3.21  7.14e-05
BSGS-m 72 272  4.48e-05

matrix, the accuracy of the J-orthogonality was unacceptable. We have not identified the
reason for this yet, but it is possible that the calculation errors are caused by the ESR
increasing the norm of the computed vector.

Contrary to what is illustrated in Figure 2, a new condition of re-orthogonalization
was employed, resulting in a much improved accuracy of the J-orthogonality. It can be
suggested that the new orthogonalization condition works for the CSGS method.

4.2 Experiment 2

The effectiveness of the BSGS method is illustrated in this section. These numerical
experiments were implemented by C language with double precision and the test matrices
used were the Hamiltonian matrix H; € R?00%200 and H, € R?000x2000 with a random
value. The SR factorization was employed by the BSGS, CSGS and MSGS method
and re-orthogonalization was implemented in each procedure. In this table, ACCURACY
refers to the calculation accuracy of the J-orthogonality by equation (20) and ¢ refers to
computation time. BSGS-m refers to the BSGS method with our proposed method for
determining block size.

Numerical experiments are illustrated in Table 1 and Table 2. From Table 1, we can
see that the BSGS method is the fastest and has the highest accuracy in terms of J-
orthogonality. This is because by blocking X, we can calculate the computation with
BLAS. Compared to the CSGS method, the accuracy of the BSGS method is significantly
better.
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From Table 2, we can also see that the BSGS method is the fastest and has the highest
accuracy in terms of J-orthogonality. The BSGS method is approximately ten times
faster than the CSGS and the MSGS methods. The accuracy of the BSGS method is
significantly better than that of the CSGS and MSGS methods. Since Hj is larger, the
SR factorization of matrix Hy is more unstable than that of matrix H;. The BSGS-m is
not the fastest in Table 2, but the BSGS-m performed only 10 % slower, more or less,
than the fastest method.

5 Conclusion

The BSGS method proposed in this paper blocks the CSGS method to speed-up com-
putation, and combines this with determining the optimal block size. This is necessary,
because the computation time of the BSGS method changes significantly depending on
block size.

In section 4, numerical experiments were shown, as well as the effectiveness of the re-
orthogonalization condition of the BSGS method. It was clear that the new condition
worked for the SGS method. Our proposed method is much faster and more accurate than
either the CSGS and the MSGS methods. And in terms of determining block size this
method selects block size automatically.

In future studies, it will be useful to analyze .J-orthogonality and study how this proposed
method works when dealing with a large scale problem.
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