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EQUIVARIANT, STRING AND LEADING ORDER CHARACTERISTIC
CLASSES ASSOCIATED TO FIBRATIONS

ANDRES LARRAIN-HUBACH, YOSHIAKI MAEDA, STEVEN ROSENBERG,
AND FABIAN TORRES-ARDILA

1. INTRODUCTION

Infinite rank principal or vector bundles appear frequently in mathematical physics, even be-
fore quantization. For example, string theory involves the tangent bundle to the space of maps
Maps(2?, M) from a Riemann surface to a manifold M, while any gauge theory relies on the
principal bundle A* —3 A*/G of irreducible connections over the quotient by the gauge group.
Finally, formal proofs of the Atiyah-Singer index theorem take place on the free loop space LM,
and in particular use calculations on TLM. As explained below, many of these examples arise from
pushing finite rank bundles on the total space of a fibration down to an infinite rank bundle on
the base space.

For the correct choice of structure group, these infinite rank bundles can be topologically non-
trivial. As for finite rank bundles, nontriviality is often detected by infinite dimensional analogs of
the Chern-Weil construction of characteristic classes, as in [9], [11], [13], [16], [17], with a survey
in [19]. The choice of structure group is determined by natural classes of connections on these
bundles, which typically take values in either the Lie algebra of a gauge group or a Lie algebra
of zeroth order pseudodifferential operators (YDOs). There are essentially three types of char-
acteristic forms for these connections, one using the Wodzicki residue for ¥DOs, one using the
zeroth order or leading order symbeol, and one using integration over the fiber. The corresponding
cohomology classes are called residue classes, leading order classes, and string classes, respectively.
As shown in [10], the residue classes vanish, but nontrivial residue Chern-Simons classes exist [13].

In this paper, we focus on gauge group connections and produce examples of nontrivial leading
order and string characteristic classes for some infinite rank bundles associated to loop spaces,
Gromov-Witten theory and gauge theory. While the residue classes are inherently infinite di-
mensional objects and difficult to compute, the leading order and string classes for infinite rank
bundles on the base space of a fibration are often related to characteristic classes of the finite rank
bundle on the total space. This makes the leading order and siring classes more computable. In

particular, in some cases we can relate the leading order classes to the string classes.
1
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In §2, we describe the basic setup, which is well known from local proofs of the families index
theorem. To a fibration Z — M — B of closed manifolds and a bundle with connection
(E,V) — M, one can associate an infinite rank bundle with connection (£,V’) — B. This is
a gauge connection if the fibration admits a flat connection, for example if the fibration is trivial.
In this case, we can define the associated leading order Chern classes of £. Even if the fibration
is not flat, £ has string classes, which are topological pushdowns of the Chern classes of E. The
leading order and string classes do not live in the same degrees. Both classes have associated
Chern-Simons or transgression forms.

In §3, we show that the S Atiyah-Singer index theorem can be rewritten as an equality involving
leading order classes on the loop space LM of a closed manifold M (Thm. 3.4). (More precisely,
we work with the version of the Sl-index theorem called the Kirillov formula in [2].) This is an
attempt to mimic the formal proofs of the ordinary index theorem on loop space [1], [3], but differs
in significant ways. In particular, the statement involves integration of a leading order class over
a finite cycle in LM, not over all of LM, so the nonrigorous localization step in the formal proof
is sidestepped. It should be emphasized that this is only a restatement and not a loop space
proof of the index theorem, as the S'-index theorem is used in the restatement. Along the way,
we construct equivariant characteristic forms on LA, such as the equivariant fl—genus and Chern
character, which restrict to the corresponding forms on M sitting inside LM as constant loops
(Thm. 3.3). It is unclear if the Chern character form we construct is the same as those constructed
in [3] and [21].

In §4 we apply similar techniques to the moduli space of pseudoholomorphic maps from a
Riemann surface ¥ to a symplectic manifold M. We prove that certain Gromov-Witten invariants
and gravitational descendants can be expressed in terms of leading order classes and string classes,
and we recover the Dilaton Axiom. These techniques work when the GW invariants are really
given by integrals over the smooth interior of the compactified moduli space, for which we rely
on [22]. In particular, we have to restrict ourselves to genus zero GW invariants for semipositive
manifolds. The main geometric observation is that the fibration of (interiors of) moduli spaces
associated to forgetting a marked point is flat, so that leading order classes are defined. The main
results (Thms. 4.1, 4.6) involve a mixture of string and leading order classes.

In §5 we prove that the real cohomology of a based loop group QG, for G compact, is generated
by leading order Chern-Simons classes. This amounts to noting that the cohomology of G is
generated by Chern-Simons classes, and then relating these finite rank classes to the leading order

classes. We note that the generators of Q0G can also be written in terms of string classes, a known
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result [9], and we specifically relate the string and leading order classes (Thm. 5.5). Related results
are in [8].

In §6 we study leading order classes associated to the gauge theory fibration 4* — A*/G.
This fibration has a natural gauge connection [7], [20], whose curvature involves nonlocal Green’s
operators. Leading order classes only deal with the locally defined symbol of these operators,
so the calculation of these classes is relatively easy. In Prop. 6.2, we show that the canonical
representative of Donaldson’s v-class [5, Ch. V] in the cohomology of the moduli space ASD/G of
ASD connections on a 4-manifold is the restriction of a leading order form on all of A*/G. Thus the
v-class gives information on the cohomology of A*/G. It is desirable to extend this construction to
cover the more important u-classes, but this seems to require a theory of leading order currents.
We give a preliminary result in this direction.

We would like to thank Michael Murray and Raymond Vozzo for helpful conversations about

§5, and the referee for insightful comments, particularly about the averaging map in §2.

2. TWO TYPES OF CHARACTERISTIC CLASSES

Perhaps the simplest type of infinite rank vector bundles come from fibrations. Let 7 —
M =5 B be a locally trivial fibration, with Z, M, B smooth, closed, oriented manifolds, and let
E — M be a smooth bundle. The pushdown bundle £ = =, F is a bundle over B with fiber
[(E|z-1(»)) over b € B. To specify the topology of £, we can choose either a Sobolev class of H*
sections for the fibers or the Fréchet topology on smooth sections.

Using the transition functions of E, we can check that € is a smooth bundle with Banach spaces
or Fréchet spaces as fibers in these two cases. For local triviality, take a connection V on E, and
fix a neighborhood U containing b over which the fibration is trivial. We can assume that U is
filled out by radial curves centered at b. Fix a connection D for the fibration, i.e., a complement
to the kernel of 7, in TM. For m € M, = n~}(b), each radial curve has a unique horizontal lift to
a curve in M starting at m. For s € T'(E|;-1y)), take the V-parallel translation of s along each
horizontal lift at m. This gives a smooth isomorphism of &, with &y for all ¥ € U.

The connection V pushes down to a connection 7,V = V' on € by
7.V x(5')(m) = Vs (3)(m), (2.1)

where X" is the D-horizontal lift of X € TyB to T,M, s’ € T'(€), and § € ['(E) is defined by

3(m) = §'(m(m))}(m). Thus V' acts as a first order operator on &,. The curvature Q' of V’, defined
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AX,Y) = nVxnVy -nVymVx — mVixy)
= VxiVys — Vs Vigh — Vixyps
= VxuVyr — VyaVixn — Vixn yn) + (v[xh,y’h] - V[X,Y1h)
= X" Y") + (Vixnym — Vixyp)

satisfies QV(X,Y)(s')(m) = Q(X",Y*)(8)(m) iff D has vanishing curvature: Qp = [X,Y]* —
(X" YP] =0 [2, p. 20].% QX" Y") is a zeroth order or multiplication operator, so in general,
Vixtyn — Vix,yjn and hence €' acts on &, as a first order differential operator: @ € A*(B,D') in

the obvious notation. In summary:

Lemma 2.1. Let (E,V) — M be a bundle with connection, and let (€ = m.E,V' =mnV}) — B
be the pushdown bundle with connection associated to the fibration m : M — B. Let D be o
connection on the fibration. Then the curvature two-form Y of V' takes values in multiplication
operators on the fibers & = [(E|z-14)) iff D is flat: Qp = [X,Y]" — [X*, Y] = 0. In this case,
V(X,Y)=Q(X"YM. If Qp # 0, Q' takes values in first order differential operators on the fibers.

For a finite rank bundle FF —» B with connection, the curvature lies in A?(B, End(F)), and
Chern classes are built from the usual matrix trace tr on End(F). There are no known non-
trivial traces on D', as the Wodzicki residue vanishes on differential operators. However, in
the flat case Qp = 0, we have ' € A?(B,End,,(£)), where End,,(€) is the space of endomor-
phisms/multiplication operators A € End(£} given by pointwise endormophisms of the fiber:
A(b) € T(M,, End(E)). There is a trace Tr' on multiplication operators built from the matrix trace
as follows. Choose smoothly varying volume forms dvol;, on each fiber M. For € A¥(B, End..(£))
locally of the form n = Y, auw® ® A® with w* € A¥(B), A(b) € I'(My, End(E)), set

Trlo(n) = Zaz f tr(AYdvol, € AF(B). (2.2)

In [17], this trace is called the leading order trace, as it extends to bundles whose tramsition
functions are zeroth order pseudodifferential operators.
This trace is related to an averaging operator on forms that will be used in §5. To define

this, again choose volume forms dvol, and a connection on the fibration; for example, a choice of

This is equivalent to the usual condition for a flat connection, namely that D’s distribution be integrable: since
m[XP, V] = 7, [X,Y]" = [X,Y], the distribution is integrable iff [X", Y] = [X, Y]*.
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Riemannian metric on M determines the volume forms and the connection by setting the horizontal
spaces to be (Ker m,)*. The averaging operator T : A¥(M) — A¥(B) is given by
T(a)(X1,. .., Xx) = / Xt ..., XHdvol,. (2.3)
My
It is easy to check that dgX = Tdy, so T : H*(M) — H*(B) on de Rham cohomology is well
defined. T extends to Y’ : A¥(M, End(E)) — A*(B) by

YT'(@)(Xy,...,Xe)(b) = /Jw tr(a(X], ..., X}))dvol,. (2.4)
-]
Note that Y o m* = Id, so Tx'(n) = Y'(7*5). In particular, for Qp = 0 we have
TE°((2)%) = T'(2°). (2.5)
From now on we denote T’ by T.

Definition 2.1. Let Z — M — B be ¢ flat fibration. In the notation of Lemma 2.1, the leading

order Chern classes of £ are
R (&) = [T°(()")] = [T'(Q")] € H*(B,C),

where the brackets denote the de Rham cohomology class. The leading order Chern character of £
18

chlo(£) = [Tr*(exp(Y))] € H*(B,C).

Tr°(AB) = T®(BA) for A, B € A***(B,End,(£)), so the usual proof that the Chern form
Tr(Q¥) is closed with de Rham class independent of choice of connection on E carries over to
Te((©)%). In contrast, the leading order Chern classes are certainly not invariant under scalings of
the volume form. However, assume that two families of volume forms satisfy f,, dvoly, = 1, AvOlgy
for all b; this corresponds to deforming dvol,, perpendicularly to the scaling direction in the
vector space of volume forms. In this case, the leading order Chern classes are the same. For
dvoly, = dvoly, + dp,8 for 8 = 6, € A9™E-1(A4,), and we have

/ tr(Q2¥F)dvol,, — / tr(¥)dvoly,
M,

My

= ] tr(QF)dh = f dyp, tr(QQY A0 = | dytr(@YA8— | dptr(@)AB
My

My My My
_ f t(VEQF) A0 — di / $(QF) A 6 = —dy f br(%) A6,
My, My My

by the Bianchi identity.



KSTS/RR-14/001
January 6, 2014

6 A. LARRAIN-HUBACH, Y. MAEDA, 8. ROSENBERG, AND F. TORRES-ARDILA

The infegral in Trl"(n) is an averaging of the endomorphism and leaves the degree of w’ un-
changed. In contrast, we can integrate w® over the fiber as well, which we denote by [, w* or m,w'.
This leads to a second type of Chern class, called string classes [16] or caloron classes [9]. Let
z=dim Z.

Definition 2.2. The string Chern classes of £ are
() = [m Te{QF)] = m [TH(QF)] € H*~#(B,C).
The string Chern character of £ is
ch®™™ (&) = [m, Tr(exp())] € H**(B,C).

The m, outside the brackets denotes the induced pushforward on de Rham cohomology. Thus

string classes satisfy a naturality condition:
S (M E) = mcn(E). (2.6)

The string classes are the topological pushforward, and so can be defined for any coefficient
ring, most easily if the total space M of the fibration is compact. Specifically, for Poincaré duality
PDyy : Ho(M,Z) — HYm M=*(Af, Z), we have

4*(n.E) = PD om, 0 PD3}(E), &0

where 7, on the right hand side is the usual homology pushforward. Thus the string classes are
novel only in that they are identified with characteristic classes of infinite rank bundles.

In contrast, the leading order classes have no obvious interpretation for Z coeflicients. However,
the leading order forms for a fibration contain more information than the string forms: the string
forms average only terms with all fiber variables and discard the rest, while the leading order forms
average all terms as in (2.2).

Both classes have associated Chern-Simons classes; see §5. As with ordinary CS classes, the

leading order and string CS classes are geometric objects.

3. EQUIVARIANT CHARACTERISTIC CLASSES ON LOOP SPACES

In this section we construct equivariant characteristic classes on LM of leading order type and
relate them to the corresponding characteristic classes on M. We use these constructions to restate
the 81 index theorem in terms of data on LM.

Let M be a closed, oriented, Riemannian n-manifold. Fix a parameter s >3 0, and let LM =
L®) M be the space of maps f : S* — M of Sobolev class s 3> 0. LM is a Banach manifold. The
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space LM of smooth loops is only a Fréchet manifold; the techniques of this section work in
this case as well.

The tangent space T, LM at a loop v consists of vector fields along v, ¢.e., sections of v*TM —
8! of either Sobolev class s or smooth. In sheaf theory terms, TLIM = 7w, ev* T M, for
ev: LM x 8 —s M the evaluation map ev(vy,8) = v(6) and w : LM x S' — LM the projection.

The following diagram encapsulates the setup.

ev*TM —— TM

! !

LM x 8" =5 M (3.1)
|
TLM =myev*TM —— LM
Since T.,LM is noncanonically isomorphic to the space of sections of the trivial bundle R™ =

St x R® — S, the structure group of TLM is the gauge group of R™.

LM has the L? Riemannian metric

(XY= 5 [ (XO), YO 0.

Let V&M be the L? connection on LM associated to the Levi-Civita connection V™ on M. This
is given by “pulling back and pushing down V¥ to LM.” To define this carefully, particularly
at self-intersections of v, pick X € T,LM, Y € T'(TLM), define ¥ : {—¢,¢) x S' — M by
Y(t, s) = exp.s tX(s), and define the vector field Y'(2, 5) on (—¢,¢€) X S by Y (t,s) = Ysq)- Then

(VMY )o(5) = [(v* V) x0) Y Jiye): (3.2)

where ¥ € I'(ev* TM) is 17(.,,3) =Y,

Similarly, if (E,VZ h) — M is a hermitian vector bundle with connection, we can form
€ =meev* E — LM with fiber &, = I'(v*E — §") in the Fréchet case. The structure group
of £ is the gauge group of R¥ — S, k = rk(E). £ has an I? hermitian metric (e, e)y =
(27)7 fou Bles, e2)d8. As above, VZ pushes down to a hermitian connection V€ on €.

LM has a canonical S* action k, : LM — LM, s € [0, 27, given by rotation of loops: k,(7)(§) =

¥(s+6). k, is an isometry of LM. £ is an equivariant bundle for this action:

SLS

L

LM——k—>LM
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where &, : £, — &, ki(e)(0) = e(s + 6).
As pointed out in {3], VX¥ is not an S'-invariant connection. Recall that an invariant connection

would satisfy [2, p. 26]
VEM ko o = ks VIV, (3.3)

More explicitly, let W = W, (s) be a vector field on LM and X € T, LM. Then (3.3) means
(VEY xkou[Wi_,en))(80) = ks (V¥ 5, xWk_ ) (0) (3.4)

at 7. To compute kg : Tp_ () LM — Ty LM, set v:(s) = exp(tW(s)). Then
d d
(e Wo)(s0) = | (Bs(u)(s0) = S| exp(tW (s + 50) = Wyls +0) = Wip(s0),  (35)
t=0 t=0
which is indeed a vector fleld along k(7). By (3.2), the left hand side of (3.4) equals

[(ev* V¥ x,0)) Wi € ev" TM], Tyao) M,

Tis0)

while the right hand side equals

ks,* [(ev* VM)(A;_S'.X,U)W] S ks’* (ev* TM'(k = T.),(SD)M.

(k—s(7):%0) —3(7),39))

Even though both sides of (3.4) are vectors in Ty, M, the two sides differentiate W at the different
points v(sp), v(—s + sp), and so VX is not S'-invariant.

As in [2, (1.10)], we can average VEM over the action to produce
TLM / an ( kT'LM@TLM)—l viMp g (3.6)
8 8% 3 .
0

where (kI PMETLM)—IgLMy — M k.Y and ds = &ds. VEM js Sl-equivariant, since (sim-

plifving the notation)
- 27 _ 2m _
ke, VEM = kg, ( / kM g ds) = f kog—sVEM ky ds
0 0

27
= k oV Mk, o ds = VEME,,
0

We can similarly average V¢ to obtain an S'-invariant connection Ve,

We now follow [2, §7.1]. Let (Clu] @ A*(LM))5' be the space of equivariant forms on LM
with values in polynomials on u = u(1), the Lie algebra of S'. Equivalently, this is the space of
equivariant polynomial maps from u to A*(LM). For deg(u) = 2, this space becomes a complex for
the degree one equivariant differential (d,a)(u) = d{a(u)) — wa(u), v € u, where ¢, is the interior

product of the vector field on LM associated to u. In particular, if u is the usual generator of u



KSTS/RR-14/001
January 6, 2014

CHARACTERISTIC CLASSES ASSOCIATED TO FIBRATIONS 9

corresponding to ¢ € 4R ~ u, then ¢, = ¢4 at the loop v (so ¥ € T,LM)). The cohomology of this
complex is the Cartan model for the equivariant cohomology Hgi1 (LM, C).

V¥ has the associated so-called equivariant connection V£ acting on (Clu] ® A*(LM, £))S':
(Via)(X) = (V¥ —ux)(a(X)), X eu

With £ and « understood, we also denote the left hand side of this equation by ﬁu(X ). The

equivariant curvature is by definition
08 =V2(X)+ L%
Here L% is the Lie derivative along the vector field on the S -manifold £ determined by X € u.
By [2, Prop. 7.4], € € (Clu] ® A*(LM, End(€)))%".
Assume that M has an S? action a : ' x M — M. The case of the trivial action a{(§,m) = m

is not uninteresting. By averaging the metric over S!, we may assume that the action is via

isometries. Let a; : M — M be as(m) = a(s,m}. The action induces an embedding
a: M — LM, d(m)= (s~ a(s,m)).

The following diagram commutes:
M =3 M

“| & (3.7)

LM — LM

Let Y be the vector field for the flow {a;} on M, i.e., Y is the vector field corresponding to the
standard generator of u. Since {k} is the flow of ¥ on LM, it follows from (3.7) that for a vector
field V on M,

d d
J ! = — ! = — / = !
Li(a V) I S=U(k_s oa ).V I s=0(a, oa_g):V =a,LyV. (3.8)
For Vj € T,, M, we have
(@LV0)(s) = (as)x(Vh). (3.9)

From now on, we denote a’ just by a, so (a.Vo)(s) = (a,)«(V). Let i : M — LM be the
isometric embedding taking a point to a constant loop. On the fixed point set of a, we have a = ¢
and ‘e, = k. Let T be the rank n subbundle of TLM|,as) of “rotated vectors”: the fiber is
Ty ={s— asu(W), Vo € TyiyM}. Thus V € I'(TM) implies a,.V € I(T). Clearly ¢*T ~ TM and
B:a*T = TM via B(s — kex(Vo)) = Vo. B induces an isomorphism A*(M, a*T) — A*(M, T M).

We will need the analog of (3.8) for the Levi-Civita connection.
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Lemma 3.1. Under the isomorphism 8 : a*T ~TM, we have
a*(VEM4) = VMY € AYM,TM). (3.10)

Proof. Extend a fixed Vp € T,,, M to a vector field V on M, so a,V is an extension of a.Vj €
Tatme) LM to a vector field on a(M) € LM. Then

(VI (V) = Vil =ViYaV +[a V4] = Vi¥a,V + [a.V, a.Y]
= VMo,V +a, VY] = ViMa,V — a Ly V.
In local coordinates,
(VEMa, V) = (s = 4(aeu V) + T5A (00, V)F) = (s = V¥ 0.,V = 0, VHV),

since ¥ = a,.Y is the velocity vector field for the orbit v and a acts via isometries. Since

axLyV = (s = as.LyV), we have
a" (VM) (Vo) = (s = a0 (VHV = Ly V) = (s = a5u(VYY)) € Ty = 0*T|mg
Thus using 8 : a*T ~— T'M, we have a*(VEM4) = VMY, O
We now focus on the Riemannian case with F =T M.
Let 9, = QM be the equivariant curvature of the S'-invariant Levi-Civita connection V¥, and

let €2, be the equivariant curvature of VX, Since OF € (Clu] ® A*(LM, End(TLM)))5" takes

values in pointwise endomorphisms, its powers have the trace
Tr (G = f (% (s))ds € (Clu] ® A"(LM)S. (3.11)
L1

Referring back to (3.1), we can interpret this equation as the leading order trace of a form on

LM x S, so we also call (3.11) a leading order trace.
Lemma 3.2. a* Tr(CF) = tr((QM)*).

Since the curvature form is skew-symmetric, both sides are zero if k is odd.

Proof. Denote the orbit a(m) by <. Because the action is via isometries, we have [2, p. 209-210],

Q, = QLM _ GLM4, (3.12)
where QXM is the curvature of V2. On the right hand side of (3.12), 0¥ € A2(LM, Hom(T LM)),
and VEMy € A°(LM, Hom(TLM)). Thus for Y,Ys, Z € T,LM, Q,(Y1,Y2)Z = QEM(Y,Y,)Z —

VEM4y € T,LM. Because of the pointwise nature of the L? connection, we have

Q"M (Y1, a,Ya)(s) = Q¥ (aYa(s), auYals)), (VEE(s) = Valzw s (3.13)
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and for Z(0) € T, M,

OM(a,Y1(5),0:Ya(8))asx Z = u[QY (a4u(Y1(0)), 261 (¥2(0)) Z(0)] = as[QM ((Y2(0), Y2(0)Z(0)],
VY st = 0V, (3.14)

Let {e;} be an orthonormal frame of T,,M, so {as.e; = €;(s)} is an orthonormal frame at
Ta(m,s)M. 1t follows from (3.12) - (3.14) that

tr((a*(QLM - VLM’Y)k(Yi? e :Y-Qk)) = ((QLM - vPMﬁ/)k(as,*les ey as,*yék)(ei(s))} ei(s))a(m}{s)

is independent of s. Trivially averaging this expression over s to obtain ﬁu, we see that ﬁu acts
pointwise in s. Therefore

tr((@* Q) (Y5, .., Yo = (O — VEM4 (0,71, asuYor)(ei(5)), €(5))atm(s)

g=0

= {(QY - VYY)H(Y, ... Ya)(e), m (3.15)
= (Qﬁ'(}fh e ,sz)(ei), e’i)m
= tI‘(Qﬁ:)(Yl, ey Y'gk)m.

where the second line follows from (3.10) and (3.13) (and noting that V¥ is already equivariant).
There is one final average in (3.11) to obtain
& Te({8),, = [S (@ () agm]) s

However, (3.15) shows that

@ Te( Q) = [ (@ [(Sh) apmy@])F)d5 = tr((@*[(R)s])®) = ().
51
O

By this Lemma, we can extend the A-polynomial as a characteristic form in the curvature on M
to an equivariantly closed form on LM. The A-polynomial of a curvature form 2 can be expressed
as a polymonial in tr(Q%). In particular, A({,) is defined using the leading order trace Tr in
(3.11).

Let T be the restriction of T € TLM to the constant loops (M) C LM.

Theorem 3.3. (i) a*A((}) = A(QM).
(ii) A(S) is an equivariant extension of the A-form on constant loops, i.e. A(Q,) = A(QM)

when restricted to T|as.
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As above, these equalities use the isomorphisms i*T ~ ¢*T ~ T M to identify a*(VIM %), a*QFM
with VMY, QM respectively. (i) follows immediately from the previous lemma, standard Chern-
Weil theory, and the fact that the equivariant curvature satisfies the Bianchi identity [2, §7.1]. (ii)
follows from 4 = 0 on ¢(M).

Remark 3.1. (i) This discussion extends to equivariant hermitian bundles & — M and their
loopifications £ = m,ev* E — LM. Namely, we can take an invariant connection VZ on E,
form the L?/pointwise connection V¥ on £, average it to WV , and prove that the corresponding
equivariant curvatures satisfy

a* () = QF.
In particular, the Chern characters satisfy

a*ch(Qf) = ch(QF),

and the Chern character restricts to the ordinary Chern character on the constant loops. See
[21] for an alternative construction of an equivariant Chern character on LM. By the localization
formula for equivariantly closed forms, the top degree rational equivariant cochomology classes of
these forms are determined by their values on constant loops, where they agree. It remains to be
seen if the actual forms agree.

(ii) If QLM = QLM _ vIM4 is built from the L? connection and curvature on LM, the proof of
Lemma 3.2 (without the final §* average) implics that o* Tr(QF) = tr((QM)*). Thus a* A(QLM) =
A(QM). This is somewhat more natural than Theorem 3.3(i), but Q¥ and hence A(QEM) are not

equivariantly closed.

Recall that ¢ : M — LM by abuse of notation.
Definition 3.1. For an S* action a: S x M — M, set [a] = a,[M"] € H,(LM,7Z).

Since @ : M — LM is injective, we also denote its image by [a], an n-dimensional submanifold
of LM.

We now review the $'-index theorem. Assume M is spin and has an S* action via isometries.
St is also assumed to act on (E, V¥) covering its action on M, so the kernel and cokernel of #&
are representations of S*. The S*-index of $€ is the corresponding element of the representation
ring R(S'):

indg1{@or) = Z(a;: —a")u* € Zu, vt = R(SY),
where ¥ denotes the representation e® — ¢ of S* on C, and af are the multiplicities of «* in

the kernel and cokernel of @y=. For a general compact group G, the G-index theorem identifies
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this analytically defined element of R(G) with a topologically defined element. This is difficult to
compute in general, but there is a formula to compute the character of the action of a fixed g € &
on the index space [ker @yz| — [coker Pyz] € Kg(pt) = R(QG); this is often also called the G-index
theorem. For g = e® € S, the character is just indg:1(e™?, #2) = (o} — a* )e™*.

The Atiyah-Segal-Singer fixed point formula for the S*-index computes indg: (fyz) in terms of
data on the fixed point set of a particular e [2, Thm. 6.16]. Using the localization theorem for

integration in equivariant cohomology [2, Thm. 7.13 ], this can be rewritten as
indgi (e, Pos) = (2i)~dm0/2 / Au(8, 0)ch(8, ), (3.16)
M

[2, Thm. 8.2]. Here A,(6, Q) = A(Q)(#) € A*(M) is the evaluation of A(Q,) € (Clu] ® A*M)S'
at 6 € u(l). (For general compact groups @, this theorem only holds for group elements close to
the identity. For the S'-index theorem, both sides are analytic for # small, and so the equality

extends to all §.) For notational ease, we rewrite (3.16) as
Sl

s (Bos) = (2mi)~4m00/2 ]  A@uoh@p) (3.17)

with the left hand side evaluated at e™#*¢ and the right hand side evaluated at 8.

We can now restate the S’-index theorem for the Dirac operator as a result involving the
equivariant curvature of LM. Unlike the usual statement, in this version the action information is
contained precisely in [a], while the integrand depends only on the (action-compatible) Riemannian

metric on M.

Theorem 3.4. Let M be o spin manifold with an isometric S'-action, and let E be an equivariant

hermitian bundle with connection VE over M. Then
1

Tdgn (Bys) = (2m)~dim(0/2 / A@.)on(65).
[a]

Proof. By Thm. 3.3,

s N st _ st . st
f A(Q)eh(Q) = A()ch(98) = / a*(A(Q,)ch(05)) = A(Q)ch(QF).
[a] ax[M] [M] M
The S'-index theorem in the form (3.17) finishes the proof. O

Remark 3.2. (i) By the localization theorem, we have
gt 8 A0 Of
— o ~ A()ch(Q)
indg: (Por) = A(Q,)ch(08 =/ i e A
& (@V ) [a] ( ) ( u) [a]njw Xu(b’g'M)
where v¥ is the normal bundle of the fixed point set Fix(a) = [a] N M in [a], and ¥, is the

equivariant Fuler form.
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(ii) If we do not assume that the action a is via isometries, then as in [21], we should replace
the rotational action ks on LM by parallel translation along loops. The averaging procedure again
produces an equivariantly closed form extending a given characteristic form on M. However, Thm.
3.4 does not extend.

(iii) The integrand in Thm. 3.4 is not really independent of the action, since it depends on the
action-dependent metric. However, we can push this metric dependence out of the integrand as
follows. Let B be the space of metrics on M. B comes with a natural Riemannian metric g®, the

so-called L? metric, given at Ty, B by
gB(X1 Y) :f ggngancYdeVOlgo-
M

Thus LM x B has a metric h which at (v, go) is the product metric of the L? metric on T,LM
determined by go and g® on T,,B. This is not a global product metric, but it is not difficult to
compute the Levi-Civita connection and curvature F of h. We extend the rotational action on
LM trivially to LM x B, so one obtains an equivariant curvature F, . One directly computes that
FY = pTLME pTLM equals €),, where PTXM g the h-orthogonal projection of T(LM x B) to
LM. One obtains

Proposition 3.5. Let i, : LM X {go} — LM x B be the inclusion. If a is a go-invariant S

action on M, then
51

a@ = [ AFD).

igg.+la]
Thus the integrand is a universal form on LM x B, and the choice of action and compatible

metric are encoded in the cycle of integration.

4., GROMOV-WITTEN THEORY

In this section we relate string classes and leading order Chern classes to genus zero Gromov-
Witten invariants and gravitational descendants associated to characteristic classes. We also inves-
tigate when the integrals that often denote GW invariants are rigorous expressions. In particular,
we want to realize GW invariants as integrals of forms over the moduli space Mgi(A) defined
below, without using the compactification M ,(A). Thus we want to avoid both the construction
of the virtual fundamental class and discussions of non-smooth Poincaré duality spaces. This is
certainly not possible in general, so we restrict ourselves mainly to the semipositive case, where
the moduli space of pseudoholomorphic curves has an especially nice compactification.

Recall that GW invariants are built from cohomology classes ; on the target manifold M, while

gravitational descendants [4, Ch. 10] also involve ¥ classes, which are first Chern classes of line
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bundles on the moduli space of marked curves. We first relate gravitational descendants to string
classes (Thm. 4.1), and then relate GW invariants built from even classes on the target manifold
to string and leading order classes (Thm. 4.6). For most of this section, we work in the symplectic
setting. At the end, we make some comments about the algebraic case and the role of the virtual

fundamental class.

4.1. Notation. Following the notation in [14], let M be a closed symplectic manifold with a
generic compatible almost complex structure. For A € Hy(M,Z), set CF(A) = {f : P! — M|f e
C*>, f.[PY] = A}. Let G = Aut(P!) =~ PSL(2,C) be the group of complex automorphisms of P,
Set P} = {{z1,...,2x) € (P1)*: z; # x; for § # 7}. For fixed k € Zyy, set

Coa(4) = (C3°(4) x P)/G,

where the action of G on C§°(A) is ¢ - f = fo ¢~ and ¢ acts diagonally on P}. Denoting an
element of C§%(A) by [f,21,...,%x), we set the moduli space of pseudoholomorphic maps to be
Moi(A) = {[f,®1,...,2] : f is pseudoholomorphic}. Mg (A) is a smooth, finite dimensional,
noncompact manifold.

We impose the condition that all maps f are simple, i.e. f does not factor through a branched
covering map from P* to P*, In this case, the action of G on C§°(A) x P}, is free, and Cg5,(A) is an
infinite dimensional manifold of either Banach or Fréchet type.

The forgetful map 7 = 7, : C§%(A) — C§%-1(A) given by [f,31,..., Tp_1, 2] = [f 21, ..., T
is a locally trivial smooth fibration, since for disjoint neighborhoods U7, ..., Us_1 around a fixed

21,...,2Zr-1, we have

7 H(CR(A) x [[ U)/G) ~ [(CR(A) x [ U:)/G] x B2,

i.e., the fiber P = P!\ {=,...,7_1} consists of all choices for the k' point. This fibration
restricts to a fibration on the moduli spaces, but does not extend to compactifications of the

moduli spaces.

Let L; be the line bundle over C35.(A) with fiber T} P! over [f,zi1,...,2x]. This bundle is well
defined, since an automorphism ¢ gives an identification of tangent spaces d¢;. : Tg(m)}P’l — TP
Weset £; =mL; fori=1,..., k. The fibers of £; are given by

Eil[f,m,...,mk_l] = {S P — T;i]lml}, i=1,...,k—-1,
L:k , [flxlv"axk—ll = P(T*IP_)'

If we put a Sobolev topology on C§5.(A) (i.e. we consider two maps close if their first s partial

derivatives are close for a fixed s 3> 0), then Cf5,(A) is a Banach manifold and so admits partitions
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of unity. Thus the L; have connections. In any case, we are interested in f; restricted to the finite
dimensional manifold Mg ;(A}, so the existence of connections is not an issue.

We want to choose connections that do not blow up as z; — z; in P;. Since the line bundle L]
with fiber T} P! is a well defined line bundle on (P*)*/G, it restricts to a line bundle on P}, which
then pulls back to the bundle L; on Cf5,(A). We always take connections on L, as these restrict
to connections on L; which are well behaved on IF’,’;.

The £; have leading order first Chern classes, but it is better to consider the associated string

classes. Definition 2.2 in the current context is as follows.

Definition 4.1. The string class ™" (L;) € H*™*(Moz-1(A)) or in H™-HCS,(A)) is the de

Rham class of

[,

where Q; s the curvature of a restricted connection on L;. Thus ¢ (L£;) = m(e1(L;)7), where m,

is the pushforward map given by integration over the fiber.

Since [Tr(Q,)]" is a closed form, the right hand side of the definition is closed. Here we use
the fact that for restricted connections on L;, the integral over the fiber exists and extends to the
compact space P*. The usual arguments that ¢ is closed {which uses Stokes’ Theorem on [P?)
with de Rham class independent of the connection carry over.

Note that for » = 1, the string class ¢§*(£;) € H? is the (constant function) —2 + k, since
S Tx(Q) equals x(T*P'} = —x(TP).

Let evF : C§5(A) — M* be ev¥[f,z,..., 2] = (f(z1),..., fz)), let p; : M* — M De the
projection onto the #* factor, and set evf = p; o ev® : C%(A) — M. Then evf = evi ' or for

i < k. When the context is clear, we will denote ev* by ev.

4.2. Semipositive manifolds. We will give cases when GW invariants and gravitational descen-
dants can be detected by integration of forms over the moduli space Mg k(A), without using the
compactification My ,(A). This is expected to happen if the boundary strata have codimension at
least two in Mg x(A), e.g., if M is semipositive [15, §6.4]. The main results of this section justify
this integration over just My .(A).

For the rest of this section, except for the remarks at the end, we assume that M is semi-
positive. For motivation, we first pretend that ﬂo,k(A) carries a fundamental class. Then for

o; € H%(M,C) of appropriate degree, the GW invariant associated to the o; is
{og...a) E v, [Moi(4)] - & = (PDevi [ Mo i{A)] U o, [M*]) (4.1}
= {o,evi[Mo(A)]) = (ev* o, [Moi(A)]).
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Here @« = a; x ... x ap € H*(M;) and a = PD a is the Poincaré dual of a. In (4.1), we use
the characterization of Poincaré duality: for ¢ € H,.(X,Z),3 € H*(X,Z) on an oriented compact
manifold X,

(U B, [X]) = (B, a). (4.2)

To do this more precisely, we follow the careful exposition in [22]. For M semipositive,

dev® [ ev(Mux(AH\K) cM*

K compact
lies in the image of a map of a manifold of dimension at most dim Mg i(A) — 2 := r — 2. Recall
that 7 = dim M + 2¢,(A) + 2k — 6, with ¢,(A) = (a1(M), A). Thus by definition Mg (A) defines
a pseudocycle in M*. By [22, Prop 2.2], there exists an open set U = Uy, in M* with

devc Uc M*, H.(M*U.Z)~ H.(M* L) (4.3)
(see (4.7)). Let V be a compact manifold with boundary inside Mg (A) with
Mok (A)\ ev HT) C V;

we think of V' as “most of’ Mgi(A). Specifically, ev,[V] € H.(M*,U;Z) ~ H.(M¥*,Z) is a
substitute for the ill-defined ev.[Mp;(A)].

Definition 4.2. The GW invariant associated to o is
(ay...ap) =ev,[V] a€Z,

provided 3, |og| = kdim M — r, for |oy| the degree of a;.

The GW invariant is independent of the choice of U and V. More generally, we can take positive
integers £; with 3, fi|o;| = kdim M — r, take @ = PD o) = PD{a® x ... x ¢/*), and similarly
define {of! ... o).

There is an integer g such that ga has a representative submanifold NV; if IV is unorientable, we
have to pass to its oriented double cover. Of course, PD(N) = ga, but we can represent « by a
compactly supported closed form, the Thom class of the normal bundle of N in M*, thought of as
a tubular neighborhood of N. Then

(ol ...y = éev*[f/] N = 3(PD(N),ev*[I7]) - é(ev* PD(I), [7]).
In the last term, [V] € H,(Myi(A), Mor(A) = V;Z) and ev* PD(N) € H" (Mg (A4),R). Since
ev* PD(N) is a differential form, we can write
1

(afl e cxi") = Ef ev* PD(N) (mod Mg (A)\ V), (4.4)
My, (A)
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where mod Mo (A) \ V imposes the relation f, 6 = 0 for a form 6 and a submanifold, possibly
with boundary, K C Mgi(A) \ V. The modding out ensures that (4.4) is independent of the
representative of PD(N). This justifies writing a GW invariant as the integral of a form over
Mo (A).

From now on, we assume g = 1 for convenience and drop “mod Mgz(A) \ V.

To bring in the bundle £;, define the gravitational descendant(or gravitational correlator) asso-

ciated to classes o ... o € H*(M,C) and multi-indices (41,...,%), (r1,...,7%) by

el .. el on = / clL))* Aaf AL A (D)™ Aok,

My, (A)
Here Ei 27'2' + Ezlazl = dim ngk(A).
We set
(trof . A ™ Yok
= j er(D)™ Aeviaf AL Ay (Dp_1 )™t Aevi_y ot ASETR(L).

Mo, x—1{A)

Theorem 4.1. For ¢, = 0, the gravitational descendents satisfy
Y
(raf . a0 = (el e T g
Corollary 4.2. (Dilaton Aziom) [4, p. 306] For rp =1,
(ot o ttidor = (=2 + AN ad G2 o o ket

Proof of the Theorem. For a fibration Z — M — B of smooth compact manifolds, we have for

w € A*(B),n € A*(M),
f W AT =/ WA T, (4.5)
M B

In particular, this holds for P2 — Mg .(A) LN Mo —1(A) provided the forms extend to the
closures of the moduli spaces.
For this fibration, we can extend (4.5) to integration mod My (A) \ V provided

Te(Mox(A) \ Vi) C Moga(A) \ Vi, (4.6)

where appropriate subscripts for V' have been added.
We first sketch the proof of (4.6). By [22, Lemma 2.4], for a fixed generic triangulation T' of M*
with simplices o, the set U = Uy, in (4.3) is given by

dim M*

Uy = U |J st(bs,sa T), (4.7)

m=dim M*—dim Mg x{4) &lo]=m



KSTS/RR-14/001
January 6, 2014

CHARACTERISTIC CLASSES ASSOCIATED TO FIBRATIONS 19

where b, is the barycenter of ¢, sd is the first subdivision of T', and the star St(b,,sd T') consists
of the interior of all stmplices in sd K containing b,. (We don’t distinguish between the simplices
in the triangulation and their images in M*.) By the proof of [22, Lemma 2.4], we can restrict
the simplices in U, by any subset of {¢ : |o| > dim M* — dim Mg (A)}, provided we keep all
the top simplices that meet 8 evy . Given Uy—1, we will suitably restrict Uy so that p(Uy) C U1,
for p : M* — M*~! the projection onto the first ¥ — 1 factors. Since 7 is a fibration, we will
conclude that z ¢ V;, implies m(z) € Vi—1, which is (4.6).
To fill in the details of (4.6), we note that

E!\i"’c k
Mop(A) — M

ﬂkl J/P {4.8)

Mg,k_l(fl) —_1) M1

evk

commutes, with 7 and p surjective and open. It follows that for X ¢ M*1,
(ev* ) 7HX) = m(ev®) p T (X). (4.9)

We claim that
p(8evF) c devil. (4.10)

To see this, recall that devt = evF(OMr(4)), and points in dMyr(A) are given by Z =
[h,y1,...,¥), for h a pseudoholomorphic maps on smooth curves or cusp curves (i.e., curves
with bubbling), with the y; possibly coincident. Choose such a Z and set ev®(Z) = Y. Take com-
pact sets K; exhausting M* with p(K;) exhausting M*~, and choose F = ev*[f%,zi,...,2i] & K;
with lim; F* =Y. Then

k—1 1

p(Y) =limp(F) = limpev®[f,zl,..., 2] = imevF  m, [ ff b, ..., 28] € BevF .
1 K3 2

As mentioned above, choose Ui_; to contain only those top simplices %P which meet ev®-!.

Refine the triangulation of M* to a new triangulation, also called T, so that each p~'(c}%,) is
the sum of top simplices in T. Set Uy to contain only the simplices in p~*{Up-1); by (4.10),
Uy, = p~}(Ui—1) is an open neighborhood of 8 evy, and

ze Uy plx) e U

By (4.9), mrevi'(Uy) = evi!,(Ur_1). Thus for a choice of compact manifold with boundary
Vi1 € Mog—1{A} \ evit,(Ur—1) and a slight perturbation of my, V; = m;(V;-.1) is a manifold
with boundary containing Mg x(A4) \ evil, (Ue—1). Finally, V} misses a smaller open neighborhood

of My i(A), so the closed set V;, is contained in a compact subset of Mg i(A). Thus V; is compact.
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By this construction, (4.6) is satisfied, so we can apply (4.5) to the fibration PL —s Mg (A) 2
Mo -1(A).

By (4.8), 7} evy_, = evj 7*, which we abbreviate by dropping 7 and denoting m, by m: 7#*evi_; =
evy . Since Ly, that is, L; as a bundle over My (A), satisfies 7*L; 1 = Ly for i < k, by (4.5)
we have (with even more subscripts omitted)

G g AR

= / * (cl(Ll)” Aeviaft Ao Ac(Lp-y)™ Aevi_y ofs ) A en(Le)™
My, (4)

/ e Aevial A A (Lea)™ ! Aevi, a Tt Ameey (Ly)™
Ma,x—1(4)

fp—1 str,r
= (e . T o okt

O

For pure GW invariants, we investigate the geometry of the fibration 7. The next series of

lemmas hold for moduli spaces of genus g curves.

Lemma 4.3. = is flat; i.e., for each [f,1,..., 25 € C55%.(A), there exists an integrable distribution
Hif iy, i) C Tifo1,m] Con(A) such that

T[f,m,---,wk] Cg,ok(A) = ker(ﬂ-*) @ HIfm.---,wk]'
Corollary 4.4, 7 : Mpi(A) — Mg,k_l(A) is flat.

Proof of the Lemma. Let v(t) be a curve in C§%.(A) with 1(0) = f, and let ¥(£) be curves in P!
with v(0) =z; fori=1,...,k — 1. Set
H[f,w]_,...,:nk] = {(d/dt]t=0)[70(t)771 (t)) LR 'Yk—l(t)7 .’.Ek] S0y oy Tk—1 A8 above}
= {[70(0)1 71(0)1 P :’.Yk—l(o)v O]} .

Since

(d/dt)i=0)[vo(t), 11 (2), . - -, Yoa(t), 2] = (d/dt|i=0)[0(E) c 8™, G o (E)s ..., o Yha(t), k),

H is well defined.

Let X" be the horizontal lift of a vector field X on C§3_;(A), so X" is of the form
[Xo, X1, ..., Xx-1,0]. The Lie bracket Lx»Y" is computed using the flow of X*, which is locally of
the form [no(2), m(2), .- ., Me—1(t), zk]. Thus X = [%(0),71(0),...,7—1(0)] and similarly for Y, so

(X", Y] = LynYh = [LxY,0] = [X,Y]" € H. (4.11)



KSTS/RR-14/001
January 6, 2014

CHARACTERISTIC CLASSES ASSOCIATED TO FIBRATIONS 21

(The second bracket in (4.11) refers to a point in Mg ;(A).) O

Let (F,V) be a finite rank hermitian bundle with connection over C§3(4), so F = = F is
an infinite rank bundle over C§5_;(A). As in §2, . F has the connection 7,V = V' defined on
s € D(m,F) by

Vislf @, .o, Bp—1) = Vixad[f, 21, . . ., T2,

where §[f,z1,...,zx) = s[f, %1, .., Tr-1,Zz). By Lemmas 2.1, 4.3, we have

Lemma 4.5. Let (F, V) — C53.(A) be a bundle with connection with curvature Q. In the notation
of Lemma 4.5, the induced connection V' on F = m.F has curvature V' (X,Y) = Q(X", Y™).

Let o; be elements of the even cohomology of M. Since the Chern character ch : K(M) ®
C — H®(M,C) is an isomorphism, a; = ch(E;) for a virtual bundle E; (: = 1,...,k—1), and
ai‘“ = ch(E;). Pullbacks and pushdowns of the E; are well defined virtual bundles.

Theorem 4.6. Let oy € H* (M, C) satisfy o; = ch(E:), i = 1,...k — 1, and let ot = ch{Ey) for
E; € K(M). Set & = moevi By — Mop—1(A). Then
(@ . oFor = (ch®(E1) - ch®(Eim1)ch®(Ex))o -
Proof. Pick connections V; on E; with curvature ;. Then
(aft ... oy, (4.12)

= fM " ev}([Tr(exp()]2) A ... Aevi_, ([Tr(exp Qr—1)]%-1) A evi([Tr(exp Q)
N / [Te(n* eviexp(Qa))]® A ... A [Tr(n” evi_y exp(-1))]% " A [Tr{ev exp )]
Mo,r(4)

_ f Tr(ev? exp(Q))% A ... A [Tr(evi_, exp(Qe_1))]* A [ Tr(ev? exp(€))].
My r-1(4)

We have
o ([Trevi exp())]*) = ch™ (&),
where & = 7, ev} Ey.

We claim that in the last line of (4.12), [Tr(ev} exp(£2;))] is the leading order Chern character
for & = m.E;, for i < k. Dropping the index 4, let ev, : Mog(A) — M,evg: Mogp1{A) — M
be the i-th evaluation maps. Then the leading order Chern character for £ as a differential form
is given by

ch®(EN Xy, ..., Xor) = /.ﬂ” Tr(exp(Q°=E))(X2,. .., X2 )dvolp,
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by (2.2). Since
Tr(exp(Q75))o (XY, ..., X5) = Tr(exp(@™ *27)).(XT, ..., X5)
= Tr(exp(Q®E)),(mXE, ..., mX2)
Tr(exp(Q™4 #)) (X5, ..., Xar)

is independent of z € P, we get
ch®(£) = f Tr(exp(Q®* £))dvolp = Vol(P') Tr{exp(Q®% F}) = Vol(P') Tr{ev* exp(Q2F)).
Pf

Setting the volume of I’ equal to one finishes the claim and the proof. O

We briefly discuss the algebraic setting. M is now a smooth projective variety, with M, ((A4),
M, (A) the moduli space/stack of stable maps of a fixed genus g curve into X representing
A € Hy(M), and its compactification, respectively. The forgetful map 7 : M. (A) — M, i—1(A)
exists as long asn+2g >4 or A# 0 and n > 1 [4, p. 183]. Provided the open moduli spaces are

oriented manifolds, we can represent a suitable multiple of & € H,(M,~1(A), Z) by a submanifold

N, and then
/w/\ﬂ'*n=f 7w AN,
N n~lN

for w € A*(Myr—1(A)),n € A*(M,yi(A)) compactly supported forms.

For a fibration M - B of oriented compact manifolds, define the homology pullback
7* 1 Hy(B) — H,(M) by 7* = PD}} o * o PDg, where 7* on the right hand side is the usual
cohomology pullback. By (4.2), (4.5),

fw/\mn-—-fw/\mn/\PDB(N):/ W*UJ/\'I]/\TF*PDB(N)=/ 7w A7, (4.13)
N B M N

where we identify N with its homology class.
We would like to apply (4.13) to [N] = [M s-1(A)]""*, the virtual fundamental class of M, _;(A).
Provided M, ;—1(A), M, 1(A) are orbifolds, we have

/ w/\ﬂ'*n:/ 7w A7,
Mg k-1 (A)]Vir (Mg (A)]virt

since 7 [M g1 (AN = [Mx(A)¥" [4, (7.22)]. The moduli spaces are orbifolds if e.g. g = 0
and M =P* (or more generally if M is convex) [6]. In these cases, Theorem 4.1 continues to hold,
since string classes are given by topological pushforwards. However, for Theorem 4.6, we would
need to know in addition that ev} E; admit (suitable variants of) connections over the compactified
moduli spaces, since the leading order classes are constructed from connections. It is not clear

that this is possible.
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5. LEADING ORDER CHERN-SIMONS CLASSES ON LOOP GROUPS

In this section we return to loop spaces in the special case of based loop groups QG. We define
Chern-Simons analogues of the string and leading order characteristic forms of §2. The main result
is that H*{QG, R) is generated by Chern-Simons string classes {Thm. 5.4) or by a pushforward of
of leading order Chern-Simons classes (Thm. 5.5). The relation between these different approaches

is also given in Thm. 5.5.

5.1. Relative Chern-Simons forms on compact Lie groups. We first express the generators
of the cohomology ring of a compact Lie group in terms of relative Chern-Simons classes.

Let E — M be a rank n hermitian vector bundle over a closed manifold M, and let Vy, V; be
connections on E. Locally, we have V; = d + w;, and w; — wy is globally defined. Let Q; be the
curvature of the connection V; = tVy+(1—t)V;. For a subgroup G’ of U(n) and an Adg-invariant

polynomial f, the relative Chern-Simons form
1

CS;(Vo, V) = [ Flun i, .., 00)ds (5.1)
0

satisfies f(€) — () = dCS;(Vy, V1), provided the V; are G’-connections.

Assume now that F is a trivialized bundle and Vy = d is the canonical flat connection. A
gauge transformation h € Aut(E) yields the flat connection V; = h- Vo = h~'dh. We have
wy—wp = h~'dh and O = Cy[h~'dh, h='dh] for C, > 0. Note the confusing notation for V; = A~1dh
and the global connection one-form A~'dh. In any case, C'S; is a closed form of odd degree and so
determines a Chern-Simons cohomology class.

Let G be a compact Lie group with Lie algebra g and Maurer-Cartan form #%. Choose a finite
dimensional faithful unitary representation ~ : G — Aut(V) with Im(h) = G'. We may assume
that h is the exponentiated version of a faithful Lie algebra representation dk = h, : g — End(V).
For V — @ the trivial vector bundle G x V — @, we can view h as a gauge transformation of

V. Let Vy = d and V; = h~1dh be connections on V as above. As before, w; —wp = h~*dh, where
Rldh|g(9.X) = R (g) dhy(9.X) = A~ H{g)R(g)ha(X) = ha(X),

for X € g. Here g, = (L,)« is the differential of left multiplication by g. Thus A~'dh = h,(f%) €
AYG,End(V)).

An Adg-invariant polynomial f on g determines an h{G)-invariant polynomial A, f on Im(h,) C
End(V) by

(h*f)(ala Qgy vy a.‘c) = f(h‘*_lala s rh’*_lak:)'
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In particular,
f(6%,(6°,6°),...,[6%,6%) = (R YR dh, [R" dh, k7dR),. .., [h " dh, K1 dR)).
The corresponding Chern-Simons form is equal to
CS5(Vo, V1) = C(h.f)(R™1dh, [k~ dh, k™ dR], ..., [ dh, b~ dR)),

for some C' # 0.
The following result is classical [18, §4.11].

Theorem 5.1. Let {f;} be a set of generators of the algebra of Adg-invariant polynomials on g.
Then {£;(6%,[6%,6%],...,[0%,8°))} is a set of ring generators of H*(G, R).

Thus H*(G,R) is generated by Chern-Simons classes:
Corollary 5.2. For {f;} as above, CS},(Vo, V1) is a set of ring generators of H*(G, R)

For example, for G = U(n) itself, the generators are given by Tr((h~'dh)¥), although these

generators vanish for k = 1, k even, and k > n? —n.

5.2. String Chern-Simons forms on loop groups. Using [18], we show that generators of
the real cohomology ring of a loop group can be written as Chern-Simons forms for a finite rank
bundle.

From now on, G denctes a simply connected compact Lie group. Let G be the group of smooth
loops based at the identity. £2G in the compact-open topology is an infinite dimensional Lie group
with the homotopy type of a CW-complex. As in (3.1), the evaluation map ev : QG x §! —
G,ev(y,8) = v(8), gives

E=mev*V — QG

Of course, QG x5! 5 QG admits a flat connection. The g-valued one-form ev* h,8% = ev*(h~2dh)
on QG x S decomposes as

ev*(h™dh) = £+,
where &, resp. 7, are supported on G, resp. S?, directions.

It is easy to calculate £ and n.
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Lemma 5.3. (i) At (7,t)} € QG x §%,
n=7"(t)¥(¢)dt. (5.2)
(1) For (14X, 0) € Tyt (G % ST), we have
Elmto) (X, 0) = X (fo). (5.3)
Proof. (i) For (0, 8,) tangent to {7} x S!,
Mirt0) (0: 8) = ev* (A7 dR)|(3,45) (0, 81) = (R7"dR) 420 (ev4(0, B1)) = ¥(to) ™ ¥(t0).

(ii) We have

fl(’y,tu)('Y*X: O) eV*(h_ldh)l{'r,to)('T*Xs 0) = (h_ldh)|‘r(to)(ev* (’T*X, 0))

= (A7 dh)|yt) (7(t0)« X (t0)) = X (to)-

By Theorem 5.1, a set of generators for H*(QG,R) = H*(Q}G, R) is given by

\/.Sl ft([gag]: ) [E,E]aﬂ) (54)
_ / £ (lev* (k™ dh), ov* (B2dR)), . ., [ev* (R dR), ev*(h=*dh)], ev* (A~ dR)) ,
Sl

for {f;} a set of generators for the algebra of Ad-invariant polynomials on g. To go from the
first to the second line in (5.4), we use [ev*(h1dh),ev*(h71dR)] = [ + n,£ + 7] = [£,€], and
Jo fi([6:€),- . [6.€1.§) =0.

We want to recognize the right hand side of (5.4) both as a string version of a Chern-Simons form
and as a contraction of a leading order Chern-Simons form. To begin, we give the Chern-Simons

analogues of the primary string and leading order forms of §2.

Definition 5.1. (i) Let Z — M - B be a flat fibration of manifolds with Z oriented and
closed. Let E — M be a vector bundle with structure group G and with G-connections ¥V, V1,
and let £ = m, F —> B be the infinite rank pushdown bundle. The string CS form on £ associated

to a degree k invariant polynomial f on g is
C ST (1Yo, m V1) = mCSF(Vo, V1) € A*17%(B),

where z = dim(Z).
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(it) Assume in addition that M is Riemannian. Let T : A*(M) — A*(B) be the averaging map
(2.8). The leading order CS form associated to f is

CSP(m Vo, V1) = T(CSF(Vy, V1)) € A*71(B).

Note that there is a corresponding more natural definition for principal G-bundles, which is the
setting for primary string classes in [9], [16].

We see that the generators in (5.4) satisfy
/ fi (lev*(h7dh), ev*(h7'dh)], ..., [ev* (R dh), ev* (R dh)],ev* (A dR))
Sl

= mf; ([ev*(h7dh),ev* (b7 dR)], ..., [ev*(h ™ dh),ev* (R dR)], ev* (k™' dR)) (5.5)
= mCSy(ev* Vg, ev* V1),

where Vy = d, V1, = h~'dh are connections on V as before. Of course, ev* V; is a connection on
ev* V, so we write CSy,(ev* Vg, ev* V) = C’S;:’Z(ev* Vo, ev* V1 ). More explicitly, a = hoev is a
gauge transformation on ev*V with a='da = ev*(h~1dh). Therefore, ev* Vy = d,ev* V; = o lda,
and

TF*CS;:'K(GV* Vo,ev* Vi) = m.fi ([e”'da, a7 da], ..., [a™"da, e~ da],a " da) . (5.6)

Applying the definition of string CS8 forms to E = ev* V, M = QG x §*, Z = §* and using (5.4),
(5.5), we obtain

Theorem 5.4. Let G be a compact Lie group, let {f;} be a set of generators for the algebra of Ad-
invariant polynomials on g, and let &' : g — End(V) be a faithful finite dimensional representation
with exponentiated representation h : G —» Aut(V). Take connections Vo = d,V, = h™dh =
hh onV = G x V. Then H*(QG,R) is generated by

e
CS"™ ™ Hmaev® Vo, myeev™ V1),

1

5.3. Leading order Chern-Simons forms on loop groups. For the case of circle fibrations
S' — M — B, there is a relation between the string classes and the leading order classes, both
for Chern and Chern-Simons classes. We will only treat the CS case for the loop group fibration
8! — QG x §' — QG, but the results immediately extend to loop spaces and other flat circle
fibrations. In particular, the construction below produces nontrivial examples of leading order
Chern-Simons forms on loop groups.

Pushing down the trivial bundle ev*V — QG x §! gives a trivial infinite rank bundle V =
meev* (V) — QG with fiber C*(S*, V). Associated to the gauge transformation h of V is the
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gauge transformation
h: QG — Aut(V),

given by hy(s)(t) = hypy(s(t)) for s € C*(S', V). By abuse of notation, 2~1dh € AY(QG, g) =
AYQG, C=(S') ® g} can be identified with the Maurer-Cartan form ¢ on (G, and we have
connections Vg = d,%l =%V = h~'dk on V. For an Adg-invariant polymonial f on g, it is
convenient to introduce

C874= (Yo, V1) & £(67¢,[67€,60).., [67¢,676)) (5.7)

= f(h7'dh, [ dh,h " dhR) ..., R~ dh, R~ dh)).

. This is the analogue of taking the trace in the integral in (2.4). CS}ZG’OO(ﬁg, V1) € A*(QG, C(SY),

because f only acts on the g part of C*°(S') ® g. In particular, the averaging map in Definition
5.1 satisfies

S (7, Vo, m,V1) = T(CS2 K(Vy, V1)) = f C879 A, (5:8)
Sl

Let x(v) = % be the fundamental vector field on QG with associated Lie algebra valued function
x(7) = 69°(%) = 771 € Qg. Note that for w € A*(QG,C®(8Y), 1y faw Adt = [ tw A dt,
because ¢, involves QG variables and the integral involves the S* variable.

We can now relate the string and leading order CS classes, and prove that the contraction of
the leading order CS classes with y generate H*(QG).

Theorem 5.5. Let f be an Adg-invariant polynomial on g. Then for the connections %0, 61, we

have
ix(C57 (Yo, V1)) = CS7 (Vo, V).
In particular, if {f;} generate the algebra of invariant polynomials on g, then the closed forms
ix(CSEY(Vo, V1)) = 4 / 1 CSFO™(Vo, Vi) A dt
s
generate H*(Q1G).

Proof. By (5.8), we have

1 (CS2V (0, 1)) = f R 0889(To, %) At
ot
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Take vX1,...,Xok—2 € T,QG, where X; € Qg and k = deg(f). Then for permutations o €

Yok—2,
(_/51 LXCS?G’OO(ﬁo, %1) A dt) ("}’*Xl, . ,’}’*ng_g)
= Z lal [91 f ([Xcr(l):Xa'(Z)]) RN [Xa(k—B)a Xﬁ(Zk—Z)]:rY:l(t)ry(t)) dt
o O (G TR0} [OF R s
= CSF(Vo, Vi)(%X1, ..., mXanz),
where we use (5.2), (5.3), (5.7). 0

As an example, the even cohomology classes of the stxing CS forms [, tr{e, (h~1dh)?*~1) generate
H*(QU (n), R), whereas the odd cohomology classes of the leading order CS forms [, tr((A=dh)?~1)
vanish.

In summary, both string and leading order Chern-Simons forms give representatives of the
generators of H*(Q2G, R). The use of string CS classes is more natural, reflecting the fact that the
primary string classes are topological objects. In fact, the relation between the string CS classes

and the contracted leading order CS classes appears only because we have an S'-fibration.

6. LEADING ORDER CLASSES AND,CURRENTS IN GAUGE THEORY

Let P — M be a principal G-bundle over a closed manifold M with compact semisimple group
G. We denote by A*, resp. G, the space of irreducible connections on P, resp. the gauge group
of P. In this section we show that the leading order Chern classes of the canonical connection on
the principal gauge bundle A* — A*/G = B* are related to Donaldson classes.

We put appropriate Sobolev norms on 4* and G, so that the moduli space B* = A*/§ is a Hilbert
manifold. The right action of G on A is the usual A - g = Ad,(A), recalling that A € AP, g) with
the adjoint action on g. Set Ad P = P Xaq 9. The tangent space T4.A is canonically isomorphic
to AY(M,Ad P). A fixed metric A = (h;;) on M induces a Riemannian or L? metric on T'A by

(X, Y)g = / hij (Ai, Bj)dVOl},,,
M

where X = A;dz?,Y = B;dz’ € TaA and (, } is an Adg-invariant positive definite inner product
on Ad P. Since the derivative of the gauge action (also denoted by -g) is X - g = Ady(X), the
metric is gauge invariant.

The Lic algebra Lie(G) of G is A°(M, Ad P), which has the L? metric (f, g)o = f},(f,g)dvol,.
Let d4 : Lie(G) = A°(M,Ad P) — AY(M,Ad P) be the covariant derivative associated to A.
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Then the vertical space of A* — B* at A is Im(d4). It is straightforward to check that the
orthogonal complement ker d% forms the horizontal space of a connection on A* — B*. Let w be
the corresponding connection one-form.

Let £ be the curvature of w.  is horizontal. An explicit formula for Q2 is known [7, 20], but to

our knowledge the following proof has not appeared.

Lemuma 6.1. For X,Y horizontal tangent vectors at A, we have
UX,Y) = ~2G 4 x [ X,+Y] € Lie(G).
Here Ay =dhda, Ga = Agl is the Green’s operator for A4, and * is the Hodge star associated
to h.

Proof. For X € TyA*, let X" X denote the horizontal and vertical components of X. As a

vertical vector, the curvature of w at A is
QX,Y) = dw(XMYH) = XMw(Y™) - YHw(X") - w([(X*, Y4))
= —w(X"Y") = ~[X" Y,
for any extension of X, Y to vector fields near A. We have
X? = daGadi X, X"=X —dsGadhX.

In a local trivialization of A* — B*, we can write [X", Y] = §xn ¥ — &y X"
We may extend X,Y to constant vector fields near A with respect to this trivialization, so for
any tangent vector Z, §zY = dzX =0 at A. Then
JXth' = 6X—dAGAd;§X(Y - dAGAd*AY) = _JX—dAGAd:;XdAGAdZY
= —(0xda)GadyY —da(6xGa)dsY — daGa(xdh)Y
+(5dAGAd:‘4_XdA)GAd:1Y + dA(adAGAd;XGA)d*AY + dAGA(ﬁdAGAdeXd*A)Y
= —dAGA(é-XdZ)Y + dAGA(deAGAd*AXd*A)Y:
since d4Y = 0 at A. Locally, d% = — % da* = *(d + [4, ]}, so
bxdly = —(d/dt}|i=o * (d + [A + X, %]} = — % [X, %]
Thus
5thh = dAGA * [X, *Y] — dAGA[dAGAd:lX, *Y] = dAGA * {X, *Y],

since d3 X = 0.
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For X = A;e',Y = B;é’ in a local orthonormal frame {e'},

[X,%Y] = [A;, Bjlet Axel = Z[Ai’ Bile' A#e' = — Z[Bi,Ai}ei Axet = —[Y, % X].

Therefore §xn Y — §yn X" = 2d4G 4 * [X, *Y]. This gives
QX,Y) = —daGady(6xn Y — 6yn X") = —2dsGadtdsGa * [X,%Y] = =2d4G 4 * [X, +Y]
as a vertical vector. Since d3' is takes vertical vectors isomorphically to Lie(G), we get
QUX,Y) = —2G, = | X, #Y] € Lie(G).
O

The curvature takes values in Lie(G) = A°(M, Ad P). Up until now, we have only considered
connections on vector bundles, where the curvature takes values in an endomorphism bundle. If
G is a matrix group, Lie(G) has a global trace given by integrating the trace on g, the fiber of
Ad P. In general, Lie{(G) can be thought of as an algebra of multiplication operators via the
injective adjoint representation of g. Equivalently, we can pass to the vector bundle Ad A* =
A* xg Lie(G) with fiber Lie(G) and take the leading order classes of its associated connection
dAd(w), whose curvature [, -} is usually denoted just by Q. Either way, the leading order Chern
form c°(Q?) of A* — B* is a positive multiple of

f tr(Q%)dvoly.
M

We claim that if dim(M) = 4, we can identify c(2) with Donaldson’s v-form. We briefly recall
the construction of this form [5, Ch. 5]. Let P = 7*P —» A* x M be the pullback bundle for
the projection 7 : A4* x M —s M. P = A* x P has the connection A on the slice {A} x M. P
descends to a G* = G/Z(G)-bundle, denoted P*4, over B* x M. P* — B* x M has a family
of framed connections, denoted (A4, ¢), once a framing is fixed at some my € M. For example, if
G = 8U(2), then P* is a SO(3)-bundle. v is defined by

_ 1 ad
V= 4p1(P )
By the calculation in [5, §5.2], the form v = p'°(A4*) = P((Ad A*} ® C) is given by

V(X1 Xg, X5, Xy) =c- Z sgn(o) fMtT(GA * [Xo(1), *Xo(2)] G4 * [Xoa), * X o) )dvol,

oEXY

for some constant ¢. By Lemma 6.1, we obtain.

Proposition 6.2. As differential forms, v equals p'°(A*) up to a constant.
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It is of course more interesting to relate leading order classes to u(a} for a € Ha(M,Q), and
Donaldson’s map p : H,(M,Q) — H*™*(M, Q). (M is the moduli space of ASD connections.)
Recall that i(a) = ¢*(v/a), for the slant product v/ : H,(M,Q) — H**(B*,Q) and i : M — B*
the inclusion. In particular, v = p(1) for 1 € Hy(M). The difficulty in showing that M has a
fundamental class, so that the slant product is defined, is similar in spirit to the issues treated in
g4.

There is a positive integer k£ such that ka has a representative submanifold, and therefore PD{ka)
has a representative closed two-form w. If k # 1, we replace w by k™~ w. In general, let w be a closed
two-form on M. By [5, Prop. 5.2.18], the two-form C,, € A?(M) representing v/a = v/PD™}(w)
and hence p{a) is given at [A] € M by

Co(X,Y) = % /M (X AY) Aw+ # /M 62(Q(X, Y) Fa) Aw, (6.1)

where Fj is the curvature of A. On the right hand side, we use any A € [A] and X,V € Ty A*
with d4 X = d4Y =0.
There is a leading order class associated to any distribution or zero current A on C*® (M), given
pointwise by
ot = Atx(0F)),

where (2 is the curvature of a connection taking values in the Lie algebra of a gauge group, as
in this section. (More generally, there are leading order classes associated to distributions on the
unit cosphere bundle of M for connections taking values in nonpositive order pseudodifferential
operators [12], [17].) In particular, for a fixed f € C*(M) we have the characteristic class

/M £ - ().

We can turn this around and consider tr{Q2*) as a zero-current acting on f. Looking back at (6.1),

we can consider the two-currents
tr(X AY), tr(Qa(X,Y}F,), (6.2)

for fixed X,Y. Thus we can consider C as an element of A%2(M,D?), the space of two-current
valued two-forms on M.

Because these two-currents are Adg-invariant, the usual Chern-Weil proof shows that C(w) = C,
is closed. (Its class is of course independent of the connection on A*, but we have a preferred
connection.) C is built from Ade-invariant functions but only the first term in (6.2) comes from
an invariant polynomial in Lie(G)¢. Nevertheless, we interpret (6.1) as a sum of “leading order

currents” evaluated on w.
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Proposition 6.3. Fora € Hao{M* Q), a representative two-form for Donaldson’s p-invariant u(a)

is given by evaluating the leading order two-current

Lf tr(X/\Y)/\-—l——lif tr(QA(X,Y)Fa) A -
M 2% Ju

872

on any two-form Poincaré dual to a.
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