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Abstract

Computing eigenvalues and eigenvectors of a large matrix is one of the most
important tasks in numerical analysis. PageRank is a link analysis algorithm used
by the internet search engine, Google, which ranks each document in the order of its
relative importance in its database. In this paper, a new algorithm for computing the
PageRank vector is proposed, using a combination of the Lanczos bi-orthogonalization
algorithm with a semi-orthogonality and a SVD (singular-value decomposition). This
method converges faster than the Arnoldi method requiring less computation time.
The results of some numerical experiments have been documented to evaluate the
effectiveness of our proposed Lanczos algorithm.
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1 Introduction

PageRank is the essential approach for ranking a Web page where the status of a page
is determined according to its link structure on the Web. This model has been used by
Google as a part of its contemporary search engine equipment. Nowadays, the precise
ranking procedures and computation schemes used by Google are no longer public, but the
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Algorithm 1: Arnoldi Method

1 Compute q; = qo/||qo|2;
2 for j=1,2,..., to m do

3 Compute w; = Ag;;

4 for k =1,2... to j do

5 hij = g wj;

6 wj = w; — hijq;

7 end

8 Compute hjy1j = [|w;]|2;
9 if hj+1,j = ( then
10 ‘ stop and exit;
11 else
12 ‘ Set qj+1 = w]'/hj+1,j;
13 end
14 end

PageRank model has taken on a life of its own and has received important consideration
in the science and technology communities in the past ten years. PageRank is essentially
a fixed distribution vector of the Markov chain wherein the transition matrix is a convex
combination of the Web link graph and a precise rank-1 matrix. A major parameter in
the model is a ‘damping factor’, a scalar that determines the weight given to the Web link
graph in the model. The weighted PageRank constitutes the elements of the dominant
eigenvector of the modified adjacency matrix as follows:

A=aP+(1-a)E, (1)

where P is a column stochastic matrix, « is a ‘damping factor’, and E is a rank one matrix.
The specified derivation is detailed in a paper by Kamvar et al. [8].

More recently, the computation of the eigenpair (eigenvalue and eigenvector) of non-
symmetric matrices have become one of the most important tasks in many science and
technology applications. A typical example, nowadays, is the computation of PageR-
ank based on the link structure of the Web. Due to the great size and sparsity of the
matrix, factorization schemes are considered impractical, and iterative schemes are used,
where the computation is dominated by matrix-vector products. Detailed descriptions of
this problem are available, and the algorithms can be found in numerous references, e.g.
[2,7,6,8,9, 10, 13].

The power method was firstly considered for computing PageRank. For detailed prop-
erties of PageRank using the power method, please refer to Kamvar et al. [8]. However,
the power method has its disadvantages, i.e. for some given matrices, the power method
converges very slowly. Although different methods have been suggested for accelerating
convergence, there have been no significant improvements so far. For example, a procedure
using orthogonalization such as the Arnoldi method has been suggested [7]. Teratomo et
al. [13] have published studies which suggest the Lanczos method is an effective procedure
to compute the PageRank vector. In this paper, we have studied a new algorithm for
computing the PageRank vector, using a combined Lanczos bi-orthogonalization algorithm
and SVD (Singular Value Decomposition).
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Algorithm 2: Arnoldi-Type Method

1 Choose gy with ||gol|s = 1;

2 for [ =1,2,..., until convergence do
3 Compute [Q, Hpm1,m|=Arnoldi(A4, gy, m);
4 Compute singular value decomposition Hy, 1, — [[;0] = USVT;
5 Compute gy = @, Vim;
6 Compute r = 0,y 1Um;
7 if ||r||y <TOL then
8
9

10

stop and exit;
end

end

The remainder of the paper is organized as follows: Section 2 includes a brief description
of the Arnoldi method of the PageRank vector. In section 3, a new Lanczos algorithm with
a SVD scheme is proposed. In section 4, the results of numerical experiments obtained
through running MATLAB codes are shown. The conclusion follows.

2 Arnoldi Method

In this section, a brief introduction of the Arnoldi method [1] for computing the PageRank
vector is given. The Arnoldi method, which uses Algorithm 1, builds an orthonormal basis
for the Krylov subspace given by:

ICm(Aa qO) = Span{q()) Aq07 Xy Am_lqO}a (2)

where the Krylov subspace is restricted to a fixed dimension m and qq is an initial vector
which satisfies ||go|| = 1. From Algorithm 1, the following relations hold:

AQm - QmHm + hm+1,mqm+le£;
QZ;AQm - Hm;

where Q,, = [q1,42,...,qn] € R"™ is a column-orthogonal matrix, and H,, = {h;,} €
R, «m is a Hessenberg matrix [7]. Since H,, is an orthogonal projection from A to IC,,, the
eigenvalue of H,, can be used as an approximate eigenvalue of A. If y is the eigenvector
of H,,, then Q,,y is the approximate eigenvector of A. This is true because it has been
established that the largest eigenvalue of a PageRank matrix is 1. The Arnoldi-type method
was proposed by Golub and Greif [5] and it will be referred to as Algorithm 2. In Algorithm
2, a singular value decomposition is computed normally, instead of the eigenvalue of H,, [7].
When m increases, the total computation cost of this method continuously increases with
every cycle, while the total iterations decrease. It can be very difficult to choose m a priori
and if too small a value is chosen, the convergence may stall. Consequently, it is difficult
to choose the optimal value of m to minimize total computation cost (CPU time).

3 Lanczos Method with Semi-Orthogonality

In this section, a modified Lanczos method with semi-orthogonality is proposed. This
algorithm is derived from using the result of Day [3]. This can be used when a non-
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Hermitian matrix is converted to a tridiagonal matrix and one of the Krylov subspace
methods. Given two starting vectors, this algorithm computes simultaneously, a basis for
the following two subspaces, where, matrix A is a n x n PageRank matrix, p* and q are
initial vectors and the conjugate transpose is denoted by the superscript “*”. Unlike the
classical Lanczos method [13], this algorithm has an advantage because it can perform
computations without having to set the value of m:

Km(A, q) = span{q, Aq, ..., A" 'q},
Kn(A,p*) = span{p*,p*A, ..., p* A" '}

Set px = p},q = q;. After j successful Lanczos steps, the matrices P and () are produced.
The rows of P span KJ,(A,p*) and n the column of Q; span KJ,(A,q). The matrix
1; = P;AQ)j is tridiagonal. This means that {; = P/Q; is diagonal. Let P} and Q; have
full rank. If P;Q); is invertible then,

Hj - QjQ;IP; (3)

and is an oblique projector (IT = II;) onto Range(Q;). Generally, it is not orthogonal
(It #T1;), and
{u*Il;, u € C’} = Range(P;)* (4)

is also an oblique projector onto the dual space, where C is a j dimensional complex space.
From equation (3) and (4), II;AIl; is a projection from A onto the dual Range((;) and
Range(P;)*. Assuming that P} and Q; exist, the description of A with regard to the basis
{qi,...,q,} is Q' AQ,. TI,, = I implies that Q' = Q7'P* and Q,;'AQ, = Q. 'T,. The
tridiagonal matrix QJ_IT] represents I1; AII; in the bases (qq, ..., g;) and (wi'pt, ..., wj_lp;‘-).
The next step is to consider how to generate Lanczos vectors. Lanczos vectors can compute
the following equations:

621)2 = p1A — — Dy, (5)
w1
5m+1pm+1 = pmA - w—mpm - = Tpmfh (6)
o
G2 = Aqy — —qi, (7)
w1
Q Bmw
Vmt1Gmi1 = AQm — ——@m — Q1. (8)
Wm m—1

The initial condition is wy,, = P}, qgm, ¥m = P, Aq,. With the intention of making the size
of the Lanzcos vector 1, # and ~ are scaled as follows:

* Q * YmW *
ﬁm+1 - ‘ pmA - —mpm — = mpmfl ) (9)
Wm, Wm—1 2
o QO ﬁmwm
TYm+1 = Aqm ——qn — ———Qqm-1 (10)
Wm m—1 2

When representing the recurrence formula in matrix form, the following equation holds:

PrA =T, Q0 'P + €mBm+1Pp i1 (11)
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Algorithm 3: Lanczos Method with Local Orthogonality

1 Start: py = p/||pll2, a1 = q/llgllz;wo = 1,81 =7 = 0,w1 = piqy;
2 forl=1,2,...,MaxStep do

3 | ri=p;B-1"p,,

4 8= Agq; — qi—l%;

5 Q; = T;qua

6 = r;‘—g—jpf, S = sz-—qz-g—:j;
T | ai=rig, of = pjs;;

8 = r;“—z—%p;‘, 8 = sz-—qz-Z—‘:;
9 | Birr =IIrill2, virr = [Isill2;
10 Py =77/ Bivt, Qip1 = Si/ Vit
11 Wit1 = Piy1qi+1;
12 check for breakdown:|w,,11| < (n + 10(m + 1))e;
13 check for convergence;
14 end

AQm = Qinle + qm+17m+1e:<n'7 (12)
The tridiagonal matrix can compute as follows:

ap  fows
Yoz Qi B3ws
T, = -
Tm—-1Wm—-1 Qm—1 Bmwm
YmWm Qm

Using these equations, we can set the Lanczos algorithm as Algorithm 3. The local
orthogonality is defined as follows:
Definition 3.1(Day [3]) Lanczos vectors pi,...,pf and q, .. ., g; satisfy the local orthog-
onality of the following equations in 7 steps:

|cos/pigi—1| < 4e, (13)
cosipi_q;| < 4e. 14
i—1

In order to satisfy equations (13) and (14), it is necessary to maintain the bi-orthogonality
between p;,; and g;, and between g;,1, and p;, in line 6 and 7 of Algorithm 6. When the
closely bi-orthogonal vectors are improved, then the cosine of the angles between the new
vectors is detached from the dimension. These bi-orthogonalities are generally referred to
as a local orthogonality.

The right Ritz vector which can compute this algorithm is the PageRank vector. The
convergence criterion will be discussed at length in the next section.

3.1 Computing PageRank with Semi-Orthogonality

In this subsection, a modified Lanczos method for computing PageRank with a semi-
orthogonality will be introduced. The eigenvalues of A are approximated using the eigen-
values of the pair (T,,,,). The pair (7},,2,,) will be used to compute PageRank. The
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Algorithm 4: Lanczos Method for Computing PageRank

1 Choose initial vectors p, g such that(p, q) = 1;

2 [T,P,Q|=Lanczos(A4, p, q);

3 Compute singular value decomposition T, — I = UXV7T;
4 if Convergence condition satisfies then

5 ‘ Compute PageRank vector (., Vm;

6 end
7 continue to Lanczos method;

eigentriplet of (T, Q) is as follows:

* k

Tm’UT = HTQm’UT.
The eigentriplet of matrix A is approximated as follows:
A~ Op, y* ~urPr, x>~ Qnvr.

where, 07 is a Ritz value, u- P} is a left Ritz vector, and Q,,vr is a right Ritz vector. In
this paper, when a Lanczos algorithm converges, the right Ritz vector is regarded as the
PageRank vector. The following equation has been used as the convergence criterion:

||Az — Az||s

4T (15)

Here, the definition of the Ritz value and Ritz vector, Ax — Ax can be represented as
follows:
Ax — \x ~ AQm’UT — GTvaT. (16)

Substitute equation(16) for equation (12), and the following equation is satisfied:
AT — AT X g1 Y 1€5, VT (17)

So even if only the value of vy is known, it is possible to compute the convergence criterion
easily. From the above, the modified Lanczos method with semi-orthogonality with SVD
is Algorithm 4.

4 Numerical Experiments

In this section, the numerical results of the two methods described in the previous sections
on the test problems were compared. All computing of the numerical experiments were
run on a PC with 3.6 GHz and an eight-gigabyte memory using MATLAB R2012b. These
results are shown to demonstrate the efficiency of the Lanczos algorithm with a semi-
orthogonality. The test matrices, Death_Penalty and E-mail Enron, were obtained from
Web pages: Stanford University Large Network Data Set Collection and University of
Toronto Data sets for Link Analysis Ranking Experiments.
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Table 1: Example 1, Iterations and Computation Time (4298 x 4298)

Power Arnoldi Lanczos LanLD
c IT Time IT Time IT Time IT Time
0.85 55 1.06 8 0453 10 0.677 5 0.235
090 76 148 9 0.516 10 0.677 6 0.264
0.95 119 228 11 0.625 10 0.677 5 0.235
0.99 226 4.33 13 0.765 10 0.677 7 0.289

Table 2: Example 2, Iterations and Computation Time (15000 x 15000)

Arnoldi(m=10)  Lanczos LanLD
c IT Time IT Time IT Time

0.8 4 4.16 10 523 6 2.78
0.90 6 5.02 10 523 7 3.07
095 9 7.52 10 523 7 3.07
099 17 14.09 10 523 7 3.07

4.1 Example 1

The Power method, Arnoldi method, Lanczos method and the proposed method were
applied to the 4298 x 4298 matrix which was downloaded from the following URL: http://
www.cs.toronto.edu/~tsap/experiments/download/download.html. This matrix was
made by converting the directed graph to the adjacency matrix. Eigenvalues of this matrix
are dense, and the computation time of the power method is time consuming. There was no
significant difference between the Lanczos method and the Arnoldi method, but when the
value of ¢ was large, the proposed Lanczos method converged faster than other methods.

4.2 Example 2

The Power method, the Arnoldi method, the Lanczos method and the proposed method
were applied to the 15000 x 15000 E-mail Enron matrix which was downloaded from the
following URL: http://snap.stanford.edu/data/index.html. This matrix was made
by converting the directed graph to the adjacency matrix. This directed graph refers to
e-mail server links. The numerical results are tabulated in Table 3. With the exception of
when the Matrix size is larger than the previous one and when the value of ¢ is large, conver-
gence requires significantly more time. Otherwise, the proposed method is not significantly
influenced by the value of ¢, and its convergence speed is faster.

5 Conclusions

In this paper, we proposed a new algorithm to compute PageRank, using a combination of
the Lanczos method and SVD. Computation times were dependent on the number of the
tridiagonal matrix’s degree. Our numerical results showed that computation times were
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constant. The proposed method has advantages which are not critically dependent on «a.
According to our numerical experiments, the power method requires more time than other
methods, so it is not a practical choice for computing PageRank. On the other hand, we
must note that the Arnoldi method with SVD satisfies the stopping criterion faster than
the power method. In terms of speed, however, our proposed Lanczos method was faster
than the Arnoldi method.
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