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ABSTRACT
Professors RAYMOND E.A.C.PALEY and NORBERT WIENER pointed out that every
theory of harmonic analysis of functions of arguments in the real domain has an
associated theory of functions of arguments in the complex domain. They had expanded
the theory of the generalized harmonic analysis in the complex domain. Their proofs
were very ingenious [2 ] (¢.f. Chap.VIIL. pp.128~139).

In the previous paper [91 (c.f Chap.2, pp.102~127), the author expanded the theory
of G.H.T. in the complex domain and gave direct proofs of their theorems by our
method under setting the presupposed condition on the real part of boundary function.

But it is seemingly unnatural, so we shall set it on the boundary function itzelf as well
as those of Paley — Wiener. Then we shall reconstruct the theory and represent
theorems here as the more refined and advanced forms. They proved it in the vertical
strip domain, but we shall prove it in the upper-half plane and next in the horizontal
strip domain.

Introduction.

The Paley — Wiener, they proved the following theorems.

Theorem P —W, . Let f(z) be a function of the complex variable z =x+iy that is

analytic in and on the boundary of the strip a<x <% and let
A
[IfG+p)Padx=0(4), unif. (a<xsb).
-4

Then we have over a<x<b

.. x+iy—-c T fb+i d
forripy=2ime 1O dp
27 S b+in—-cb+in—-x-iy

X+

iy—ch(aH‘ry) dn
2 S a+in-—c a+in-x—iy’

where cis a costant suchas a<b<ec.

They proved also the following theorem.
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Theorem P ~W, . Let f(z) be an analytic function of complex variable z =x+iy

of a<x<bh andlet
A
[l f(x+iy) P = O(4), unif. (@<x<b).
-4

Let f(a+iy) and f(b+iy) both belong to the class S as a function of y. Then
f(x+iy) belongs tothe class S’ asa functionof y in a<x<b.
Theorem P —W,. Let f(z) be an analytic function of complex variable z =x+iy

of a<x<b andlet
A
{1/ +p)Fde=0(4), unif. (@<x<b).
-A

Let f(a+iy) and f(b+iy) bothbe uniform almost periodic as a function of y.
Then f(x-+iy) also doesasa functionof y on a<x<b.

9, Generalized Harmonic Analysis in the upper-half plane.
We shall start it in the upper-half plane. We shall define a class of analytic functions
and notations.

Generalized Hardy Class of order 1. We shall denote it by H and it is defined by
the set of functions that satisfies the following properties. It is an analytic function
f(2), (z=x+iy) inthe upper—halfplane y >0 and the integral

FLOL 4o,

1+ x2

uniformly in y > 0.
Generalized Cauchy Integral of order 1. We shall write it by C(z;f) and it is
defined for function f(x) of the class W?* by the following integral '

z+i 7 f(t) dt
Czf)=
1(&7) 2mi C tyit-z

where z=x-+iy, ¥y >0.

Then we have
Theorem D, . Let f(z) be analytic in the upper-half plane and belong to the class

H? . Then we can find the boundary function at y =0.1f we denote it by f(x).
(i) We have

lim f(x+iy) = f(x), ae

where if we write Rf = g,then I[f =3 andso f=g+i (= f say.
(ii) It belongs to the class W? and we have
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lim
y—0

w0 N 2
flEn-S@F 4
s l+x

(iti) The f(2) is represented as the Generalized Cauchy Integral of order 1, that is

f(z)=Cl(z;f)=22 i | f() dt

xi Y tvit-z’
where z=x+iy, y>0.

We proved that the inverse theorem also true as follows.

Theorem D, . Let us suppose that g(x) belongs to the class >, and let us define
f(x)=g(x)+ig(x)} and f(z)=2C(z;g).Then we have the following properties
(:) (i) We have f(z)=C/(z;f) and f(z) is analytic in the upper- half plane
(z=x+iy,y>0) and belongs to the class H'.
(ii) The f(x) isthe boundary function of f{z) in the following sense

lingf(x+iy) = f(x), aex
y—=>
and

lim
y—0

1+x?
(c.£.I8], I, Chap.3, Theorem 43,44, p.197).

FlAem)—fof 4

Now we shall prove the theorem of spectral decomposition of f(z) which belongs to
the Generalized Hardy Class of order 1: H;.

(~—) Theorem D,. Let f(z),(z=x+1iy) be analytic in the upper-half plane y >0 and
belong to the class H?. Let us denote by f(x) its boundary function at y=0.

Then we have for any given positive number &
(i) if |u|z &, then

stu+e; f(z)-su—g f(2))
=£+—'§Me’”‘ ({s(u+£;f)—s(u—.s‘;f)_}+r0(u,y,£;f))

where

for every y>0.
(ii)if |u|< &, then
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su+e f(z))—su-& f@) =in(u+e f)+in(ute f)+nlut+ey f)
where
Cin(ute f)vin(ute f)=s(ute f)-s(u—g; f)

and

for every y > 0.

Proof of Theorem D, . This can be done by running the same lines of Theorem A ,s0
we shall remain to sketch it for the first half part and give the detailed proof for the
estimation of remainder terms.

Let us put
F=] O T 1B
1_ 0, if |t B
Then we have for any given ¢
(i)if |u[> &, then

S(u+8; fy(2)-s(u-s: fy(z))= Lim. \é_ [ Gz 222

2s1n et o g

1+ signu) _ i g WY _ giels—)
= ( £ ) e I f 5 : : e s
2 i(s—1y)
Let us remark that
sm et SlIl gt-

Lim.C, (z;fg)—— =C,(z; 1)
then we have

s(uts; f(2)) = s(u=s; f(2) = Lim{s(u+s; fy(2) =s(u=8: fo(2))}.

Therefore we have

s(u+g; f(z)—s(u—&; f(z ))=zm. ,.,_; [ c@n 2SNEL o gy
(1 + signu) —uy IS(S—J}') _e—ts(s—ry) s
= S TEY) e i —— :
2 oy J_ j f(s) i(s—iy) e ds

Now we shall decompose the kernel of integral on the right hand side as follows

eis(s—iy) _ e—ie(s—iy) B 2 Sill £s er’a‘s (esy _ l) e—iss (e--sy _ 1)

i(s~-iy)  s—ip i(s —iy) i(s —iy)
_ 2sinegs . iy 2sings . &= (e 1) B ¢ (e —1)
s s=iy s i(s —iy) i(s —iy)
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2sinss
= s +KOI(S’y"g)+K02(S’y:8)+KO3(S:y:g): say.
Let us put
ro (1, .8, f) —lzm —_— I f(s)K,(s,v,e)e™ds, (i=1,2,3)
and

13,6 0) = 1y (3,8 1)+ 1 (1, 3,8: ) + 1y (4, 3,85 ) .
Then as for ry, (4,y,8; f), we have

(s) 2sines
s

—'HA‘S d

. y,e )= (zy)lzm\/___.' f

and applying the Plancherel theorem, we have

2 [ In(uys P dusasy j'f(:)'zds o), (-0,

[w|z&

forevery y>0.
Asfor r,(u,y,&; f), we have

. LR e
vy, (i1, v, 85 f) = —i(€” ~ Dl —== | L2L 7080 gg |
0 (., 1) = =i( )B%@;_jﬁs_y

and applying the Plancherel theorem too, we have

.,_I |r07(u ¥, & f)lz du< J' |f(5)| ds

lulze S + y

© 2
:O(ayz)_[ IJ:(S)L ds=o(1), (£¢—0),
) d sy
o for every y>0. By the similar way, we have
2 [ Vris(u, .81 £)P du=O(sy? )j'f“' ds=o(1), (5—0)
lujzs

for every y > 0. Therefore we have

s(u+a;f(z))—s(u—S;f(z))z-(L_l%gn—iie"”({s(u+s,'f)~—s(u—s;f)}+ro(u,y,s;f))

and

z—j \ro(u, 3,8 f ) du=0(ey* )j 'f(” L2 ds=o(1), (£—0),

lujzs

for every y > 0. Thus the first- half part of Theorem D, has established.
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Next we have
(ii)if |u|< &, then

zALmJ_IC( zfy)

r(s—Jy)u _ —J(s iy)e
—_ I f(s)E — AL\ R I fs) L3 ds
T i(s —iy) §+i

Now we shall decompose the kernel of integral of right hand side as follows

2sin &t o g

i(s=ivyu —i(s—~iy)E .
e —€e —i{5—i 1
- 4 e i(s—iyvu + .
i(s —iy) §+i
isu —isg : i s—hru —i(s-iy)e isu —ise
B _ € _-e e—lszr + l -+ € . _e- e—i(s—iy)u _ € Te e—isu
( ) is s+ i(s —iy) is

= i e—:(ws.)s 1 + J it e_(sj‘y ](””-) -1 _ e_“(’”.g) -1
s+i —is s+i —i(s —iy) —is

=iK | (s,u+e)+iK,(s,u+e)+ K, (s,u+¢e,y) say.

Then we have

R —ifute)s
ﬁ(u+s,‘f)=lgi;’f.?-,j_;_£j Ki(su+e)f(s)ds =ljm—— I J;Tz)e —i s
-B _B

and
n(u+te; f)=1Lim —I-T K,(s u+e)f(s)ds=lim—l—-f S8) iturers g
2 ’ BAJ@_B LA kim'\/ﬂ_g §+1i |
(J Now we have to prove that
- in(u+e f)tinw+e =s(u+e f—su—g; f).

For this purpose, let us remark the Theorems D, and D,. There we proved that the
necessary and sufficient condition for f = f(x,a)to be the boundary function of an
analytic function of the class le is as follows. If the real part is Re f = g then the
imaginary partis Im f = @ and we can write it as / = g +ig,.

We shall also quote the skew reciprocal formula of G.H.T.. That is as follows

&(x) PVlj s(t) & 4 pyl Igl(t) e __8(x)
X+ T t+i1 x—t mo, t+i x—t x+1

We can write it as

(&N (x)=-g(x).
By the part (ii)of Theorem A , we have
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S(ute g )~s(u—e g )=i{s(u+eg)—s(u—g,g)}+2n(ute g)+2r(ut+e g)
and we have
2r{u+e; g)+2n(utse g)=—ifs(u+e; f)—s(u—g f)}.
Next by the property of skew-reciprocal formula of the G.H.T., we have
G (x)+i(Z )X (x)=§ (x)+i(~g(x)=—if(x).
Then by the same reason that derived the above formula, we have
2r(u+g; 8 )+2n(ute g )=—ifs(u+e—if )—s)pu—g&;~if )}
=—~{s(u+e+f)-s(u—g;f)}.
Therefor we shall have the desired formula
n(uve f)rin(ute f)=i{rn(ute g)+n(ute g))—{n(ute g )+n(u+e g )}
=s(ut+e f)-s(u—g;f).
In the last, let us write

B
r3(u+£,y,'f)=léinj.~J;=ﬂI Ki(s,u+e,y)f(s)ds.
-B

then nothing remains but to prove is

11m-- j in(u+e,y; /)| du=0.

50 2
|u|s::

For this purpose, we shall rewrite the kernel K,(s,u+¢,y) of the integral as follows,
e—(s—iy)(u+e) -1 e—is(u+£} -1

K,(s,u+g,y)= - - - -
~i(s = iy) —is
_ S(e—i(s—iy)(u+e) _ 1) _ (S _ iy)(e—is(u+e) _ 1) B Se—i[u+g)s - Se—i(u+5)(s-ry) + iy(e-i(ws)s . 1)
—is(s —iy) —is(s—iy)
g (ute)y y  —i{ute)s —xru+s)s 1
=L - .)e £ 2e )"Ksl(s,u+8,y)+K32(s,u+e,y) say.
i(s—iy) —s(s—1iy)

and let us put
B
r@teyf)= lgﬁ-f; I Ky (s,ute,y)f(s)ds, (i=1,2).
-B

Then applying the Plancherel theorem to 7, (# +¢,y; f ), we have
(1—e™ )2

L[ im(urey f)Pdus

T |f(5)l ds = O(Eyz)]i u{.(_ﬂl;dszo(l), (e—>0)
e . Yo 8 Y
for every y > 0.

Asfor r,(u+g,y; f),we can rewrite it as follows

.[ J)

s (T i dvjds 1yur aviim— I f(s) e ™ ds
1]

B-yon ,\/_

Falu+£,3; ) = légm

and if we put
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7(v)= lsz_j f(s) ™ ds

then we hwve

2

2 e, f)P du < |
&

[|se Jelse

du <237 (zj | Fo) v J

j F)dv
0

2e —~ =] 2
<4ey’ [ | fO) dvsdey | l—{(s—)lzds =o(l), (&->0),
0 —0 5 +y
for every y > 0. Thus the second- half part of Theorem D), has established.

<> Next we shall prove the theorem of spectral synthesis of analytic function in the
upper-half plane.

Theorem D,.Let f(z),(z=x+iy) be analytic in the upper-half plane y >0 and
belongs to the class H. Let us denote by f(x) its boundary function at y =0. Let
us suppose that f(x) belongs to the class S, then f(z) doesto the class S'.

We shall use the following result as essential roles for proof of the theorem.

Lemma D,.Let us suppose that f(x) belongs to the class S, then the following
limit

- Iim

) Mzg\/—f |s(v+e, f)=s(v-e; f)[av

exists and equals to
ofu)-o(0-), aeu,

over any finte range of u ,where

1] Y7oy
o(x)=limor | s+ 0)f (0

=[lim—— eimls(u+£:.f)_s(u_£:-f) I2 du

and

1 -1 A —inx
(21. 21) a(u)-—j qo(x) dx+lAz_)rz;¢\/_[_L+JI‘ }a(x)eti;dx
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Remark (1). N.Wiener [1] (c.£.(21. 175) at p.160 ;(21. 21), (21. 22) ,(21. 23) and (21.
24) at p.161) introduced the following functions.

CLIT g (x)=oe [ ¢ |s(ursif)=s(u—s;f)f du
4me =,

and

—mx_l -1 4 e—iw:
(21.22) o, (u)= Igog(x) —dx+Lim ;/—_-__[jq :Iqag(x)—_;dx.

-4 1

Then he pointed out the following formula

. 1 f —inx - 1 . . 2
(21. 23) lﬂ'jz_;_j,! @,.(x)e dx_zgmis(uw,f)—s(u—g,fﬂ,

<j and if we integrate both side, we get

(21. 249) PV———-—J‘ %(x) 28@}|S(V+g,-f)—s(v-g;f)12 dv
0

But we could not follow the formula (21. 23} and so we shall prove (21.24) by other
method.

Remark (2). N.Wiener[1] (c.£21. 25),(21. 255),(21. 257) and (21.26) at p.161~162))
proved that formula5s (21. 22) and (21. 24) yield us

] 1
(21. 25) = L+ +e f)-s(u~e: f) du.
o, (1) =cons !‘zgmls(u g f)-s(u—e; f)| du

Since @.(x) tends to @(x) boundedly as £ -0, @,(x)/(—ix) tends in the mean
( to @(x)/(—ix) over any range not containing the origin. From these facts we may
)

readily conclude that over any finite range of u,

(21. 255) o(u)= lkii%z.as(u).

It follows that

1 " . _ o 2
2gm£|s(v+s,f) s(v—g;f)] va.

The constant in this formula may readily be verified to be

T o)
—D*J }—ix—dx’

-4 1

(21. 257} o(u)= l.i.m{com‘t. +
&0

as the A tends to infinity. It will be seen that
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1

(21. 26) a(u)—a(—u)=l;i;r%1.2€\/i;£ |s(v+e; f)—s(v—e;, ) av.

As we have proved in the Theorem D, that s(u+s; f(z))—s(u—eg; f(z)) vanish

over any range of # <—g, so we should require that the existence of the following limit

fim Ze\lfﬂ_-[ |s(v+e; f)—s(u—e f)I dv,
over any finite range of u.
To obtain the formula (21.23) due to N.Wiener, we shall quote the theorems of
S.Bochner [3](c.f. Theorem 23 at p.95) and PLevy[4l(c.£P.Levyl4] at pp.163~172 or S
() Bochner[3] Theorem17 at p.83)
The Function of positive definite :
'We shall call the function @(x}to be of positive definite if the following properties are

satisfied,
(1) #(x) is continuous for all real arguments.

(ii) Hermitian symmetric : ¢(—x)=¢(x).

(iii) For any finite real number x,,x,,..,X, and any complex number ¢, ¢,,.... &, ,

the following formula

i o(x,—x; Jaa, 20

ij=1
is satisfied.
_ Then we have
U The Theorem of S. Bochner : The necessary and sufficient condition for a function

@¢(x) to be of positive definite is that the following properties are satisfied. That is
there exist a bounded and monotone increasing function A(u) and ¢(x) is
represented by the following formula

d(x) =_J1=_—j e dA(u).
27 2,

The Inversion Formula of the Fourier-Stieltjes Transform :

The theorem of P.Levy : If ¢(x) is the function of positive definite, then we have the
following formula

e—iux. _ 1 Cix.
X

A1) - A(0) = P.V.ﬁz é(x)

The former is often called the S.Bochner representation theorem as for function of
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positive definite and the latter the P.Levy inversion formula.
Now we shall going to prove Lemma D, and Theorem D, .
Proof of the Lemma D,. We shall write the formula (21. 175) as follows

= \/;_ﬁ I e dA (u),

@.(x

where

1 7 Ve ol g
_2gm£1s(v+g,f) s(v—g; f)|dv.

Since the @,(x) is a function of positive definite and so we have the formula (21. 24)

by the inversion formula of P.Levy. Therefore by running on the same lines as
() N.Wiener, we have

l.gi;)t%z.ag(u)za(u).

Now we shall decompose the right-hand side of (21.24) as follows

1 % e
PV == X
\/E __[‘ @s( ) _

j ou(x)—L +Lim —Jz[j+j ]ps(x)ixdx

-4 1

1 (7.7 1e.(x)
+P.V.~—,_2jr [__!;+_1[ :l—-——m dx
<) =o,(u)+C,, aeu

Here, we should read the last term of the above formula as follows: There exist a

sequence {A j} tending to infinity such that

1 [7.% |ex) 1 T e,
P.V.Tz_;[_£+!] - dx_i_@mj_—[_£+‘!.} -

and it is finitely determined. We shall denote this constant by C,.

Berause we have

dx lzm

J—j 0.(x)°——

and furthermore, by H.-Weyl's lemma to the Riesz - Fisher theorem as for the criterion of

1 j 0, (x)%-
27r ey :
completeness of I' space (c.f. N.Wiener[1], Section 3 at pp.27~34), there exists a
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sub-sequence { A j} of { A} tending to infinity, we have

sz{hj ]q)s(x) dx= i’i’i‘f‘”[f*f }gos(x)m-—dx

e -4,
Thus we have the above formula in this sense and the constant C, is finitely
determined.

Here we should remark that if f(x) belongs to the class § then its auto-correlation
function ¢@(x)is not necessarily the function of positive definite.

(i) Continuity of ¢(x): Because ¢(x) exist for all x by definition but it is not
necessarily continuous. N.Wiener(c.f.[1],Theorem 26,pp.154~156) pointed out about

O this circumference as follows that if ¢(x) is continuous at x =0 then it is continuous
for all real arguments and f(x) belongs to the class S’.

We should remark also that if f(x)belongs to the class S then ¢@(x)satisfies the
properties (ii) and (ii) as follows.
(ii) Hermitian Symmetry: We have

—— 17 1t
#(~x)=lim IT S(=x+)F(t) dt = lim— jT f(t)f(—x+1)dt

T-x

m—-— [ fex+s5)7(s) ds= zzm—jf(x+s)f(s) ds
—T—x
=0(x).
() (iit) Positive Definiteness We have for any finite real number x,,Xx,,..,%, and any

complex number @,a,,...,&, , the following formula

i p(x, —x; )oyé; 20

i, f=1

=i (lzm—ff(x, x, +r)f(:)dt] Z (Izm——— ]XJ f(x,+s)f(x, +s)ds}a,'—,.

=] Ty T i,j=1 T 2T —T—J-'j

[hm—j f(%+s)f(x, +s)a'sJac aj—l:m——l-—r [Z f(x+s)F(x, +s)c J

T 7 \Aj=]

-jl“z_rgiﬁ- ;Z:f(x + 5 Jor, [*ds = 0.

Now if f(x )belongs to the class S, then we have by the theorem N.Wiener(c.f.
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[1]1, Theorems 35,36 at p.183)
S(u)=PV.—— j #(x)%

"Jﬂ-\‘ 1

exist for every u and we shall have
S(u)—-o(u)=C, aeu.

Thus we have similarly

PV~—-~I¢(x)
=_J5_;_jl¢(x)e_ix dmeT_LJF! —¢(x)f_—_u—c—-dx
= 1 [1.F Je®
+P.V.72_—7—r—___[u+_!' [ & dx

=c(u)+C, ae.u

We shall return to the formula, we have

1 % Y to o P2
As(u)-zg\/.z_ﬂ__gls(v+£,f) s(v—e; f) [ dv

dx o.(u)+C., aen,

J— [ o.00)%

and we shall conclude that

1 5 "
- |s(v+e; f)-s(v—g; f) dv=0c_(u)-oc.(~-¢) ae.
C) 2e\27 _'[ ¢ ¢
Now, we shall quote the Paley - Wiener lemmafe.fR.E.A.C.Paley - N.Wiener[2],pp.134
~5).

Lemma P —W . Let { f(x )} be a sequence of monotone functions and

Lim. f,(x)=f(x), (12).

Then we have

giﬁfn(x)=f(x), Q.e.x.

Since we have
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lim.o,(u)=o(u), (L),

and o, (u) isabounded, continuous and monotone increasing function. Then applying

Paley - Wiener’s lemma , we could conclude that

lingo;,(u) =ofu), aeu,

and o(u)is also a bounded and monotone increasing function.

Next we shall intend to calculate the limit lingt:')"g (—¢) and prove that it equals
o=

too(0—). For this purpose, we shall consider the normalized o(u )by changing the
values of definition of it on the set of measure zero, if it is required. Thus ofu)} is the
function of bounded and monotone increasing and it has the first kind of discontinuity
at most on the set of enumerable points, there it is satisfied
() = ofu+0)+o(u—0) -
2
In the first, let us suppose that ofu) is continuous at # =0. Then for any given

positive number gand allof # suchas 0<u <&, we have
o (~u)s0,0)<o.(u).

Let us tend & to 0, we have
o(-u)<limo,(0) <limo,(0) < o(u), ae.u,
0 s—=0
and let us tend # to O through which belongs to the set of existence of o(tu), we
have
limo (0)=0(0).
£=30
Next, we have for any given positive number &,

o.(~u)so,(-5)<0.(0), (O<u<eg),

and it follows that tending & to 0,

o(~u) <limo,(-&) < @O‘S(ﬂs )<0(0), aeu.
g0 £

Let us tend # to O through which belongs to the set of existence of o(—u),we have
lingas(—-a') =o0(0) .
e~

In the second ,let us suppose that o(u) is not continuous at u=0. Since we

consider the o(u)to be normalized, so we have
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o(0+)+0(0-)

o(0)= 5

Let us put
o(0+)-0(0-)=d, say
and let us consider
o' (u)=o(u)~dh(u),

where A(u) is the Heaviside operator function such as

0, u<0
Mu)=< 112, u=0
1, u>0

Then the function o"(u) is continuous at u=0. We shall consider
o.(u)=o,(u)—dh(u).
Now if we apply the result of the first part to the {o‘: (u )} and o’ (u),then we have
lima(~&)=6"(0)

and so

lim(o,(—&)—dh(—£))=0"(0)=0c(0)-dn(0).

Thus we conclude that

l%as(wg)za(()-—).

Thus we could conclude that the following relation

iﬂygzg\[_jls(ws f)=s(v—e:f)dv

=o(u)-o(0-), aeu,
is established over any finte range of u. This is the formula of which we have been
desired.

Similarly we conclude that

lirrgas(+£)=0'(0+)

and

Iim

£—0 2 g\/_—

I|s(v+a;f)—~s(v—f:;f)l2dv=0'(u)—0'(0+), aeu
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over any finte range of u, and so we have

J’ |s(v+e; f)=s(v—g:f)f dv=0c(0+)-c(0-).

lim

£ 26ﬁf

Remark. The proof of the above formula can be done by the use of the following

properties only. The sequence {0'5 (u )} is that of a bounded monotone functions and

converges to the o(u), aeu.

Proof of Theorem D, . In the first we shall prove that f(z)=C,(z; ) belongs to the
class of S. We have the following formula by the Theorem D,

lzmvl— e | s(u+e; f(z)—s(u—sg; f(z))f du

50 drg 3

O

=]

= lim—— [ ¢ (e {s(u+e; f)—s(u—g; f)} P du

s-0 dgpg <

—lzm—(_[ (')du+j(')duj_1 +I,, say.

-0 477,

We have
—2Ay ©

j|s(u+g Fl=s(u—e; f) du

|1 |<

and then

ts(u-+g; f)—s(u—g; f) [ du

| llm |1, < e ls’z_rzg ]2
O iy
3

[f(x)fdx -0, (4>x).

=g llm
Now, for the A sufficiently large and to be fixed, we have by the integration by part

A
oL
4re °,

e e {s(u+e; f)—s(u—g; f)} [ du

EY|

e(rx—Zy)u u
_[ j|s(v+a f)- s(v—s;f)|2dv}
4zxg

U=

(ix=2y) 1 (ix=2p Ju I ' 2
—= e [ [ s f)-s(v=e: f) ] dv |du
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elx2x)4

-7 28\/__[|s(v+a f)-s(u~e: f)fFdv

(x=29) T eagn| 1T ) el — e £
Nor :[e (28\/2_7;:[|S(v+8,f) s(v—g;f)] dv)du

By the Lemma D, , we have

£%28J__'EIS(u+8 s f)—s(u—g; f)f dv=0(u)-o(0-), aeu

and its bounded convergence is guaranteed over any finite range of u.
(.> Thus we have

__(I'x—2y)]3 (o(1)—o(0-))e™ M dy (4 ->w).

2z

for all x. Therefor we could conclude that there exists the following limit

lzm?g- e™ |s(u+sg; f(z))—s(u—g; f(z){ du

_ _f,ix“_zJ")T (o(u)— o (0= ))e ™2 gy,
[0}

2z

for all x. Thus we have proved that f(z)=C(z; f) belongs to the class S. In

particular, if we put x =0, then we get the following formula

lzm—~—-'[ |s(u+e; f(z))-s(u—g&; f(z)) du= 2y T(O'(u)—-a(O—))e'z”‘du,
”0

g0

In the last, we shall quote the theorem of N.Wiener([1],Theorem 28 ,p.160)and we shall
prove that f(z)=C,(z;f) belongs to the class S'. We have

A-w 0 4o

lzmlzm—{j+? }| s(u+e; f(z)-s(u—g; f(z) du

—lzmllm*_[ e s(u+a f)- s(u—e;f)}|2du

A 60 47e
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—2yA ©

j |s(u+&; f)—s(u—g; ) du

< lim hm
Aswe0 4718

=lime'2y"lzm J' |s(u+g; f)—s(u—s; ) du

A0 =04 ﬂg

= Jim &2 lim — j | f(x)P dx=0,

Ao

for all y > 0. Thus we have proved that f(z)=C,(z; f) belongs to the class S’ for
all y > 0. Then we have

o(x f(2)) = lim %j flx+t+ip) T i)

C> -lzm—l—we"‘"[e”‘{s(u+a f)—s(u—g; f}E du

&0 471¢

= uﬁx—\/;:?lz (o(u)~a(~0))e" ™ du,

where z=x+iy, y>0.
10. Application to the almost periodic functions.
We shall intend to apply the theory of G.H.T. to the almost periodic functions. Let us
start to define the almost periodic functions.

Uniformly almost periodie functions in the sense of H.Bohr,
Let us suppose that f(x) is defined on the real line —0 < x <0, is bounded and

uniformly continuous. Let us suppose that for any given positive number & ,there exists

Q a trigonometric polynomial p(x)= Z c,,em"x such that

| f=pll.= sup | f(x)-p(x)ILe.

—0CY

Then we shall define the f(x) to be uniformly almost periodic in the sense of H.Bohs.
Almost periodic functions in the sense of W. Stepanoff.
Let us suppose that f(x)is measurable and belongs to the class I? locally with the

norm

”f[|32=[ sup ;xj | f(x)F dx] <.

—0L X0

The [ is a length of interval (x,x+/) and to be fixed. Let us suppose that for any
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given positive number & ,there exists a trigonometric polynomial p(x)= Z cne”"x

such that || f — p[|.<&. Then we shall define f(x) to be almost periodic in the

o

sensge of W. Stepanoff.

Now we shall intend to give an example. Let us suppose that the boundary function
f(x) of analytic function f(z)e H; is almost periodic in the sense of W. Stepanoff .
Then we shall prove that f('z)is almost periodic in the sense of H.Bohr in the upper
—halfplane z=x+1iy, y>0 asa functionof x forall fixed y>0.

Let us suppose that f(z) be analytic in the upper-half plane z=x+iy, y>0 and
belongs to the class H}. Then by the Theorem D,, there exists boundary function
f(x) ofthe class W? and it is represented by the G.C.1.

fla)=Gz f)=220 [ L&

i 2 b+it—-z

As for boundary function, if we put Rf = g ,then we have [f = g, and we shall write

‘ f(x)=g(x)+ig(x).
As for the kernel, we shall decompose into
1 1 1 b% i I—x
QDit—z 2(t—xP+y2 2(t—-x)+y*

We shall write

f(t) y a
t+i (t—x) +)°

z+i G
Ul(xry;f)= I
ﬂ —0

and

_ ey ZHITOf(t)  t-x
Ul(x;ylf)—— T --[ot+l (f—x)2+y2dt,

then we have
Cu(z:f)=SU (533 )+ 2T (i ).
We proved also the following formulas
Oi(x,y;8)=Uy(xy:&), C(zg)=iC(z§)

(c.f. S.Koizumi[8], Theorems 36,37,pp192—3). Then we have
C(z f)=C(zg+ig )=C(z,g)+iC/(z;§ ) =2C(zg)

=U(x,y;8)+iU\(%,y:8) =U(x,y; g)+iU,(x,y; &)
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=Ui(x,y, g +i& ) =Uyx.y. f).
Let us remark that the Poisson kernel P(x,y) has the following properties. It is a

positive kernel and mean value 1. That is

P(xy)=> iyz >0, (y>0) and %L xzi’yz dx=1.
The boundedness of f(z).
Let us start the following formula of which we stated in the previous paper without
proof. This is as follows.
We have
1% 1 y y+1 y+1
- _[ 2 T3 dt=— 7 7
mr 1+t (t—x)"+y x*+(y+1)° |z+1]
O where z=x-+iy,y>0.
(c.f. S.Koizumi [9], II, Lemma?22 , pp.125 ~ 6).

We shall prove it for the sake of completeness

Since

| S 2y
— | e y"’e’“dxm\/:
«/27[_‘[, Tt +y2

we have

1% ;

--_[ - 4 - e™dt =™,
T, oty

and in particular if we put y =1,we have

Im 1 —ixt _IXE
———.[—2——~—e dit=e "™,
x4

Taking the Fourier transform of convolution product between two functions, we have

il Ry ey el A
2 L A\ L1+t (x—t) +y
=\/E_]_'__I _]'_I y2 5 e—iu(x—!)dx 1 ; e—im‘ dt
2@ \m=, (x—t) +y 1+1¢

(1% Y —iux I 1
e rte)ilters)
2, h% T 1+t

g Mgl — o=+l
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Taking the invers Fourier transform on both side in the above formula, we have

Y
— at
71'_"; 1+8% (x—t) +

\/7 I (il i g y+1 - y+1 _
2 Jom TR (y+1)? jz+1]

Since f(z)=U,(z; f), we have by the Schwaltz inequality

[f(z)|2 (Z+I|J'|f(t)| Y dl‘]

1+ (t=x) +y*

Szvif iTIf(f)F Y at li#dt
md 1+ (t-x)+)° zo(t—-x)+y

lz+if & 177" Lf)F y

O

lzwljlf(t)lz Yo

1+82 (t-x)"+)* T

ni

Hereif ni<t<(n+1)l, (n=0,£1,£2,---), we have
| 1 y - y

1482 1+(nl)? and (t—x)+y"  (x—-nl)>+y*’
where we shall use the notation between two functions a(t), b(tf) such as
a(t)=b(t),
if there exists absolute constants C,, C, such that the following inequality
C) Cb(t)<a(t)<C,b(t)

is satisfied between them.

Then we have

© n+l )i
1" APy
Kl 1+ (t=-x) +)°

nf

1}

I 1! y 1 s
[:zz_m 1+ (nl) (nl—x)E + 9" ](iﬁ_}fwl I /() dtj

B -{“oo 1 ¥y x+[
=[7r_-[, 1422 (f~x)" +)* dIJ [—jﬁfgw '[If(t)l dt)

65

1+ (t=x)+y

dr .



KSTS/RR-13/004
May 17, 2013

_(*1) [ Yriraor dt}

| z+1 |2 —«<x<ool

Therefore we have

sup | f(z)|S O(J(y+1) )( sup - Ilf(t) P ]

<X <00 —oo<x<oo

R

The uniform continuity of f(z).

We shall prove that if f(x) with the Stepanoff norm || f||.< ,then f(z) is

o

uniformly continuous as a function of x for all fixed y >0.
(3 Letusput z=x-+i and z'=x"+iy (y>0 ,then we have

flz)-f(z')
=z+iT F(t) y dt_z’+i°j’ f(t) y
T T

o tri (r=x) 4y 2ot+i (t=x) 4y

Z'+i % f(t
+ J'f(% _]}2 > = ’yz spdt=J +J,, say.
ro t+i|(t—x)+y" (=X +y

Since z—z' =(x+iy)—(x'—iy)=x—x', we have as for J,

J =x—x']3 f(t) y it
: Jot+i(x—tp+)°

and applying the Schwartz inequality

, 2 v 2 _l_w f(t) o Y _}_w Y
O | Fefx =] {ﬂ‘_-[, |t+z | (x—t) +3* dt}(ﬂ'_j; (x—t) + dtj

MES; j SRy
1+ (x=t)*+3°

]x JC| Z l Y [Sup xj-‘|f(t)12 df}

w4 (nl) (nl=x) +3 | wawl
|x-x'f 1 Y 17 2
= dt - L) dt
z ;[,1+t2 (t—x)*+y° iﬁfﬁwl! | 7(0)]

e (L)
#Ix x[ x2+(1+y) [-—w«:x«aljlf(r)[ dtJ
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2 X+
sﬂ-"—’”—[ sup lj | F()] dt].
h% I

1+ ~oczem | %

Therefore we have
1

Jj r—1x l.x-o-l 2
s YT s X1 P ar |
1-+-y —eo<.t<nol *

Next we have as for J,

R=EHi] f(t){ y y }dr

s t4+7 (t‘—-x)2+yz—(t—x')2+y2

and where

y _ y
(t—-x)+y* (t—x') +)

_ el -a-xP) yex)u-x-x)
{(t=x)+yHe-x P +y} {e-x)+yHe-x ) +y*}

Then we have

J =(x—x')(z’+i)T f(t) y(2t—-x—x') dar
? 7: %ot {(e—x )+ Y- P + 37}

and applying the Schwartz inequality we have

PAST I P asid Ly g AT T— R yt-x-¥f
BT o, 1+ (x—t)+y' Jime, {(t—x)2+y2}{(t—x')2+y2}2

where
|2t —x—x'P={(t=x)+(t=x)P<2{t—xP +|t—x'P} =4|t-x']
and
(t=x" P +y 2(t-x')
then we have
(2t-x-x')" _ A(t—x') B 4
{(1-xp+y2Y A2 Py} (1=X)+)

Then we have
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15 Y2 —x-x )
—I ) dt
{(t—xp+ 2 Hr-w P+ )

17 y
“wd e ey

1 % y 1
- df = —.
ﬁyzi (x—tf+y* )

and then we have

o pelEs xHZ+1!( j Lo (x_tj;”zer

@

|x xllz+z| (1+y )i 1
IZ'I'II y2 [—w<.r<uol '.‘ |f(t)[ dt}

Therefore we have
l
(1 + y )l 1x+1
A 1s—~—“y|x—x'| sup ~ j | F()far .
Thus we could conclude that the following estimations

2.0(1 ] Xl %
|f(z)~f(z')rs—(3}”—)—[x—x'l( sup - | rf(r)ﬁdr] .-

=00 X<

O are satisfied. This shows that analytic function f(z)of H? is bounded and uniformly
continuous as a function of x on the upper-half plane y > 0,if its boundary function

f(x)has finite norm || f || <o

Approximation of f{z )by trigonometric polynomials.
N
Letusput p(x)= Z c,e™ where A, =0 and calculate the G.C.L of p(x)

n=0

(z+i) T p(t) dt
C(z;p)=
(= p)=—0 _-Lt+it—z

, (z=x+iy,y>0).

We shall prove the following formula

Z+i T et dr

=e™, (A20); =e*, (A<0),
t+it—z ( / ( /

27i 7,
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where z=x+iy, y > 0. For the sake of completeness, we shall prove it.

to calculate the following contour integral

1 eilw )
zmrj; i w—z)  (w=tri).

(i) A20

v : I=C;ulrL,

e +
/ \\\CA where

i
=
e |

Let us decompose the contour integral into

1 e 1 1
dw=—— [ Maw+—— [ (" dw.
rJ;(w+i)(w—z) e 2xf(£() 2m‘L£ (9w

27

If we (), wehave w= Ae® and dw=i4e"dé =iwd@ , so

eij.w eilAcosG ~AAdsing

: = - — O(A—ze—,usma)
(w+i(w—z) (w+i)(w—2z)

and then

[ (D= 0(47H) 50, (4> w)
Tl ot

O

If wel,,wehave w=¢ and dw=dl,so

(" dw = 1 j e 1 T
277:1 27ri_ (t+z')(t—z) 271'1_w(t+z)(r z)

A

On the other hand ,we have by the theorem residue
1 iAw Iiz

,.- e _e
Qﬂim(w+i)(w-z) z+i

Therefor we have

z+iT e dt i

27l f+it—z

69
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I,=C,urL,,

where

C,=[w=A4e’ n1<0<2x)}
and

L ={w=t—A<t< A}

Let us decompose it into

L2~ I(’de—m [0,
- (w+i)(w—z )
If weC;,wehave w=A4e” and dw=1i4e’dO =iwdf so

e:‘lw er‘M cosd _—AAsing

(wri)(w—z) (w+i}(w-z)

2xi

= O(A—ze-lAsr'rr&)

and then

j('ydw O(A7e ) 50, (4> ).

If wel,,wehave w=t and dw=dt, so

iAt

" e T
_I( 2751" (t+z')(t—z) 2m.J;(t‘+1)(f z)

-4

dt, (A— ).

On the other hand we have by the residue theorem

1 Aw i

€ e
I - aw = ———r,
27”1“; (w+i}(w—2z) zZ+i

Therefore we have

t+it—z

Z+1T eMt dr )
2mi 7, '

Now we have proved following formula

z+i ¢ p(t) dar —Ay b
C(z;p)= =C.+ > ce™e™ C =Y ce”
W(2p)= 27 -[ t+it—-z % 8 ° % "

Since f(x) is almost periodic in the sense W. Stepanoff, for any given positive
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number &, there exists a polynomial p(x)= Z Cneu,,x such that

x+l ';'
(sup%IIf(t)—p(t)lz] <e/JT+y)l.

—HLX L0

Since we have the following formula

f(z2)=p(z)=C(z f-p)=U(xy, f-p),

we shall conclude that

' 1
sup | f(2)- p(z) k& 0(\/(1+y)l)[ sup < [1.7(6)=p(1)F dr}z <0(e).

ol o] —AL X0
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