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ABSTRACT
Proceeding to the previous paper, we shall treat the theory of G.H.A. in the strip domain
by the use of our theory of G.H.T.. The works of Professors R.E.A.C.Paley and N.Wiener

are very ingenious, but those of ours are elementary and orthodox.

11. Generalized Harmonic Analysis in the strip domain.

In this section, we shall prove Theorems ”—W, and P —W, by our method that had

been expanded in the preceding sections.

Theorem D . Let us suppose that f(z),(z=x+iy) isanalytic in the strip domain
a <y <b and let us suppose that

]3 de:()(l), unif., (a<y<b).
W l+x

Then we have the following properties.
(1) There exist boundary functionsat y =a and y=b.If we denote these f(x,a)
and f(x,b) respectively, then we have

}{iT+f(x+iy) = f(xa)
and

fim f(x+ip)=f(x.b)

respectively
(ii) The f(x,a) and f(x,b) are both belong to the class W’ and we have

[ L) fra)l

1+ x?

Iim

y—a+
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and

lim
yrb—

[ LIGr)=fub)F 4

1+ x?

respectively.
(iii) The f(z) can be represented as the difference of analytic functions in the upper

half-plane and lower half-plane respectively. That is as follows

f(z)—z_icw f(ta) dt _z—z’c"j1 f(t,b) dt
© 2r7i t+ifa—c)t+ia—z 2z J t+i(b-c)t+ib—z
=f*(z,a)- f(z,b)

where —c<a<b<c and that f*(z,a) belongs to the class H] in y>a and

f(z,b) doestotheclass H} in y <b respectively.

We shall call these the Generalized Cauchy Integral of order 1 (G.C.1. of order 1) and

denote these as follows

f(za)=C(z "), [f"=f(ta)
and

f(zb)=C(zf"), f =f(tb)
respectively.

(c.f. 8.Koizumil 9 ],Theorem12,pp112~114). ‘

It should be remarked that we suppose the hypothesis of analytic function in the open
strip domain a < y <b. Then we apply the results of Paley-Wienner in the closed strip
domain a+&£<y<b-g, with & to be an arbitrary small positive number and then
we apply the F.Riesz theorem(c.f, S.Banach[ 6 ], p.135) to the formula when tending ¢
to 0.

Now we shall prove the following theorems of spectral decomposition.
Theorem D, . Let f*(z,a),(z=x+iy) be analytic in the upper half-plane y>a

and belongs to the class H;. Let us denote by f* = f(x,a) its boundary y=a.
Then we have for any given positive number &

(i)if |u>e
s(ute; f(z,a))-s(u—g; f(z,a))
=me"”’"")" ({s(u +£;f+)—s(u~—£;f+)}+r0+(u,y—a,£;f+))

and
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forall y>ag and

(ii)if |uj< e
s(u+e; f*(z,a))~s(u—g; f*(z,a))
it (s [ )i (a8 f1 )4 E (ut e fT)
where
K (ute f*)=Lim (a- C)J; Sfi((-zi)c) e_i(u::_lds,

f(S,a) —ifu+g)s
\/—I .s*+i(a~c)e ds
i (u+e fr)rin(uve fT)=s(u+e fr)—s(u—g f*)

Bu+te fr)= Izm

and

hm—J‘H‘3 (u+e,y—a;, f*)Pdu=0
lul<e

forall y>a
(c.f. 8. Koizumil 9 ], Theorem13, pp.114~115).

The proof of Theorem I . It can be done by running on the same lines as that of

Theorem D; and so we shall cease it to sketch only.

We have
+ f(ta)  dt
/ (z,a)_ 27i _'!; t+ifa~c)t+ia—z
and
s(u+£,‘f+(z,a))—S(u—s;f"(z,a))=l}.ii.m If( )25”"31‘ e g,

where z=x+iy, y>a.

Let us set
f(t,a), \t|<B
ta)=
Ta(t.a) {0, t]> B
and
fz(ta)  dt

fi(z,a)

where z=x+iy,y>a.

2m '[ t+ifa—c)t+ia~z’

Then we have
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s(u+8;f+(z,a))—s(u-3,'f*(z,a))=lj.3i;)rg.{s(u+g;f;(z,a))——s(u—g;f;(z,a))}

and

2singt e gt

s(u+s; f5(z.a))=s(u-s; f5(z.a)) = hm—mjm a)

Y . . B
—lim 1 J-ZSInate_,.,,,[z th f(s,a) ds Jdt

h;wlezyz-_A t 27i <, s+i(a-c)s+ia-z
where z=x+1iy, ¥y >a and
| z—ic | 1

s+ifa-c) s+ia-z  s+ig-z s+i(a-c)

Then we have
S(u+g; f7(z,a))-s(u—-g; " (z,a))
z 4 wfpr B 4 .
=l %Lf(&a)[\/——_[ 2sinst Z a‘t)cis--:!.i.mL f(s.a) (1 2SIt dt]ds

¢ s+ia—z Ao i 2 s+.‘r'(a—c)k\f2ﬂ' a0t

_ 1 2singt ™ _LB f(s.a) ( ) 2sinet gy
- If(sa)[lsz___[ - SH_a_zdt)ds' 2m-LS+;(a c)(lm\/_j ; dt |ds

By the Lemma 4, , we have

—iut

2singt e
lim.

dr
Ao «/ Ty t s+ia-z

1 . i s—if y-a)e —if s—if y—a ))&
_\/Ei(1+'g1gnu) e-i(s-i(y—a))u € —€ (|u|>€ )
2 i(s—i(y—a))
=4
o ei(s—i(y—-a))u _ e—r’(s—i(y—a))s
N2 fe - — , (-ssus<eg)
i(s—i(y—a))
and by the Lemma 4, , we have
1 2sinet

lim 1 I
e 2z 3

where Y, (u)} is the characteristic function of interval (-¢g,&).

e dt=\2ry, (u),

Then we have the following estimations
(i) Jul>¢

s(tu+e fi(z,a))—s(u—g; [ (z,a))

75



KSTS/RR-13/005
October 3, 2013

1+ si :(s—i(y—a))s _ pifs=ify-aje ]
:( Slgnu) —(y—a)ullm If(s a) : : e e—msds’
2 B 27 i(s—i(y—a))
where
ei( s=ify-a)e _ e-i( s—i{ y-a))e
i(s-i(y—-a))
=25inas+ i(y-a) 2sin.5's+e”’s(eg(” a) 1)_|L je™= (g7 _1)
2 s—i(y—a) i(s—i(y—a)) s—i(y—a)
5 si
= SI;SS+Kg’l(s,y—a,g)+K;'z(s,y—-a,a)+K;3(s,y—a,s)
Let us set

ro’;(u,y—a,s;f)—lzm—jf(sa) al(s,y—~acel)™ds, (i=123)
and
3
(wy—ag f)=3 1 (ny-a8f").
i=l

Then we have

[ G(uy-asif )P du=0(y-a) s)J Mds-om
lujze

(e—>0,y>a) (i=123)
Therefore we have

s(tute; f(z,a)-s(u—cg; f(z,a))

= L) e ({s(us 53 £ =stu=s3 £ s (wy=a,6: 1)

and

35 | 15 Cuy=as s )f du=0ly-are)] M’—;—dswm (€ —0)

2g lujze

forall y>a.
(ii) |u|<e

s(tute; f(z,a))-s(u—g; f(z,a))

1 B er‘(s—i(y—a))u _e—i(s—i(y—a))e o i
=lim — I f(S, a) e—r(s—x(y—a))u + ds

{s—i(y—a)) (s—i(a-c))
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=

i (fl_ c) e-r(u+é-‘.)s -1 s | i iursis e—rfs—r( y—ir))ruﬂ) -1 _ g sure) _q
s+ifa—c) —is s+ifa—c) —i{s—i(y—a)) —is

=iK/ (s,u+g)+iK;(s,u+e)+K;(s,u+gy—a), say.

Let us set
f(s,a) e—i(uH:)s -1
s+ifa—c) —is

das

rl"(u+€;f+)=lbi.m jK*(s u+e)f(s,a)ds= lzm(a c)j

-B

I f(S, a) e~ (mEIs g

. RN T =1
r(u+e f )"lﬁ;’ﬁ'ﬁi Ka(sure)f(s.a)ds=tim = | o)

—B

and

Kutey—a )= lzm IK+(S u+e y—a)f(sa)ds.
Then we have

s(u+e f'(z,a)-s(u-¢;f"(z,a))
=g (u+e fr)+vin (ute fr )+ (ute,y—a f)
and then we have to prove
iW(u+e; fr)+in (u+e fr)=s(u+e f)-s(u—g; f*)

Since f* = f(x,a) isthe boundary function of f*(z,a), we shall prove it by running

on the same lines as the proof of Theorem D, .

In the last we shall estimate the following remainder term

Ku+ey—a ft)= lzm _[K"(s,u-i-e,y a)f(s,a)ds

where
~if s=if y=a}))(u+g) _1 —isfu+g) _
Ki(su+ey—a)=— - 1
—i(s—i(y—a)) —is
3 (1_3“(y—a)(u+a) )e—i(u+s)s N (y__a)(e—(uﬂ:)s ~1)
i(s—i{y—a)) —is(s—i(y—a))
=K (ssu+ey—a)+K,(su+ey—a) say.
Let us set

B
Jgﬁ(u+£,y—a;f+)=l‘.gi.m.%{ Ki(s,u+e,y—a)f(s,a)ds, (i=12).
—0 T g
Then we have
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1 _(y_a)g) | f(s.a)]
— |r+(u+a,y—a,'f+)[2du< d
2e],,|£g . J,o s'+(y-a)’

=0((y-a) e)j Mn’s—o(l} (60,y>a).
(y
Next let us set
re(u+g,y— a,f+)—ltm(y a)j e f(s,a)ds
By s —S(s—i(y—- a))

= i(y—a)”f dv[lgl—fg J— ‘[ i?;;ci)a) e—ivs dsj,

and
" - 1t f(sa) .
v,a)=1Lim. - ™" ds .
f(v.a)=1im r_—zyz;[,s—i(y—a)
Then we shall have
1 . . -a 2 uts
L[ imray-ar)Pas@ ] Fva)ak du
8{1458 julge 0
_ 2 ite - u+E
5—("’2:) Mj;g u | F(v,a)P vau vadu
w0 2
s, a
=0((y-a)2.ej —l—{—%ds-o(l) (g—0),
forall y>a.

Thus we have proved Theorem D .

Theorem D, . Let f(z,b),(z=x+iy) be analytic in the lower halfplane y<b

and belongs to the class H. Let us denote by f~ = f(x,b) its boundary function at

x =b. Then we have for any given positive number &
(1)if |up>¢

s(u+eg; f(z,b))—s(u—¢e;f (z,b))
=(—1)@e'0‘““ ({s(u+£;f')—s(u—£,'f’)}+r0‘(u,y—b,£;f'))

and
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forall y<b.
(i)if (u|<e

stu+e; f(z,b))—s(u—¢g;f (2,b))
=in(u—¢& f )+ir,(u—g f )+n (u—g,y-b; )

where
N _ ) (b—c)” f(s,b) e 1
-g; =[im. d
K (u—-gf) Lm ﬂ:[?s+i(b—c) = s
- _ ) 1 £ f(s.b) _iu-
—&; =Lim. iu t:)sd
n(ume ) =hn JQEIB s+i(b—c) g
IN(u—g [~ )+in, (u—g f )=s(u+e; [ )—s(u—e; )
and
i’_’ﬁ?z_ |J;g | (u—g,y—b; f )P du=0
forall y<b.

(c.f. S.Koizumil 9 ], Theorem14, pp.115~1186).

Proof of Theorem D,. We shall prove it by running on the same lines as that of
Theorem D, , but we have to consider it in the lower half-plane. Therefore we shall prove
it for the sake of completeness.

Let us set

f(t,b), |t|<B
Je(t.b)=
0, \t|>B

and
z—ict  fz(t,h) dt
27i O t+i(b—c)t+ib—-z

Je(z.b)=

Then we have
S(u+g,'f'(z,b))—s(u—a;f'(z,b))=lbi;)rg.{s(u+a;fB‘(z,b))—s(u—g,'ji,f(z,b))}
and
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2sinet e

s(u+e; f;(z,b)—s(u- &‘f,,(zb))—lzm—_[fB( b)

_lim 2singt g _[ fa(t.b) dt a
A */ Tl ot 27:1 Z t+i(b—c)t+ib—z

where z=t+iy, y<b.

From the formula

z—ic +1=s+i(b—c)
s+ib—-z - S+ib-z
It follows that
z—1ic s+z(b c) -
§+ib~z s+ib-z

and so we have
1 z—ic 1 3 1
s+i(b—c) s+ib—z s+ib—z s+i(b—c)

Therefor we have

s(u+&; f(z,b))—s(u—¢; f3(zb))
_I’m_J‘f(sb)dS(J—J 2sinet ef‘m dz)-l.i.m.LB f(s.b) { 1 .fzs""-‘?‘e-w;dtJ

Ao s+ib-z A»= 2mi S s+ifb—c) 27 ¢
2singt  e™ f{s,b) 1§ 2sinst
— bjds| L. fs| 11 ——
jf(s % [ sz_I s+ib-z J 27:1"-s+1(b c) Ai—mm ¢ ¢

For estimations of the inner integral of first part of above formula, we shall quote the

Lemma A, as for lower half-plane so we shall state it as follows.

Lemma Agr . We have

1 4 2sinst e™
lim J
A=>0 /2” by t §—z

-

dt, (z=t+iy,y<0)

0, (u>¢)
o ei(s—iy}u _ ei(s—iy)a
={2mie I , (—e<u<eg)
i(s—iy)
o ei(s—iy)s _ e—i(s—iy).t:
27 ie~ s — , (u<-g)
| i(s—iy)
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Now we shall apply Lemma A9’ to the following integral

—~itit

A N
I=lim— jzs’""” © & (z=t+iy,y<b)
-A

Aow [ ¢t s+ib—z

then we have

0, (u>¢)
e er’(s—i(y—b})u _ ei(s—i(y—b))s
I={27 i s 0o , (~e<u<g)
i(s—i(y-b))
it ei(s—i(y-b)}f: _ e-—r‘(s-—:‘(y-—b)).‘:
27 ig7HsHybM - - , (u<-g)
L i(s—i(y—b))
and by the Lemma 4, , we have
2singt

1 A
J=1Lim.
A= /275 _-[1

where y (u) tobe the characteristic function of interval (—£,&).

e™dt =2z y (u),

(i) |ulzs
We have
e _ml (1 - szgnu) e—i(s—j(y—b))u ei)s—i(.y—b))é‘ .__ e—ﬁ(s—r'()’—b))z:
2 i{s—i(y—b))
and
J=0.
Therefor we have
s(u+e; f(z,b))-s(u—g;f (z,b)
i B ifs—ify-b)e _ —ifs—ify-b)e
=_(1 Slgnu) e—(y—b)u 1 J' f(S,b)e . ' € e—us '
2 27 2, i(s—i(y—5))
where
ei(s—i(y—b Je _ e-f(s—i(y-b))s
i(s—i(y->b))
_ 2sings N i(y—b) 2sines N = (e ~1) N ie™ (e~ 1)
s s—i(y—-b s i(s—i(y—>b)) s—i(y—b)
95
= ZSMES Ko (s,y-bg)+Ko(s,y—be)+Ky(s,y—bg), say.
Let us set
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ro;(u,y—b,g,-f)—lzm—-—jf(sb)Ko,(sy be)e™ds, (i=123),

then we have

| f(s.5)P
EHJ | toa(tt,y=b,8; £~ )P du=0((y—b)’ e)j | S ppds=o) (e20),

(i=1,2,3) and let us write
3
v (u,y-be f )= Zroj(u,y—b,g;f') .
i=1

Therefore we have
s(ute; f(z,b)—s(u—¢g; f (z,b))
_ _(=signu) 1“‘5;'3"“) e ({s(ute; f)=s(u=g: /) +55 (wy =& )

and

| I(uy-ba I du=0(y-b)5)] %dmom, (50,
ul>e

forall y<b.
(i) |ulge

We have
if s—if y—b )Ju ei(s—r‘(y—b))a

I= \/2—75 je (sl y=bu € -
i(s—i(y—b))

and
J=2zy (u).

Therefore we have

s(u+e; f(2,b))—s(u—&; f3 (2, b))

1 j?' . ei(s—i(y—b))u _ Eei(s—iry—-fv))&‘ i 5i{ y~b))
=—— [ flsp)—— e ds - i(s+i(b-c)
ﬂ'..Bf z(s—z(y—b)) '[f( )I(S+Z(b -c))
where
sy _ gifs-ify-b))s sl y-b) 1
e i 5—if y— u o
i(s—i(y—b)) i(s+i(b—c))
oy —i{u-g)s ; . ~H(si(y=bu-e) _ sl _
- ’({) ¢c) e - ! — gine)s L 48 L_e 1
s+i(b—c)  —is s+i(b-c) —i(s—i(y—b)) s

=ik (s,u—g)+iK,(s,u~¢s)+ K, (s,u—g,y—-b), say.
32
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Let us set
B
(u—g )= lﬁz.% [ Ki(ssu—2)f(s,b)ds
~B

_ B ~ifu=gj}s _
=lim(b c)J- f(s,b) e 1ds
s+i(b-c) —is

Bow
-B

- . .1 F
r(u—gf )=l.31ﬂ.ﬁ_jﬁ K;(s,u—g)f(sb)ds

(b—C) ]2 f(S,b) e—i(u—s)s ds
Ty 8+i(b-c)

=[lim.

and
1 B

r(u—g,v=>bf )=lim—=| K, (s,u—&,v—>b)f(s,b)ds.

S (u=-£,y=b:f") 4\/5;1 S(su—g,y=b)f(s.b)
Then we have

s(u+e; [ (z,b))—s(u-¢ef (2,b))

=i (u—g [ )+ir,(u—gf )+r(u—gy-b;f).

By just the same arguments as Theorem [, we have
W (u—g; f)+in (u—¢g; f" )=s(u+e f)-s(u—gf ).

Next we shall estimate the term # (v —¢;y—5b;f ). We have

e (s y-blue) _ 1 pis(e-e) _q
—i(s—i(y—b)) —is
_ (1- e—(y—b)(u—SJ) N (yub(e"”("'s) -1)
i(s—i(y-b))  ~s(s~i(y~-b))

a(ssu—&y—b)+K,(s,u—g,y—-b), say.

K (s,u—¢,y-b)=

Let us set
B

r;(u—s,y—b,‘f‘):lbi;)rg.ﬁj Ki(ssu—g,y-b)f(sb)ds, (i=12).
-B

We have

L fyb)s 2w 2
L] imumey-bis )P s G L[ LI
28 hi<e 2g W% S H(y-b)

~oty-bre)f HOU dimo), (50,

forall y<b&.
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We have also

i(y=b) 't f(sb) &1
ra(u—ge,y—-bf )= lzm T - f s—ily—b) h ds

7 i(y_b) f f(S,b) rd —ivs
—l}.}z_.)rg. N Ls—i(y—b)[;[e vads

s _ i . 1 f f(S,b) —Fvs
=i(y—b) _! [léz;)rz. \/.2_7;__[3 s~i(y—~b)e dsjdv

and so we have

EI | 753 (u—&,y— bf)|du<(y2b) [ jf(vb)dvldu

[ulse lul<e
where
- 1 % f(sb)
v.b)=1lim. . e ds
Fo)=tim = | 0%
and

|If(vb)dv|<| flf(vb)l dvj dv|<2e [ |f(vb)F dv.

[ul<e

Therefore we have

1 - .
oo | Im(u—gy=b 1)l
g\uis.s

<(y-b) | [ | |f(v,b)|2vadu=0((y-b)zs) [ 1 fvb)Pav
e A\ |ulze —o9
If(s )P

bp o(l), (¢—>0)

=O0((y-b) s)[

forall y<b.

Thus we have proved

1 - -
— [ 15 (u—g,y-b;f )P du
2g|u|ss

=0((y-b)e)| Lb);)—ds=o(1), (£>0)
for all y <b.

Now let us combine the results of Theorem J; and Theorem D, , then we shall obtain
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the theorem of spectral decomposition of f(z)=f"(z,a)—f (z,b) in the strip
domain z=x+iy,a<y<b.

Theorem D, . Let us suppose that f(z),(z=x+iy,a<y<b) satisfly the same
hypothesis as Theorem D, . Then we have the spectral decomposition of f(z) as
follows.

(i) |up>e

We have

s(ute; f(z))-s(u—g;f(z))

=E—S_I:g7_1£l_2_en(y—a)u ({S(u_l_g’.f-i-)_s(u_8’.f+)}+r0"'(u,y—a,g;f"‘))

2
(1—signu) _r, s, _ - - -
ri e ({s(u 5 f) = s(u =, £ )40 (wy =5 [))
where
ﬁngi ,[ 75 (uy—ae f*)f du=0
& lulzg
and

lim—— [ 175 (u,y=b6;f )P du=0

0 Qg s

forall y fa<y<b,—~c<a<b<c)

(i) |ulke
We have
s(u+e; f(z))-s(u—g; f(z))
={s(u+a‘;f+)—s(u—8;f+)}—{s(u+8;f')—s(u—8;f’)}
t(wy-ag f*)-r(uy—be f7)
where
.1 + . £t -
ﬂ?ggiuislra (wy—a,c; f* )} du=0
and

tim=— [ 15 (u,y~b,6: /) du=0

=0 Qe e

forall ¥y (a<y<b,-c<a<b<e).

Now we shall intend to prove the Paley-Wiener theorem [ 2 ] (c.f. IIT, Theorem P — I¥7,),
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but at present with some additional conditions.

Theorem D, (Paley-Wiener). Let f(z) be analytic function of complex variable

z=x+iy, a<y<b andlet
A

‘[ \f(x+iy)fde=o0o(A) unif., (a<y<b).

24
Let its boundary function f(x,a) and f(x,b) both belong to the class 5 as a
functionof x forall y in a<y<b.

Let us suppose that following limits

(C3) zzm-—jf(xa)dx ¢
(Cy) lgnEjT f(xb)dx=c;

exist respectively. Let us also suppose that the following relations between f and its
auto-correlation ¢

.
T 2

+ .1
(L) %Ei ga(x,a)dx_zzm—-jf(x a)dx
] T T 2
(L) lime | p(xb)dc=|lim— [ f(xb)dx
0 T-» 2T r ' Tw 2T o

are satisfied respectively.
Then f(z )belongs to the class S’ as a function of x in the strip domain z =x+1iy,
a<y<b.

Proof of Theorem D, . First of all, we should remark that R.Paley-N.Wiener, they
proved this theorem without any additional condition. But at present we need the
additional conditions for some reasons. Now, we shall denote its boundary functions

for the sake of simplicity as follows

J'=f(x.a) and [ =f(xb)

and also
" 1% T
o =¢(x,a)=j{%_2?£ f(x+ta)f(ta)dt
_ 1% —
@ _qa(x,b)_ma-f_jr F(x+1,b)f(t,b)dt
respectively.
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Then we have by the condition (C;) and the so-called One- Sided Wiener formula

similarly as before

lzm—Ifi(x)dx lzm \lfﬂi {S(u-{-g;fi)u-s(u‘*"g;fi)}du=Coi

and so we have

25\1/5 [ Ustu+e; f*)-s(u-e; * )} ~2mcy [ du

\/_J‘ s(u+g; f*)—s(u—g; f5)F du

\/_ é‘j‘ s(u+£ ff)—s(u- s,f*)}

~&

NT oA " - .
_28\/‘2‘;;‘!5{5(”"'3# )=s(u—¢& f*)}du+2z|ci P,

and then we have

{s(u+€;fi)—s(u—8;fi)}—\/Z_Jrc:r du

-E

—g?%ng_j |s(u+e; f*)—s(u—g; )P du—-~27|ct P

Next we shall denote
1% I
o*(x)=lim— [ f*(x+1)f*(1)dt
Toe0 2T o
and by o%(u)}its Generalized Fourier Transform respectively. Let us remark that

hypothesis (L;) guarantee the existence of limits of stated formulas and so we have

by the One- Sided Wiener formula too

11“1_1)2“-[ @ (x)dx = 1402 \/_I {a*(u+g)—cr*(u—8)}du
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Since o*(u) is a function of bounded and monotone increasing, we have

s | (-t T )

Then we have by the condition (I )

o*(0+)-0*(0-) =27 |cE |

Here by the Lemma D, (c.f. ITI, p. 60) we have

fim L

3»028\/'2;[ |s(u+e; f*)—s(u—g; f*)F du=*(0+) - *(0—).

Therefore we have

1 2
Iim du=0.

#0227

Then we have by the part (ii) |u|<& of Theorem D,
s(ute f(z))—s(u—g; f(z)

={s(u+£;f+)—s(u—5;f+)—x/ﬂc;}m{s(u—ks,‘f‘)—s(u—a;f‘)-@cg}

j |{s(u+s;f*)—s(u—-8;fi)}—\/,_’2_7?6;

BT (6 =65 )47 (W y =6 £ )= (wy =, )
and applying the Minkowski inequality (c.f. II, p. 26), we have

1 ¢ X o
25@_1; |s(u+8; f(2)—s(u—e;f(z) [ du=27|ct —c; F +o(1), (€—0).

Since ™ —1=0(¢ex), (|ul<&, Vx), we have

1 ? ux . _ . 3
ZSJ_Ie | s(u+e; f(z)—s(u—g; f(z))| du

27 %,

1 f . 2
23\/5_-[ |s(u+s; f(z))—s(u—g; f(z))["du+ofl), (¢—0).

Therefore we have

. 1 T fux . __ o 2 _ + _ a2
{lfgzg\/z—x_j;e |s(u+e; f(z)~s(u—g; f(z))F du=27|c; —c5 I,
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where z=x+iy, a<y<b.
Next we shall estimate s(u+¢&; f(z))—s(u—¢g; f(z)) onthe interval (&, «).
From the part (i) |u|>& of Theorem D, we have

Lo stur e frz)-stu-e: 12 )f
dne

L e™ |e'(y"')" {S(u+e’;‘;f")—S(u—g;f”)}|2 du +o(l), (¢—>0).
4re

We shall follow the same lines as the proof of Theorem D, (c.f. III, Theorem D;, pp.

60~62). Then we have

lz'm-l—m "™ |s(u+g; f(z)—s(u—g; f(z)| du

s047g 7

<«

= ZimL " ‘e"(y"‘”" {S(u +e fr)—s(u—g f* )}|2 du

£0 47g -

_%4—[ J(yau+ j (") du ] =lim(I} +I7), say.
We have

—-(y-a)id =

[ Istu+s;f7)=s(u—s; f* ) du

|17 <2
and

lzm|I+ aate ")Ahm _[ |s(u+e; f*)—s(u—sg; 1) du

g0 4

= g 2(y-a)A

lmiﬂ'j | f(x,a)fdx—0, (4d—>w).

Now, for the A sufficiently large and to be fixed, we have by the integration by part

frx

i
—] e

I' =
4me

e s(ure f1)=s(u—e, f* )}| 2 du

LR T

u=

e—(E(.V"ﬂ)-ix)u " . 5
= les(v+g,'f J—s(v—g; ") dv

£ u=g
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_—(2y—a)-ix) J‘ (U y-a)-ixJu (]‘ |s(v+e f*)—s(v—e f*)f dv] du
dre 2 .

e—( 2 y-a)=ix)A 4

= (Is(v+e; f*)=s(v—g; £ ) dv

dxs

. oA U
+2(y—a)—sz‘ o(¥r-a)-i)u [ﬁ!]s(v+g;f*)—s(v—8;f+)|2 dl’Jdﬂ

2 -

Since we have from Lemma D,

iz_izgzg\/__.[ |s(v+e; fF)—s(v—g;,f)fdv=c"(u)-c"(0+), aeu

and its bounded convergence is guaranteed on any finite range of #.Thus we have
—{(2(y-a)-ix)A

lim I} —T(a+(A)—a+(0+))

.4
+2(y—2% !}' (0 (1) = 0™ (04)) e gy

_)Z(y a)- zx-[ (0' (u)—o (0+)) g Blyalih gy (4 — )

Nors

Therefore we shall conclude that there exists the following limit

©

lim——l—— e |s(u+e; f(z)—s(u—g; f(z) du

£=20 478
_ 2(y— a) - Ix-[ (O_.,.(u)_O_+(—0+))e—(2(y—a)—fx)u du
4xe

0

for all x. In particular, if we put x =0 in the above formula, we shall obtain the

following formula

hm—j |s(u+e; f(z)-s(u—g; f(z))] du.

&0 447,

- —2(1’ ﬂ‘g“) I (0" (u)-" (0+))e™ " .
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Similarly we hall estimate the part of s(u+¢&; f(z)})—s(u—€; f(z)} onthe interval

(—, &).Then we have

limL e |s(u+e; f(z)-s(u—e; f(z)f du

0 47g <

~timL |
=0 47g =

‘(”b)“{s(u+£f) s(u— Ef)}l

—A4 -z
=lim——1—[j (’9du+_[ (’9duJ=ling(I{+I{). say.
g -4

=20 472

We have
3 y-b)4 —A

[ Is(u+e; f)=stu—e; f )P du

P
and then

Izm|I < 208 Jim L j |s(u+e; [~ )—s(u—&:f ) du

=0 dre
= g+ lim—— [|f(x B)Pdc—0, (4->w).
Now, for the A sufficiently large and to be fixed, we have by the integration by part

Iz_ =L_g " |g(y-bu {s(u+8,‘f‘)—s(u—g;f‘)}|2 du

drg

U=—E

g (U y-b)-isju —¢
B 47e

j Is(vie f)—s(v—g f )f dv}

u=—A
+ —2(y—b)+ix J‘ g (U y-bi-ix)u [ ]’ |s(v+g& f)—s(v—g f ) dv Jdu
dme e "

o 2-b)-ix)

—— 28\3%] |s(v+eif)—s(v—g; )P dv
24

A=5)+F trron( LT o s )s(vmss foP
+ " J‘e(zr b)-ix) [m! |s(v+e; ) —~s(v—e:f )| dv}du

-A

By the Lemma D, , we have

lim 25\1/518 |s(v+g; f)~s(v=g;f )f dv=—(c"(u)-07(0-)), aeu

and its bounded convergence is guaranteed on any finite range of #. Thus we have
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gl 2 y-bi-ix)A
liml, =—————\0"(-4)- 0 (0-
lim (o7 (-4)=07(0))
_2(y-b)+ix¥

e | (om0 (0))e e gy
N ”) ’xj (07 (u)=07(0=))e 0 du, (A—>),

forall x. Therefore we shall conclude that the following limit

—&

lz'mL e |s(u+sg; f(z)—s(u—g; f(z))f du

&0 475 4.

2 JQ i j (0™ (u) o™ (0=)) e rmbrm gy

exists for all x. In particular, if we put x =0 in this formula, then we have

hm—j |s(u+e; f(z)-s(u—e; f(z)] du

£~>0

_2(y=b) "

NPT

Summing up these estimations above, we shall prove that the following limit

[ (o7 (u)~07(0-))e?*" au.

w0

limL e \s(u+e; f(z)—s(u—sg; f(z))] du
-0 47e

—0

exists and equals to

Ay—a)-ix T ( o* (1) - o (O+ )) g (y-a-mn g,

2z

.0
s2yb) :/g"”‘ _L (o7 () =07 (0=))e " gy 42| ¢ 5 1,

forall x and y in a <y <b.Thus we have proved that f(z) belongs to the class

S'. Inparticular if we put x =0 in this formula above,then we have

hm—j |s(u+e; f(z)-s(u—g; f(z) du

&0 4.1,

2Ay—a)t s . + I y-au
=m__(j2_xa)£ (0' (u)-o (0+))e (r=alt gy

2(y—-b) r - - 2( y=bJu et P
+%£ (0' (u)-o (0—))8 OO Gy 27 | 6§ - ¢

Since we have
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A—oe g0

limlim[f+if j||.§'(u+8 f(z))—s(u—eg; f(z))I du

< lim XY 28) j o* (1) - " (0+)) e du

Aoom
A

+lim % i (67 ()~ o (0-))* " du

A—-w
= 0.
Therefore we have proved f(z) belongs to the class S'as a function of x for all y
in a <y <b,bythe N.Wiener Theorem (c.f. [ 1], p. 160, or I, Theorem W¥,, pp.28~29).

12. Application to the almost periodic functions.

As well as III, we shall give an example .

Let f(z) be an analytic function of complex variable z=x+iy,a<y<b andlet
4

[ 1 f(x+iy)Pdc=0(4), unif (a<y<b).
-4
Let us suppose that its boundary functions f(x,a) and f(x,b) are both almost

periodic in the sense of W. Stepanoff of order 2.
Then we shall conclude that f(z) is almost periocdic in the sense of H. Bohr.

By the Theorem D ,(iii), we have that f(z) can be represented as the difference of
analytic functions in the upper half-piane and lower half-plane respectively. That is as

follows

_[ f(ta) dt —ch f(t,b) dt
2m = t+ifa—c) ttia-z 2mi t+i(b-c)t+ib—z
=f"(z,a)-f(zb) say.
where —c<a<b<c and that f*(z,a) belongs to the H’ in y>a, f(zb)
does to Hf in y<b respectively.
We shall call these the Generalized Cauchy Integral (G. C. 1.) of order 1 and denote

these as follows

—0

f(za)=C(z f"), [ =f(ta)

and

f(zb)=C(z ("), [ =F(Lb)
respectively. (c.f S. Koizumil 9 ], Theorem 12, pp. 112~114). The former belongs to the
category of Theorem D; and the latter does to Theorem D, respectively.
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The proof can be done by running on the same lines as the example in III and so we
shall cease to sketch main results and abbreviate to give detailed estimations.
In the first , we shall consider the analytic function in the upper-half plane

Frzna)=Cz )=t L) __d

27i < t+ifa-c) t+ia—z’

where f+(t)=f(t,a), z=x+iy,y>a.

Let us separate the Cauchy kernel into the Poisson and its conjugate kernel as

follows.
1 1 1 1 1 y—a i t—x
it+ia—z 2i(t-x)-i(y—-a) 2(t—-x)+(y—-a) 2(t-x) +(y-a)’

and let us define the harmonic function and its conjugate harmonic function in the

upper-half plane as follows

vy Z
Ufx,y-—a;f")=

—iCT fr(t) y-a di
r s t+ifa—c) (t-x) +(y-a)
and

z—icT fr(t) t-x g
m 2 t+ifa—c) (t—x) +(y—a)

Ox,y—a;f*)=-
Then we have

+ + 1 + U +

[ (z,a)=C(z f )=EUl(x,y—a;f )+-2-U|(x,y-—a;f)

Now, we shall intend to prove that
fza)=C(z;f7)=U(xy-a, f").

Let us remark that if we put Re(f*)=g", then Im(f")=(g" )] by the Theorem

D, and Theorem D, in III and so we can write
I (x)=g"(x)+i(g" ){(x)

where

gh(t) dt
t+ifa—c) x—t
As well as the ordinary Hilbert Transform, the Generalized Hilbert Transform satisfy

(g )i(x) =Py 2 A=) |
7r —0

the skew reciprocal formula
(g NN (x)=-g"(x), aex
This is proved as follows. The formula (g* )[(x) isequivalent to
oy~ o +
x+ifa-c) e t+ifa-c) x—t

—n

Iterating this process, we have
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(S TU() _py 1] (£h0) d ')
x+ifa—c) we t+ifa—c) x—t x+ifa-c)
by the property of the ordinary Hilbert Transform (c.f. I, [ 3 ], E.C.Titchmarsh, Theorem
91, (5.3.1) and (5.3.2), pp. 122). Therefore we have

(g")7)7=-g"(x), aex

Next we shall prove the following formula

[71(x,y—a;g*)=U](x,y—a;(g+),“).

This is proved as follows . We shall quote also the property of ordinary Hilbert
Transform (c.f. I, [ 31, E.C.Titchmarsh, (5.3.8) and (5.3.9), p.124)

U(x,y;2)=U(xy;§)
where

N 1 oo . y — ‘ B 1 «0
Uy = [ B g dt and Ulxyig)==—] a(t)

f—x

dr.
£+ 5

Then, on the formula U(x,7,;g), ifwereplacey = y—a, g(s)— g'(s)/s+i(a—c),

then we obtain on the formula U(x,y,; g),

_ l‘” g'(s) ds (g")(t)
g(t)—)P.V.ﬁ_J; s+i(a—c)i—s i+ila—c)

correspondingly. Therefore we have

5'1(x,y—a;g+)=(z—ic)fj(x,y—a;g*(t)/t+i(a—c))

=(z—z'c)U(x,y—a;(g*);(z‘)/t+i(a—c))=U,(x,y—a;(g+)f)-

We have also the following formula
Cz; 8" )=iC(z;(8")7).
This is proved as follows. Since we have

+ 1 + I = +
Cz g )=5U1(x,y—a,'g )+§U1(x,y—a,'g)
where
Uy(xy-a:g" )=Ufxy-a;~(g" ););)=-Ui(xy-a: (g );)

and

Ui(x,y-a;8" )=Uf(x,y-a:(g")7).
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Cl(Z:8+)=—-;"51(x,y-a:(g+)I)+%U1(x,y—a:(g+)?)=iC1(Z;(g+)I)-

Now since we can represent f* =g* +i(g" )] by the Theorems D, and D, inIII,

we have

Ci(z f)=C(z8 )+iC(z(g ) )=2C(z:,8")
=U(xy-a; g )+iUi(xy—a;g")=U(x,y—a;g" )+iU(x,y—a;(g" ) )

=Ui(x,y—a;g"+i(g" )7)=Uf(xy-a: f").
Thus we have proved the desired formula
C(z [T )=U(xy-a: f*).

Under these preparations we shall intend to prove f*(z) to be the almost periodic
function in the sense of H.Bohr

The Boundedness of f7(z).

Now we can write f7(z) as follows

.. z—ic '} *(t -a
7@)=Uey-af)=2E] H{(g_)c) s e

where f7(t)= f(t,a) and z=x+iy,y>a.

Then we have

JCI | /() F y—a
|7 (2)F < I t+(a-c) (t-x)*+(y—-a)

o l-oo 1 y—a x+1
et (1] mraar i 2] 1 ora)

where

dt

J- y—a _ 1 y+c-2a 1 y+c-2a
t+(a ef (t—-x) P +(y—a) c—ax'+(y+c-2a) c—al|(z-ic)+2i(c-a)l

Therefore we have

(2K OUMJ( ARl er .
c—a —no<x<uol

Uniform Continuity of f*(z).
Forany z=x+iy and z'=x"+iy (y>a), we have
£ (2)=1(2)
z—ic]'i fr(t) y—a dt_z’—icT ) y—a
7 2 t+ifa—c)(t-x) +(y-a) x * t+ifa—c) (t—xV +(y—a)
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:Z"Z']E S y-a dr
r o t+ifa—c) (t—-x)  +(y-a)
z'uiCT f) y-a _ y—a dt=J, +J,, sap
r 2 t+ifa—c) |(t-x) +(y-a) (t-xV+(y-a) b '

Asfor J),since z—z'=(x+iy)—(x"+iy)=x—x', we have

|J]|2 |x xl j |f+(t)|2 y—4a

2 2 2 Zdt
t“+(a-c) (t—-x) +(y-a)

—x'|? L‘” y—a 1“[ + 2
Slx=x| [::Jn t2+(a F (1—xP+(y—a) dt][.iﬁ’fwll 7)) dtJ

|x=x'F  (y+c-2a)l 17
" c-a X +(y+c—2a) [-on<x<eol‘[ 77 @r dt}

Therefore we have

1

! , 1x+! . ) 2
|, |s0w(c_a)(y+c_2a) |5 'J(ii‘f;z! £ (1)] dr) :

Asfor J,, since

y-a y-a (y=a)(x—x)(2—x—x)
(t=xf +(y=a) (t=xP+(y=af {(ti-x) +(y-al}{(1-xJ +(y—a))

j‘ (y—a)(2t-x—-x) T di = 1
(t xP+(y-a) }{(I—x92+(y—a)2} (}’ a) 7, (- x) +(J’ a)? (y—a)
We have
|J |2<|x—x’|2|z’—ic|2 lo‘f |f+(t)|2 y—a dr
YT (y-af \md Pa(a-cf (t-x) +(y-a)
Llxoxflaiel (17 1 LI VY FAP
- (y-a) Z P+(a-c)f (t—-x)+(y—a)’ —wcr<o]

and therefore we have

1, 1=0u(fj e |][_jilzml [ 17r er.
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Here we shall conclude that

|f+(z)—f+(z9|=0(2\/(£{ e x=x I}( s 2| 17w dr].

Remark. The calculation of the integral

_f e _a.
I +(a ) (x—t) +(y—a)

¥l

We shall consider the Fourier Transform of e~

l —ylxl Hx
dx =, f
x’ 27 T +y

Then we have by the inverse Fourier Transform

—~—I e df =7,
T, Pty

In this formula, if we replace y — y—a and y —> c¢-—a respectively, we have

J‘ e gt = g M gng L f b mg b o
t +(y a) ﬂ_m fz-l-(C—a)z c—a
respectively and then we have by the Plancherel theorem and the Parseval equality

y—a

;_J; tr+(a-c) (x—t) +(y-a)? at

1 y+c-2a

7 1 1 7 —( yic=2a ul b
=, |= — ] e e™ du = .
\/;c—a \/27z'_‘[° c—ax*+(y+c-2a)

The Approximation by Trigonometric Polynomials.

Let us consider the following trigonometric polynomials

pr(x)= 6™, (% =0)
7

and

. .. z—ict p'(t) dt )
=C,(z; = =x+iy,y>da,.
p(z)=C(zp") 27i _-!; t+ifa—c) t+ia—z (z=x+iy,y>a)

Let us calculate it through the contour integral in the complex domain and the residue

theorem. For this purpose , we shall consider the following contour integral.
(i) Thecase A =0. Wehave
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1 eiﬂ.w ., 1 r
bk | oL ] e L

2w

Th=C;ulL,
oy ={w=Aei9,0S6'S7r}

Li={w=t,—A<St< 4}

1]
!

T, =C;ulL,

C;={W=Ae"9,7r$t9$27r}
_/C;, L, ={w=t,-A<t< 4}
Then if we C}, since w=Ae®, dw=ide®dl, we have
iAw

e ildcos®

e g HAsine O(A%e™ ™), (0<@<z, A>0)
(wt+ifa—c){w+ia—z) (Ae"g—i-z(a c))(Ae® +ia- z)

O(A?), elsewhere
and so we have

_[(') O(A'1 A8 ) (0<@<m, A>0)
27i oA ), elsewhere

=0(1), (A—> o).
Nextif we L), since w=1¢, dw=dt, we have
A A «© ids
L. ('DdW=L_I ¢ - dt — —— ¢
27::1‘; 2zi Y (t+ifa—c))(t+ia—z) 2mi =,

dt, (A—wx)
(t+ifa—c))(t+ia—z)
On the other hand , by the theorem of residue we have

e—(y—a)i eiix e—(‘c—a)ﬂ,

- , (A>0
- L[ w=y e amier 7Y
z 0 (A=0)
Thus we have
z—ic T ei)ir e e—(y—a)}lemx _e—(c—a)/?.’ (/1 - 0)
27i 1 (t+ifa-c)(t+ia—z) 0, (A=0)
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z—ic-.‘ e g e~(y—a)ﬂeilx_e~(c-0)l, (A>0)
27i 4 (t+ifa—c))(t+ia—z) 0, (A=0)

—0

(ii) The case A <0. We have by running the same lines as above

i, ® it
z ch— e dr =0
27i = (t+ifa—c))(t+ia—1z)

Therefore we have
. ., Z-—lc p(t) dt
z)=C(z =
Pi(z)=G(zp") 27 -[ t+ifa—c) t+ia—z

—
=3 g TV S ¢ gl
A,>0 A, >0

-]

Thus we have proved

_ x4l %
If*(z)—p*(z)lso( M]{ sup ;j |f+(t)—p+(t)[2dtJ :

c—da —0LXC0

Next, we shall consider the analytic function that belongs to the class H,z in the

lower-half plane as follows
f(zb)=C(zf")=

where f(t)=f(t,b) and z=x+iy,y<b.

Let us introduce as before the harmonic and its conjugate harmonic functions as

27i t+i(b—c) t+ib—z

z—icT fo(t) dt

follows
ey _zmie} fT(1) y=b
Ui(xy=bf")=— £t+z’(b~c) (xf (b
and
. s =_:f:——icﬂ0 f(t) P-x
Oixy=b:1 )=~ e aoare e &

Then we have
_ _ 1 _ s _
f(zb)=C{(z f )=§U1(x,y—b;f J+iU(x,y-b; f).

Let us remark that if we put Re(f )=g ", then Im(f” )=(g )| by the Theorem

D, and Theorem D, in III and so we can write
S (x)=g (x)+i(g ) (%),

where
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e x+i(b—c)T g (t) dt
(8 ) (x)=PF. o _-[Dt+i(b—c) x—t

As well as the ordinary Hilbert Transform, the Generalized Hilbert Transform satisfy
the skew reciprocal formula

(g N i(x)=-g (x) aex.
This is proved as follows . The formula (g~ ) (x) isequivalent to

(£)(x) _pyLf_g()
x+i(b—c)  m: t+i(b-c) x—t
Tterating this process, we have
(E)(x) _py LT (€00 &t g (x)
x+i(b—c)} zi t+i(b—c)x—-t x+i(b-c)

by the property of the ordinary Hilbert Transform (c.f. I, [ 3 ], E.C.Titchmarsh, Theorem
91, pp.122~124). Therefore we have

(g X N(x)=-g(x) aex.

Next we shall prove the following formula

Ui(x,y-b;g” ) =U(x.y-b;(g ))

and
Ci(z,8)=iCi(z(g ) ).
These formulas are proved by running on the same lines as the case of g© too.
Now since we can represent f =g~ +i(g” )7 by the Theorems D, and D, in I, we

have
Gz f)=C(zg )+iC(z (8 N )=2C(z8")

=U(x,y—b;g ) +iU(x,y-b;g" ) =U,(x,y~b; g )+iU(x,y~b;(g" ) )

=Ui(xy=b;g +i(g" J)=U(xy-bf").
Thus we have proved the desired formula
Clzf)=U(xy-b;f).
Under these preparations we shall intend to prove f (z) to be almost periodic
function in the sense of H.Bohr. It is carried out by running the same lines as the case of
f*(z), so we cease it to state the estimation formulas without proofs.
The boundedness of f (z).

Now we can write f (z) as follows

o ey Zmie () y=b
f(2)=U(xy=-bf") m _-Lt+i(b—c) (t—x)2+(y—b)2dt

where [ (t)=f(t,b) and z=x+iy, y <b.

101



KSTS/RR-13/005
October 3, 2013

Then we have

1
el ] o]

where we use the calculation of the following integral
15 boy g1 _coy
1 +(b c)f (t—=x) +(b-y)* c—b|z—icl
Uniform Continuity of f (z).

We have
f(z)-f(z) z=x+iy, z'=x"+iy (y<b)
_z—icT ) y—b dt__z’—icjf () y->b
# 3 t+ib—c)(t-x) +(y—b) 2 t+i(b~c) (t-x) +(y-b)
LEie T f_(f) { ;V_b _— g’_b 2}dt=J3+J4, say.
o t+i(b—c) |(t—x) +(y-b) (t—x)"+(y-b)

Then as for J,, we have
1
c_ l , 1.\€+sr
|J3|s0[ o2 5o |J( swp | 177 F dt] .

and as for J,, we have

1

S UE rpal
IJ4]SO[\/(b—y)(c—b)]x "'}[iﬁi&z! If(r)ldt)-

Therefore we have

oy g (bte-y)l v e P
| f7(2) f(z)|sou,c_b)(b_y) E; le(:zngIIf(t)ldtJ-

The Approximation by Trigonometric Polynomials.

Let us consider the following trigonometric polynomials

p(x)=Y d.e*, (1,=0)
Hy
and

—ict  p(t) dt .
C = ,y<b).
pz)=Gzr )= 2m '[ t+i(b—c) t+ib—-z (=x+b.y<b)

Let us calculate it through the contour integral in the complex domain and the residue
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theorem. For this purpose ,we shall consider the following contour integral.
(i) The case x <0.We have
it

1 ¢ 4 o "
"3t} e ene - 5% 5 Cj-“dw‘“ O

H

iv

c; I =Clull

I, =C;uL,

Then we have

O(4™'e*™), (u<0,m<8<2x)

_2__:; ('de—
= o4 ), (elsewhere)
—o(1), (A->w),
and
(1 1 w lr
E (Odw = 27:1_;[ trib—cp(irib—z) (A7)

On the other hand, by the residue theorem, we have
eip‘w ei’,u( z—ib}

L= — dw=—
# 2ri p (WwHi(b—c))(w+ib-z) z—ic
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Therefore we have
L] eiy!

-Z—'iCJ' =_e—(y—b)yefyx‘
2xi < (t+i(b—c))(t+ib—-z)
(ii) The case u>0.

Similarly we have

&

L= | — —
27i s, (wHi(b—c)(w+ib—~z) 2

r;

1 e 1 ¢,
mcj;()dw+-£7-[—l;£|;()dw.

By the residue theorem, we have
ei#W e.u( bc}

I,= l,j : : dw = —.
2rix, (wHi(b—c))(w+ib—z) z—ic

i

On the other hand, we have

L[ e - O(A7 e ) (0<@<x)
2mi g, O(A™'), (elsewhere)

and

7
eﬂ

1 o0
27”'_[, (f+f(b-0))(t+ib—z)dt’ (4= ).

1
— Hd __>
27rii[() it

Therefore we have

z-ic J- e

(t+i(b—c))(t+ib—z)

dt =—e ("

27i &

Let us write the trigonometric polynomials as follows

p(x)=2,d,e", (14,=0)

then we have
- -, z—ict p(t) dt
z)=C/(z =
P(z)=G(zp) 27i I t+ifb—c) t+ib~z

=Z 4 z—icT gl dt
" 27i i t+i(b-c)t+ib-2z

= _Z d, e (Vb gl _ Z d, g (b ,

<0 #,>0
where a<y<b and —c<a<b<ec.

Now let us set as follows
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fz)=f(z)-f(z) and  p(z)=p*(z)-p(z)

Then we have

| fC2)=p(2)Id f*(z)-p"(2)|+] f(2)-p (z)]

_ i %
SO[,}M}( sup = [ 17 (x)=p*(x)F dr]
c—a -ao<:c<ool

X

1
+o(1/(ic‘_—yg)ihg£w}l~ J 17 o=t er :

Thus we have proved that f(z}is analytic and uniformly almost periodic function in
the strip domain z=x+ify, a<y<b (-c<a<b<c).

13. Spectral Analysis on the N.Wiener class S .
Let us suppose that f(x) belongs to the classS and ¢(x)denotes its correlation
function. Let us also suppose that s(u) and o(u) arethe GFT.of f(x) and ¢(x)

respectively.
Ag well as Theorem [);, we shall set the presupposed conditions as follows.

T
(Ci)  ¢y=lim % [ F(x)e™ax (Vreal 1)
-T

and

2

T T
(L) j{{r)?o-z—lfl¢(x)e'i”dx=g%—zlfif(x)e'wdx (Vreal 1) .

Then we shall define the spectrum of f(x) as follows.
The point spectrum.
We say that # =A is the point spectrum of f(x) if the following condition
o(A+0)-o(A-0}>0
is satisfied and it is equivalent to the formula

A+e
lim 1

s(ute; f)—s(u—e; f)Fdu>0.
Mzgmiw f)=s(u=e:f)]

This is proved by the same way as Lemma D, (c.f. II1, p.60).
The continuous spectrum,
We say that # =4 is the continuous spectrum of f(x) if the following conditions
(i) o(A+0)—c(A-0)=0

and

105



KSTS/RR-13/005
October 3, 2013

(ii) ofA+e)-o(A-g)>0 (Ve>0)
are satisfied and these are equivalent to the formulas

Ate
(i) Efgzle\l/ﬂi |s(u+e; f)—s(u—g; f)f du=0

and

Ats
1

277\/—2;1'[5 |s(u+n; f)=s(u-m; ) du>0 (Ve>0).

These are proved by the same way as Lemma D, (c.f. ITI, p.60) too.

(ii) lim
#-0

Now under these presupposed hypothesis, we shall intend to the spectral analysis of
f(x).Since we have

1 K . - e 2
2sﬂils(u+s,f) s(u~g; f)I du,

the o(u) is a bounded and monotone increasing function (c.f. N.Wiener [ 1], (21.26), p.
162 ; ITT, Lemma D, , p. 52) and so it has the first kind of discontinuity at most on the set
of enumerable infinite points A4, (#=10,1,2,3,...). Then by the condition (C, ), (L,)

and the One-sided Wiener formula we have

o (@) - o(~0) = lim

o(A +0)—0o(A -0)=\27|c,} (n=0123..)

and

Z [ Cy |25 O'(CD) - O'('"-OO),

n
where A, =0 and ¢, 20 (let us remark that ¢, =0 is permitted).
The case A =J4, isproved in this paper (c.f Theorem D, ,pp.87~88) and other cases

are proved by just the similar way, so we shall omit them.

Therefore by the theorem Riesz-Fisher (c.f. A.S.Besicovitchl 5 1, pp.110~112) there
exist the almost periodic function f(x) in the sense of Besicovitch of order 2 (we shall

denote it by B” almost periodic function) and its Fourier coefficients are {c,,} .
That is the Fourier Series of f,(x) is as follows
fo(x)~ c,e*.
n
Furthermore let us set its correlation function

. 1§ ——
coa(x)zggrg@_jTﬁ(Hr)f()(r)dt
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and its G.F.T.

—iux

-1 4
ao(u)=J;—j ou(3)S— a4 L J_[j +] ]%(x)f};dx.
A 1

Then we have
¢0 (x) = Z Icn |2 em”x
n

and

N2z ¥ e, B (uz4,)

A <u
oy(u) =

J_(2|c|+—|c F) (u=4,)

A, <u
Now let us set
J(x)= folx) = fi(x)
and let us define its correlation function ¢,(x) and its G.HT. o,(u). We shall intend

to prove
o(u)-oy(u)=oy(u).

Then we have

' T
¢,(x)=;@°§;iﬁ(x+r)fﬁ7dr
1 ¢ - 1 f e
=limor | SGer0fd~limor | fGr+Of(0a

17 — 1 —
—?l_%ﬁ:[r){,(x+t)f(t)dt+£zﬂ§f:["fo(x+t)f0(t)dt.

Then we have for the Bochner-Fejer mean of Fourier series of f(x)

hm—j f(x+r)ﬂ,(r)dr—hm—[ f(x+t)oy (1 f,)dt

1

. T
[]{mia— | flx+e)7 dtJ [Iimilfj |f;,(;f)—-»::»',,m(t;f[,)|2 a’t]2 ~»0, (T — w,inthe first;next,m— x),
.

and
j f(x+t)o, (4 f,)dt = de'") J‘ F(x+t)e ™ dt - Z di™ e | ™, (T—w).
Therefore we have

l:m-ff(x+t)ﬁ,(t)dt—2|c,, P et
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Similarly we have

.1 T WPE) 2 il .1 T VI 2 i
;z_grgo—zﬂfz(m)f(r)dt-;lc,,f e, £ﬁ§£ﬁ(x+f)ﬁ(f)dt—zn:|cn| e,
Thus we have proved

w(x)=lin—[ fi(x+tfiD)d

~tim=— | f(x+ ) (0de=lim— | (4075000t = p(x) = g(x).
r r

Therefore we shall conclude that o,(u)=oc(u)—o,(u1)and it is a bounded ,continuous

and monotone increasing fanction. On the other hand, since f(x) belongs to the class
S and f,(x) is the B’ almost periodic function, both ¢(x) and @,(x)are to be

bounded, and so @,(x) does too. Therefore we shall conclude that
1§ 2
- x) | dx
7 I loi(x))|

is bounded in 7. Now we can apply the N.Wiener theorem {c.f. [ 1], Theorem 24, pp.

146~149 ) and we shall conclude that
.1k )
h_r)nﬁj lou(x) [ dx =0,

This means that the energy of system of which we considered is concentrate to

(/o @, 0y ) although (f, ¢ o,) contribute to the turbulence apparently but its

energy is a little. Therefore it is natural to consider that the behavior of the system is

controlled by ( f,, @, 0,). It might be the observation of Prof. N.Wiener. After that

he used these observations in his Prediction Theory of Time Series to determine the
solution of a kind of integral equation.

In this section B? almost periodic function plays essential roles in the spectral

analysis. It is well known that in the space I” of 27 -periodic functions, any function

" is best approximated by its Fourier Series oneself. We shall point out that the same

property is satisfied on the space of B? almost periodic functions.
Let us suppose that f(x) is a function of B’ almost periodic and let us set

r
c(i)=£iﬁ-ﬁlf [ fet)e™ e (¥ real 1),
-1

The ¢(A) is not nought at most enumerable points. We denote it as A =4, and
c(A,)=c, (n=0,1,2,3,.),in particalar A, =0 and the case of ¢, =0 is permitted.
We also denote A the set of points A, (#=0,1,2,3,...). Then the Fourier Series of f

108



KSTS/RR-13/005
October 3, 2013

is represented as follows

f(x)~3 ¢ ™

Let us consider a trigonometric polynomial g(x)= Zdn e”* that we shall intend to
n

approximate f(x) inthe space of B?almost periodic functions. Let us denote A, the

set of u, such as p, € A. Then we shall decompose the g(x) into two parts as
follows
g(x)= Z d, e = Z d, e + Z d, e’
n Hyehy H, %Ay
In the first part, let us replace the constant d, by the Fourier coefficient c, that

correspond to the u, € A and let us denote it as

p(x) = Z Cy e

.”nEAO

Then we shall calculate the following formula

o [ 1=t e

[ 1fpa- Y T4 j fea- Y d— I F(t)e ™ d

2T Hashp L Ef\u

T

+Z dmz;i.[ gt tadt 1y +o(l), (T —>wo)
mn 2T -7
and we have

bz | 1S ()=aC0)F ds

. 1¢ — —
=£1_{?;E_]; | f(x)f e~ 3 eydy= Y 6 dy + 314, f

Hahg el

On the other hand, we have similarly

hmmj | £(x)=p(x) [ dv=lim — lf(x)ldx el

Hy EAO

Therefore we have by combining the above two formulas

lim —23; IT | f(x)~a(x) P d
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-hm~— If(x) p(x)fas+ Y le,—d,F+ Y |d, [

Fn€hg Ha®ho
17 2
2 lim— x)—p(x)| dx
MQT_IT | f(x)=p(x)]
where the equality occurs ifand only if d, =¢, (u,€A,) and d, =0 (u,eA).

However we should remark that compared with the I? periodic case, in the B* almost
periodic case, the order of summation of trigonometric polynomials is the problem.
As for these circumferences N.Wiener remarked it on the end of his book(c.f. [ 1 ],
pp.198~199). The dominating idea in proofs of the Bohr—de la Vallee Poussin type is

that of arrangement of the terms c,,,.eM”Jr in an order depending on the arithmetical

properties of the 4, . The dominating idea in the Weyl proof is that of the arrangement of
these terms in the descending order of magnitude of the coefficients |c,|. The

dominating idea in the Wiener proof is that arrangement of these terms in the order of
the exponents A,. This is the only order which is compatible with a unified treatment

of almost periodic functions with continuous spectra.

We shall give an example. Let us suppose that f(z),(z=x+iy, y>0) isanalyticin
the upper-half plane and belongs to the class H,z. Let us suppose that its boundary
function f(x) at y=0 is B*almost periodic function. Then we shall prove f(z)

to be the B? almost periodic function.
For this purpose we shall quote TheoremD {c.f. II1,pp.47~52), then we have

llm— If(z)| dx

—lzm-w——j |s(u+e; f(z)~s(u—g; f(z))F du

£-0 447,

_hm—j le™ {s(u+e; f)—s(u—e; f )} du

£-0 7[8

<zzm——j |s(u+e; f)—s(u—e; f) du

&0

I 2 _ .
—mﬁl | f(x)Pdx (z=x+iy,y>0).

Here, since f(z) is represented by the Generalized Cauchy Integral of order 1 of its
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boundary function f(x ), we have

f(2)=C(zf)=

(c.f. 1T, THeorem D, , (iii), pp.46~47).
We shall also introduce the Bochner—Fejer mean of f(x) as follows

oy, (%, f) =2, d"c, e
n

z+zI f(t) dt

27xi {+i t—=z

Then we have

oy, (2 ) =Cy(z:05 (% f))—”‘j
IFCD

=Cy+ Y di™e, e ™,
=0

O3, (x, f) dt

t+i t—z

where C; = Z dg’”) c,e™ . Therefore we have
A, <0

T il
lim—— [ 1/G)-on ()b s %j | f(x) =05 (% f )P dc—>0, (m—>).

1t should be remarked that the method of approximation by the Bochner—Fejer mean
belongs to the category of Bohr—de la Valee Pousin.

For the sake of completeness, we shall prove that “any B*almost periodic function
satisfy hypotheses (C, ) and (L, ).

Let us set f(x) as the B” almost periodic function and as its Fourier series
f(x)~2 e, ™
n
Let us also set its Bochner-Fejer mean as follows
05, %)=, d™Mc, ™
n
Then we have

T _ 1 = .
7_[,, f(x+t)f(t)dt—§__‘; oy (X +1; [ )0, (4 f)dt

1 7 1% Pt
=E_j; f(x+t){f(t)-—aBM(t;f)}dt+-2?:£ {f(x+t)—0y (x+1;f oy (1 F)dkt.
=1, +1,, say. Asfor I, we have forall x
|1, §<[ _" | f(x+t)P dtJ [ I | f(t)—op (% fIf dt]—}O (T — o, inthe first; next ,m —> w0},

and as for [,, we have
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1
L |<[ j|f(x+t) o, (x+tf)ldt)( IIGB (4 f)F dr)

Then we shall use the following results for all x

T+x|

T+| x| 1 ) oy
r 2(T+|x|)-rf[|xu|f(t) oy (1) dt =0,

alfilf(x+t)«agm(x+t,-f)]2 dt <

as T — w,inthe first; next,m — © and so we have
1% e LT 2
gﬂﬁil%m(t,f)l dt—;ggEL | f()Pdt,  (m—>w).

Therefore we have for all x
I, =0, (T — x,inthe first ;next,m — ).

Thus we have proved
1 v SR I ———
o(xif)=limo [ SO t)FEdt= limfim - [ o, (x+t)on, (T
Now we have

lzm—J O, (X +1)oy, (f)df-lzm—f ( d,f"')cne"'z"("”)][z d,f’”)z':e‘i"”']dt

T 2T .
_ T

1
= (m) (m') l.&,,x i A=A Jt - fm) 2 l/l,,Jt
E d"™d" e, c, f”ﬁZTJe dt = E (d™ P lec, e

Since d,i"” =1, (m— ), wehave

o(x; f)=Y. |c, Fe*,
n
and then we have

1 % = | |2 A=A
lim — x; e de=4"T""" "
Tow 2T—-"T ¢( f) { 0, A=+ /1'"

Thus we have proved that the hypothesis (L, ) is satisfied. Since f(x) is B®almost

periodic function, so it is clear that the hypothesis (C,) is satisfied.
Next we shall give another proof for the approximation of f(z) by trigonometric
polynomials. Let us set the Fourier series of B”almost periodic function f(x) as

follows

f(x)~3 c,e™
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Then by the One-Sided Wiener formula it follows that
Ate

I {s(u+s; f)-s(u—g fle™du (¥ rea A).

— 71z 1 T —ilt -
cm)_%f_j?f(t)e dt = lim

s-+02 ,\/—

Since we have proved that f(z) (z=x+1iy, y>0) isthe B”almost periodic function
as a function of x, so it satisfy hypotheses (C,)and (L,) and then we have by the
One-Sided Wiener formula and the Theorem D (c.f. I1I, pp.47~52)

T
c(l,y)z%%%j flz)e™dx (z=x+iy,y>0)
~T

Ate

_ﬂ'gzs \/—Js {s(u+e; f(z))-s(u—¢; f(z))} "™ du.

B ‘lgz_r)rgzg\/_ﬂj‘ge wisute f)-s(u—g fle ™ du, (420)

0, (A<0)

yi  Ate

B ﬂza«/—i s(u+g; f)-s(u—g; f)ye™™ du, (120)

0, (A<0)

and so we have

e(A,y)= {c(ﬁ,)e'"‘“, (420) (V real 1)

0, (A<0)
Let us denote A the set of point A suchas ¢(A) notto be naught. Then we have

ce™, (A 20)

. (4 <0) (VA eA).

c(ﬂ,,,y)={

These are the relation of Fourier coefficients between analytic function f(z) of the

class H and its boundary function f(x) at y =0, as for point spectrum.
Now we shall intend to the approximation of f(z )by trigonometric polynomials As

for spectrum of f(x), let us denote A}, = {/1,, €A, 054, <N } and let us define the

trigonometric polynomial p,(x)= Z c,e™ and p,(z) as its G.C.I of order 1.
Al
Then we shall obtain p,(z)= 2 c,e ™™ of which approximate the f(z).

Aehy
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Let us define p,(x) and its correlation function ¢@,(x)=@(x; p,) and also its
GET. oy(u)=0c(u;p,). Let us also define f(x) and its correlation function
@(x) =@(x; f )and also its G.E.T. o(u)=c(u;¢). Then we have by the Theorem D,
(c.f. 111, p. 61)

llm— If(Z) py(z)[ dx

“llm—_f |s(u+8; f(2)~py(z)—s(u—e&; f(z)=py(z))I" du

£-0 447,
2y f ; N N . ~2 yu
== | ({o(w1)-0(0 )} ~{o(u; )= o (0= py )™ au.

Here let us denote that A* = {/1 >0, Ae A} , and let us remark that o(0—;p, )=0.

Then we have

{o(u f)-o(0~ f)} —{o(u; py)— (0= py )}

AN A, <u A, €AF A, <u
0, (0<u<N)
1 2 el (N=w
A, €At N<A <u

Therefore we shall conclude that

2 o
hm— [11z)=put2)P de= = 2 j(
271' N \ AeA" N2i,<u

le, }e"zy“ du

2y 2 K -2 2| 23N
<= |cn|] e"’"du— e, |" e =0, (N-—>w).
% L,,eAZ,,:L,zN i /i,,eA" A=N

It should be remarked that the method of approximation belongs to the category of
N.Wiener.

In the last, we shall also intend to notice some comments.
(1). Nevertheless we need the conditions (C; )and (L) in the proof of the Theorem

D, , but Paley-Wiener, they proved it without these conditions. To eliminate these
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conditions in the proof of Theorem D,, it is an interesting problem. Moreover the
spectral analysis on the N.Wiener class § without condition (L, ) does too.

(2). In III, section 10, we proved that if the boundary function f(x) of analytic
function f(z)e H 12 is almost periodic in the sense W. Stepanoff of order 2, then f(z ) is
almost periodic in the sense of H.Bohr. But in [ 9 ],Theorem 22, pp. 125~127, we proved
it as for analytic function f(z)e H| and its boundary function f(x) to be almost
periodic in the sense of W. Stepanoff of order 1. It seems to be more natural. As well as
the theorem in III, section 10, the key point of the proof is as follows that the Cauchy
Integral of order 1 is represented by the Poisson Integral of order 1:

Clz f)=Ul(xy: ).
However we proved it by the use of conformal mapping of which transforms the upper
half-plane into the interior of unite circle and of properties of Fourier series and its
conjugate series (c.f. [ 8 ],Theorem 22,pp. 180~182). Then it is desirable to prove it in
the upper half-plane directly. It is another important problem.
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