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Abstract

Suzuki ([10]) derived a Clark-Ocone type formula under change of measure (COCM) for Lévy processes
with L2-Lévy measure. In this paper, in order to simplify the description, we introduce it for canonical Lévy
processes.

1 Introduction

Clark-Ocone (CO) formulae are explicitly martingale representations of random variables in terms of Malli-
avin derivatives. COCMs are Girsanov transformations versions of it. Suzuki ([10]) derived a COCM for
Lévy processes with L?-Lévy measure by using Malliavin calculus for Lévy processes based on [5]. Note
that it is not depend on structure of probability space.

In this paper, we derive a COCM for canonical Lévy processes for the simplicity of the description. Since
we can derive practical rules to compute Malliavin derivatives easily by using the weak derivative and the
increment quotient operator on the canonical space (see e.g, [?]), we can simplify the description.

2 Malliavin Calculus for canonical Lévy processes

2.1 Setting

Throughout this paper, we consider Malliavin calculus for canonical Lévy processes, based on, [9]. Let
(€}, F,P) be the product of two canonical spaces; the usual canonical space (Qw, Fiy, Pw) for a one-
dimensional standard Brownian motion W and the canonical space (Qp, Fy, Py) for a pure jump Lévy
process with Lévy measure v satisfying [p_ z2v(dz) < oo, where Ry := R\ {0}. For more details, see

section 3 of [3] and section 4 of [9]. Let IF = {Fi};¢o 1] be the canonical filtration, and X a Lévy process
with Lévy measure v, which is represented as X; = ¢W, - fot fle zN (ds,dz), where o = (. Here N is the
Poisson random measure defined by N(t, A) = Y, 14(AX;) for any A € B(Rg) and any ¢ € [0,T], and
N(dt,dz) := N(dt,dz) - v(dz)dt, where AX; 1= X; — X,
We consider the finite measure g defined on [0, T] x Rby

4(E) = o2 fE o 400+ [E 2dtv(dz), E€B(0,T] xR),

where E(0) = {{t,0) € [0,T] x R;(#,0) € E} and E' = E — E(0), and the random measure Qon [0, T] x R
by
Q(E) = JL(O) AW,bo(dz) + /E z2N(dt,dz), E e B([0,T] xR).
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Let L%’,q,n(]R) denote the set of product measurable, deterministic functions k : ([0, T] x R)"” — R satis-
fying
s = o g 2t 2a)) P ) -t 20) < o

Forne Nand h, € L%-,qrn(]R), we denote

In(a) == -/([U,Tile)" Wt z1), -+ (bn2n) YOty dz1) - - - Q(dbn, dzn).

It is easy to see that E[Ig(hg)}] = hp and E[I,(h,)] =0, forn > 1.
In this setting, we introduce the following chaos expansion (see Theorem 2 in [6], Section 2 of [9] and Section
3 of [3]).

Theorem 2.1 Any F-measurable square integrable random variable F on the canonical space has a unique represen-
fation

00
F=Y Iy(hs),P-as.
n=0

with functions hy € L%-’q'n (R} that are symmetric in the n pairs (t;,2;),1 < i < n and we have the isometry

E[FY =Y n!||hn||%%qn

n=0

Definition 2.2 (1) For o # 0, let IDIIJ‘2 denote the set of F -measurable random variables F € L*(P) with the
representation E = Y ooy In(fn) sabisfying

oo T
1 SLO)2,  oPdt < oo
Lot [LIACGODIE, o<

Then, for F € ]Dé’z, we can define

DigF = i nl—1(fa((£,0),-)), wvalid for g—a.e. (£,0) € [0, T] x {0}, P —a.s.

n=1

(2) For v # 0, let ]D%‘2 denote the set of F -measurable random variables F € L*(P) with the represeniation
F =Y o In(fn) satisfying

= T
! - (&, 2 ) d2\d < oo,
Yot [ Ul (DI Pyldz)ar < oo

Then, for F ¢ ]D%’Z, we can define

D¢ F= Y nl_a1(fu((t,2),-}), valid for g—ae.(t,z) € [0,T] x Ry, IP —a.s.

n=1
(3) Let D2 = ID%’2 a! ]D%’z. Then, for F € D2, the Malliavin derivative DF : Q x [0,T] x R — R of a random

variable F is a stochastic process defined by

o0
Dy F =Y nli_1(ha((t,2),-)), valid forg—ae. (tz) € [0,T] x R, P —as.

n=1
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(4) Let DY be the classical Malliavin derivative with respect to the Brownian motion W and Dom DW be the domain
of DW (for more details see [8]). We define

DV .= {P € [*(P); F(-,wn) € Dom DY for PN —a.e. wy € QN}.
(5) Let F be a random variable on Oy x Q. Then we define the increment quotient operator

Fww, wif) — Flww, w)
4

Ttle = 2 75 0,

where wif transforms a family wy = ((t1,21), (t2,22), -+ ) € Qy into a new family
wR,z = ((t,2), (t1,21), (t2,22),- - ) € Q, by adding a jump of size z at time t into the trajectory. Moreover, we

denote
T
D/ = {1—‘ € L2(P);E Uo fR |‘Pt,zF{222v(dz)dt] < oo}.
i)

By Propositions 2.6.1, 2.6.2 in [2] and result of [1] (see section 3.3), we can derive the following:

Proposition23 1. fFe DY, thenF ¢ ]Dé’2 and DyoF = 1{g>0}a‘1D§"'P(-, wn)(ww) for g -ae. (£2) €
[0, T] x {0}, P -a.s.

2. IfFe D/, then F ¢ ]D%’2 and D;;F = ¥, ,F for g -a.e. ({,z) € [0,T] x Ry, P -a.s.
3. D2 = DW NID! holds.
Lemma 2.4 (Lemma 3.1 of [3]) Let F € ID'2. Then, for 0 < t < T, E[F|F] € DY and
DsxE[F|Fi] = E[DsxF|Fi]l{s<yy, forg—ae. (s,x} € [0,T] xR, P—as.
We next introduce a chain rule for the Malliavin derivatives.

Proposition 2.5 (Chain rule) Let ¢ € C1(]R”;]R), F = (F, - ,F,), where Fi,--+ ,F, € D and ¢(F) €
LZ(IP).

L I i 32 #(F)DioFy € LA X IP), then @(F) € Dy? and

n
d
Diog(F)=Y_ a—k-q)(P)D,,ng for g—a.e. (,z) € (0, T] x {0}, P—as. (2.1)
k=1

2. 1:/,‘¢(F1+2Df,zF1r"';Pk+ZZD!,sz)_‘P(-F1f":Fk) e LZ(ZZU(dZ)dtdiP), Then, q)(F) c ]Di'z and

_ o{F +2DizF1, - -, Fe+2De . Fe) — (Fy, - -
z

) forg—ae. (t,z) € [0,T] x Ry, P—as.
(2.2)

Dtz ¢(F)

Proof. (1) Equation (2.1) follows from Lemma A.1 in [7]. and Proposition 2.3.
(2) We next show (2.2). Since Fy, - - - , F, € D2, Proposition 2.3 implies that

Tt,Z(P(P) — qo(Pl(erwg\’j'z A ,Pk(&)w,&)krz )Z_EP(PI(WWI(UN)/‘ .- ,Pk(ﬂ)w,ﬂUN))

F —F 7 wi?)—F,

1z
- p(Fi+z- —lwm, Btz M‘g“"—) — o(Fx(ww, wn), - - -, Fe(ww, wN))

z
@(FL+zDizF1, -+, Fe + 2Dy zF) — o(Fy, -+ F)

= . ,2#0
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Moreover, from ¢(P1+ZD’*"F"""F"+: DisF)—e(Rr i) ¢ L*(z%v(dz)dtdIP), we have ¥;(F) = Di.¢(F) and
@(F) € D/ by Proposition 2.3. O

If we take @(x,y) = xy, then, we can derive the following product rule.

Corollary 2.6 Let [, 5 € D2 gnd FE € LZ(]P). Moreover, assume that FiD;,F + F;Dy,Fy + 2Dy, F -
Dy, F, € L2(q x P). Then R F; € D2 and

Dy ;FF = DB+ BDi ;R +:2DizF - DB g—ae. (£,z) € [0,T]| xR, P —as. (2.3)

2.2 Commutation of integration and the Malliavin differentiability

Definition 2.7 (1) Let LY denote the space of product measurable and F -adapted processes G : Qd x [0, T) x R —

R satisfying
2
E [,/[‘O,T]XRlcs'xl C](ds,dx)] < 0,

Gsy € DM, g—ae. (5,x) € [0, T] x Rand
2
E [,/([O,TJxJR)Z | Dt G x|“g(ds, dx)q(dt,dz)] < o,

{2) I[_.é'2 denotes the space of G : [0, T] x Q - R satisfying
1. Gse DY forae s €[0,T],
2. E [f[o,T] |G5|2ds] < 00,
3. E [f[D,T]le I |Dt,st|2dSQ(dfde)} < co.
(3) ]L}'2 is defined as the space of G : [0, T] x Ry x Q) — R such that

1. Gsx € D2 for gae. (s,x) € [0,T] X R,

2. E [ fig1yxmy |GoalPv(dx)ds| < oo,

3. E [ Jiomixr Sjomixmy |PtzGox Pu(dx)dsq(dt, dz)] < .
(4) ]]':.i’2 is defined as the space of G € IL.%'2 such that

2
L E [(I[G,T]xno |Gs.x|v(dx)d5) ] < oo,

2
2. E [f[o,‘r]xJR (f[oﬂxmu |Dt,st,x|v(dx)ds) g(dt, dz)] < o0,
We next discuss the commutation relation of the stochastic integral with the Malliavin derivative.

Proposition 2.8 (Lemma 3.3 of [3]) Let G: QO x [0, T] x R — R be a predictable process with

2
E [f[o,T]xmlcs’xl q(ds,dx)] < o0,
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Then
G € L' if and only if f Ge,xQ(ds, dx) € D2,
[0,7]xR

Furthermore, if f[o,T]le Gs,xQ(ds, dx) € D2, then, for g -a.e. (t,z) € [0, T] x R, we have

D, f Gs xQ(ds, dx) = Gz + f D12GexQ(ds,dx), P-as.,
[0.T]xR [0TIxR

and f[o TIxR Dy ;G xQ(ds, dx) is a stochastic integral in It6 sense.
Next proposition provides commutation of the Lebesgue integration and the Malliavin differentiability.

Proposition 2.9 (Lemma 3.2 of [3]) Assumethat G : (2 x [0, T] x R — R is a product measurable and IF -adapted
process, y on [0, T| X R a finite measure, so that conditions

E [ f[mxm |Ge x[27(ds, dx)] < w,
Gsx € D2, forn—ae. (s,x) € [0,T] x R,
2

E [./([U,T]X]R}z |Dt,2Ge,x |1 (ds, dx)g(dt, dz)] < o0

are satisfied. Then we have
Gs,x17(ds, dx) € D12
./[O,T]le = (45, )

and the differentiation rule

tz 0T xR s, (ds, dx) 0TI<R t2Gs x7(ds, dx)

holds for q -a.e. {£,2) € [0,T] x R, P -a.s.

By using o-finiteness of v and Proposition 2.9, we can show the following proposition.
Proposition 2.10 (Proposition 3.5in [10]) Let G € ]I:%'Z. Then,
f Gsv(dx)ds € DY?
[0.T]xRg
and the differentiation rule
Df’z f Gsle(dx)dS = / D['zGS’xV(dx)ds
[0,T]xIRg [0,T] xRy

holds for q -a.e. (t,z) € [0,T] X R, P -a.5.

2.3 Clark-Ocone type formula for canonical Lévy functionals

We next present an explicit form of the martingale representation formula by using Malliavin calculus.

Proposition 2.11 (Clark-Ocone type formula for canonical Lévy functionals) Let F € DY2. Then
F=E[F)+ [ EIDiFIF-1Qtd
P+ 1 BIDFIF-1Q )

T T ~
—E[F]+0 fo E[DyoF | Fi_]dW; + fo fR E[DyeF| i N (dt, o) (2.4)
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Remark 2.12 We can show the same step as Theorems 4.1, 12. 16 and 12.20 in [4] and note that representation in
Theorem 12. 20 in [4] is different from (2.4). In Theorem 2.11, we rewrite it to (2.4) more precisely and to fits our
framework.

2.4 Girsanov theorem for Lévy processes

We recall the Girsanov theorem for Lévy processes (see, e.g., Theorem 12.21 of [4]).

Theorem 2.13 Lef 6,y < 1,5 € [0,T],x € Rg and us, s € [0, T], be predictable processes such that

T
fo fR {|log(1 — Bs,x)[z + Béx}v(dx)ds < 00, a.8.,
0
T
fo ulds < oo, a.s.
Moreover we denote

Z(t) :=exp ( f usdWs — —f 2ds+f / log(1 — 65,)N(ds, dx)
t
+f0 f]RD(log(l —B0x) + Bs,x)v(dx)ds> e[0T
Define a measure Q on Fr by

dQ(w) = Zr(w)dP(w),

and we assume that Z(T) satisfies the Novikov condition, that is,

T T
E [exp (%fo u?ds +f0 /1;{ {(1 - 8sx) log{l —Bsx) —}-Gs,x}v(dx)ds)] < oo,
0
Then E(Zy]| = 1and hence @Q is a probability measure on Fr. Furthermore if we denote
NQ(dt, dx) := 8; ,v(dx)di + N(dt, dx)

and
dWP = utdt + de,

then NQ(-,.) and WS are the compensated Poisson random measure of N(-,-) and a standard Brownian motion
under Q, respectively.

3 A Clark-Ocone type formula under change of measure for canonical
Lévy processes

In this section, we introduce a Clark-Ocone type formula under change of measure for canonical Lévy
processes. Throughout this section, under the same setting as Theorem 2.13, we assume the following.

Assumption 3.1 (1) u,u? € IL}]’Z; and 2usDy ;s + z(Dy zus)? € L2(g x P) fora.e. s € [0, T).
(2) 8 +log(1 - 8) € L1?, and log(1 - 8) € 1L}2

(3) For g-a.e. (s,x) € [0,T) x Ry, thereis an g5y € (0,1) such that 85, < 1 — g5

(4) Zy € L2(P); and Zy{Dyqlog Zrlygy (z) + C2T=11p (2)} € L2(g x P).

(5} F € D2 with FZr e L?(P); and ZyD;,F + FDy;Z1 + zDy ;F - Dy ; Z7 € L*(g x P).

(6) FHy .z, Hi ,Di . F € LYQ), (1, 2) -a.e. where By, = exp(zD;; log Zr — log(1 — 6y2))
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Remark 3.2 The statement of the main theorem in [10] includes error. Hence, we correct and revise it sophisticatedly.

To show the main theorem, we need the following:

Lemma 3.3 We have

T T
DipZr =Zr [—J—lut — f Dmude;Q —f / DLBS'INQ(dS, dx) (3.5)
0 0 JRg 1- gs,x
for g-ae. (t,z) € [0, T) x {0}, IP-a.s. and
D21 = z"lzr[exp(th,z logZt) —1] forg—ae. (t,z) € [0,7] x Ry, P—as., (3.6)

where
DyylogZy = — fUT Dt,zugdWP - % fOTZ(D:,zus)zds
+ ./UT .[JR(, ((1 = 85,x) Dy zlog (1 — Os,x) + Dy 2051 ) v(dax)ds
+ fOT fmu Dy log(1 — 65,)N@(ds, dx) +z "V log(1 — 6; ) (3.7)

for g-a.e. (t,z) € [0, T] x Ry, P-as.

Proof. By conditions (1), (2) and (3) in Assumption 3.1, Propositions 2.8, 2.9 and 2.10 imply log Zr &
DY, Moreover, from (4} in Assumption 3.1, Proposition 2.5 leads to Z € D'?,

T 1 T,
DLUZT = ZT [—Dtjofu usdws — iDt’U,[U ust
T -
+Dyg [ [ 1051 —8,)(ds, dx)
T
+Dyp fn fR (log(1 — B5.¢) +95,x)u(dx)ds]. (3.8)
a

and

_exp{log Zr + zD;zlog Z1) — Z7

- = 271 Zr[exp(zDyzlog Z1) — 1].

Df,zZT

We next calculate right side of (3.8). From assumption (1) in Assumption 3.1, Proposition 2.9 implies

T T
Dyg [0 urds = fo D;ouds (3.9

and by Proposition 2.10,

T T
Dig fo ]]RG (log(1 — Bs.4) + 65 )v(dx)ds = fu fR (Diglog(1 = B5,4) + Dyofs.x)v(dx)ds. (3.10)
0
Since condition (1) in Assumption 3.1 holds, by Corollary 2.6, we have
Dyou? = 2usD, gus. (3.11)

We calculate Dy g log(1 — 6, ;). From (3) in Assumption 3.1, we have f; y < 1—¢;,. Wefix (5,x) € [0, T] x Ry.
We denote
Lo{y) = —e;}y + e;ﬂ.} —14logegy

7
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and

_Jlog(l—u), y<1—egsy
gs,x(y) - { ls,x(y): y=1l—g5y ’

Then, g5, € C1(R) and
log(l - 95};{) = gsrx(eg’x).

Moreover, we have -?’:'”;:7’ < £;§|Dt,065,x[ € L2(A x IP) by T;%;; < s;} and 8 » € D2, Hence, Proposition

2.5 implies that log{1 — 6;x) € ]D%,’2 and
Dt,O 108(1 - 9s,;:c) = Df,Ogs,x(es,x) = g;,x (3s,x)Dt,(les,x =
From condition (1), (2) in Assumption 3.1, Proposition 2.8 implies
T T
Dho fo udW, = o Ty + ./0 Dy gusdW;

and

Dfoesx
1 —gsx

Dtgj j log{1 — 85 )N(ds, dx) = f / Diglog(1l — 05,4 )N(ds, dx).

Hence, by (3.8) - (3.13), we obtain

T
DtDZT_ZT[ oy — fD;gudeS /ustgusds

Df 095 x Dt,Ues,x
‘/ /]R(] 1— gst(dS ,dx) +f f (—m + Dy by | v(dx)ds

_ZT[ oy — fogudeQ f[ DmastQ ds dx)]
]RU]‘ st

We next calculate D, ; log Zr.

(3.12)

(3.13)

By conditions (1) and (2) in Assumption 3.1, Proposition 2.8, Proposition 2.9 and Proposition 2.10 show that

Dt,z IOgZT = HDt’z_[ udeS lthf %ds

+D ff “Log(1 — 6.)xN(ds, d

tz A IRox og( 5,x)xN(ds, dx)
T
+ D1z [ [ (log(1—0ox) +8ex)v(dx)ds
i
T 1 (T
= _/ Dt’zudeS - ‘—‘f Dllz(us)zds

0 2o

T .
+ f f D ; log(1 ~ 85.x) N (ds, dx)
0 JRg

’ log(1 —
- -[) ./]R (Dt log(l - eﬁax) + D205 x) v(dx)ds + Og(#
0

Now we calculate Dy ;(u5)2. Corollary 2.6 implies

Dt,z(”s)z = 2MSD.t,zus + Z(Dt,zus)zr

6i.‘z)

(3.14)

(3.15)
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because, # € ID!? and condition (1) in Assumption 3.1 hold. From equations (3.14) and (3.15), we have
T o 1 /T
Dy logZr = — fn DyzusdWs® — 5 /0 2(Dyzu5)?ds
T
+ fo /Il; ((1 - Bs’x)Dt'z ].og(]. b SS,I) + Dfrzes‘x) U(dx)ds
0

T
+ fo fm Dy» log(1 — 6,.)NQ(ds, dx) +z~1 log(1 — 8;.).
]

We next introduce a Clark-Ocone type formula under change of measure for canonical Lévy processes.
Theorem 3.4

T T
F= ]EQ [P] 4 (Tfa ]EQ [DLOP — FK; J:t—:| thQ -l-]; fRn ]EQ [P(I:It,z - 1) + ZFIt,th,zFl.Ft_]NQ(df, dz),a s

holds, where
Dy gb
K; = / D,gudes +f -/]R t0 XN ds,dx)
0

Proof. First we denote Ay 1= Z! = ¢~108% { ¢ [0, T). Then by the It6 formula (see, e.g., Theorem 9.4
of [4]), we have
1
Al = Ay {Euf - flR {(log(1 — 6¢;) + Bf,z)v(dz)} dt
0

1 5 1 -
- A dWe + EAt_u,dt + /]Rn A (1 . — 1) N(dt,dz)

+ f [At“- _1 - — Ar-+ Ar- log(1 —at,z)] v(dz)dt

= A

62,
utdt+u;dwt+/ — (dz)dt—f—f N(dt, dz)
1— tz l_efz .

= At_ [utdeQ + .[IR{] %

— Oz

NQ(dt,dz)] )

Denoting Y; := Eq{F|F), t € [0, T], we have Y; = A{E[ZyF|F} by condition (5) in Assumption 3.1 and the
Bayes rule (see, e.g., Lemma 4.7 of [4]). From (5) in Assumption 3.1, Corollary 2.6 implies that ZrF € D2,
Hence, Lemma 2.4 implies that E[Z7F|F;] € D holds. We apply Proposition 2.11 to E[Z7F|F}], then, by
Lemma 2.4, we have

i
E(ZrF| 7 = E(ZrF)+ [ [ EDuu(ZeF)|Fi-lQ(ds, dz).
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Denoting V; := E[ZF|Fi|, we have Yy = AV, Itd’s product rule implies that
dYy = A—dVi + ViedAg +d[A, V)

= Ay {U]E[Dfro(ZT.F)i]:}_}de + []R ]E[Dt,z(ZTP)‘]:t_]ZN(dt, dz)}

+ VitAe {u;dWQ+f ——~

_tz

NQ(dt, dz)}
9t z

+ A {autm[nm(m)m ]+ f —E[Dsa(ZrF) i ]zv(dz)}

8
+ A fm T2 —E[Ds(ZrF)| Fi- ]zN(ds dz)
]

= A_E[oD,, O(ZTF) | Fi=|dWS -+ Ay_E[ZyFuy| F— |dWe

AL / E[Dy,z(Z7F)| F] NQ(dt,dz)_|.Af_f ]E[Z F
1—6z R

Now we shali calculate D; o(Z7F) and Dz (ZyF). As for Dy g(Z7F), by (5) in Assumption 3.1, Corollary 2.6
yields that

Fie ]NQ(dt,dz). (3.16)
1— Lz

Dt'g(ZTP) =FDyZr + Z7DyoF. (3.17)
Therefore combining (3.17) with (3.5), we can conclude

Dyo(ZrF) = FDygZr + ZrDioF

—FZT[ oy — fDmude ffR ’D“]B“‘NQ ds,dx) | + ZyDyoF
IJ

5,X

= Zr [DwP ~F (cr s+ Kt)] : (3.18)
Next we caleulate D z(Z7F). From condition (5), Corollary 2.6 implies that
Dt'z(ZT.F) = PDt,zZT + ZTDt'zP + ZDt'zZT - Dt‘zP. (319)
From (3.6),
Dp.Zr =z Zr[(1 — 012) Ay — 1. (3.20)

Therefore, combining (3.19) and (3.20), we obtain
Di(Z7F) = 27 Zr{(1 — 62)Hyz — 1)F + Z7Dy .F + Zp[(1 — 8:2) Hyz — 11Dy o F
= Zr [274(1 — 612 Fbz — 1}F + (1 - B12) Ay DyF (3:21)
From (3.16), {3.18), (3.21), we arrive at:

dY; = Ay_E [ZT {O'Dt’oP —F (Mf + O'Kf)}

.7'_:_] dW,Q

- 1 .
+ At-—-f E [{ZTP (Ht,z - ) + ZHt,zD!,zP}
Ry 1—6

1z
1—0;;

f,_] NQ(dt, dz)

+ Ar_E[ZrFus| FiJdAWR + A fR E [ZTP
i)

f-f_] NQ(dt, dz)

=0/ E [ZT {Dt,OP - FKt}

.7‘_:_] thQ

4 Ase fmo E [ZT{P (Hiz —1) + 2H; 2Dy . F}

.7-}_] NOQ(dt, dz).

10
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From (1) and (2) in Assumption 3.1, we have K; € L2(P) -a.e. Hence, by (5) in Assumption 3.1, Eq[|FK¢|] =
E[|FKiZr] < E[|K[?]E[|FZ7[?] < o0. Moreover, from (5) in Assumption 3.1, we have D;oF € L%(P) -
a.e. and Eq[|DioF|] = E[|DioF|Z1r] < (/E[|DioF|?E[Z3] < oo. Then, by (6) in Assumption 3.1 and
F,DyoF, FK; € L1(D) t-a.e., the Bayes rule implies

de = O"IEQ [D!'OP - PK{

.Ff.—] dWP + A ]EQ{F(HLZ — 1) + ZHt,sz’ZFI}}_]ﬁQ(df, dZ). (3.22)
0
Since Y; = Eg|[F|Fr] = F,Y(0) = [Eg[F|Fo] = Eg/[F|, Integrating equation (3.22) gives

T
F-Eqlf] = fo Eq [DwF — FK,

T e — o~
.Ft_] aw@ + fo fR EQ[F(Fiz 1) + 2, ;D4 .F| Fi- | NQ(dt, dz).

The proof is concluded.
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