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ON THE THEORY OF GENERALIZED HILBERT TRANSFORMS I1
THEOREMS OF SPECTRAL SYNTHESIS OF G.H.T.

by

Sumiyuki Koizumi

Department of Mathematies,
Faculty of Science and Technology, Keio University,
3-14-1, Hiyoshi, Kohoku-Ku, Yokohama, 223 JAPAN

ABSTRACT
Refined and advanced form of theorems as for spectral synthesis of G.H.T.
are presented with applications to almost periodic functions according to

the new estimations of remainder terms

6. Relevant theorems of Generalized Harmonic Analysis (G.H.A.) .
The class of functions of W*and S, are defined already. Then we shall introduce

two more class of functions as follows.
The Class of Functions S: It is defined by the set of the functions f(x) which
satisfies the following properties. It belongs to the class of functions S, and the

convolution product of itself

.17 —
#Cc f)=Tim — I fa+fadt

exists for all x.
The Class of Functions S': It is defined by the set of functions f{x) which satisfies

following properties. It belongs to the class of functions S and the convolution
product of itself #(x; f) is continuous everywhere.
Then combining the G.F.T. of f(x) and the Wiener formula and running on the

same lines of his proof and also inverse direction carefully, we could prove

Theorem W, . Let us suppose that the function f(x) belongs to the class W7 then

we have
T - @
lim El?:.;f(x+t)f(t)dt = lim —fﬂ;ie"“|s(u+g;f)—s(u—3;f)|2 du

in the sense that if one of the limit on both side exist for all x, then that of other side
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does for all x too and have the same value. Then we can conclude that the
function f(x) belongs to the class S . '

The first half part of this theorem had been proved by N.Wiener. He used the the
Plancherel theorem and Minkowski inequality ingeniously. This is as follows.
Let us denote by || f||, the I’ - norm of function f(x). Let us suppose that

f,=>f, 9,0 in I’ thenwehave || f +g,|I=l| f1], as n > .

For the sake of completeness, we shall prove it.
From the inequality || f, +g, ||| f, || +1lg, ||, we have

Em|| f, +g, lI<Tm(] £, [ +11g, ID=lm ] £, ||+lim|{g, [|=1] £ ]].

Similarly from the inequality
A= -+ +ag)-g, 1l If-F 1+ f+g. 11+g. ]l

we have

I /|1 limAl £, + &, |+ 1| f =AM+l &, [D-

R—yc0

=lim|| f, + g, |+Iim(ll = £, ||+l g, ) =lim |} f, + g, ||

R—yc0 n—o

Therefore we have
m{|f, +g, |=hm{| £, [IH]f]l.

We shall not go into and refer to his book (c.f[ 1 1,Theorem 27,pp.1566~158) as for
essential part of his proof .

The other half part of this theorem could be done by running along just the same lines
of his proof but inverse direction. We shall give it since this part play the essential roles
on the spectral synthesis of G.H.T.. However let us remember that all of its estimations
are created by N.Wiener.

Let us suppose that the limit

lim —— e |s(ute; f)-stu—g; f)F du

&0 47r€ bl
exist for all x.
Then the following limits
. 1 7,
lim —— [ |(e™ +w)(s(u+z; f)-s(u~g; f) du
§30 A7E 7
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= lim -—-—~I(2+we +we‘"")|(s(u+g f-stu—-g; ) du
£—=0 471’6‘

exist for all x and w =+1,Hi.
Let us denote s, (u; f) the GFT.of f(£+x) asfunctionof & and fixed any x

O ['“T }f(f'kff)e - g+ \/—If(§+x) “m::l dé .

A-reo o 5

Then we have

s,(u+g fl-s.(u—gf)-e"(stu+ef)-stu—ef)

e lim— J' f(&+x) % e ds ] f‘m""\/'l‘"—“" T £ 2sin &£ e

A-roo 27 T4 o o7 2 5
and so we have by the Plancherel theorem

[lo.ur o300 =, (=53 £) =™ (su+ 55 )~ sCu~e; ) F

_ 7 . 2sina(§—x)_2sins§}2d
Jiror|28Beemn) 2shet gy

where
2sing(£ —x) 2singf ” 16¢ | x|

T =|
§—X ¢ 1§ +]x]

Therefore we have

11m--——jls(u+s,f) ~s (u-g f)-e™(su+e;f)-su-g M du=o0

50 471'

Now let us consider the following formula

T s, (u+ &5 f)-s,(u—s5f)+wls(u+s f)-stu—g ) du

o

= [k u+s0)-s,(u-5F)-e"(su+5f)-su—s; 1))
+e™ +w)(s(u+g;f)-stu—g; f)F du,

and let us apply the Minkowski inequality. Then we have

1;_:34— [t 65 F) =5, (a5 )+ wlsCus ) sCu—5 NI e

-11m—j](e‘”"+w)(s(u+e f-s(u-g; f) du

=30 47;
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= lim LJ' (2+we™ +Ee‘“j](s(u+s;f)—3(u—8;f) I* du
£=0 4ﬂ'g

forall x and w = +1,+i.

~—o0

Therefore we have proved that the following limit
.17 )
lim Eﬁ.L | FE+)+wf(§)[dE
exist and equal to

. 1 I —fux i
11m——-—_[(2+we +we™)|(s(u+e; f)—s(u—g; ) du
0 47rg_q

forall x and w =+1,%1i.

Now we shall use the identity
la+bf —|a-bf +i|a+ib|* —i]a—ib[*=4ab.

Letusput a= f(&+x),b= f(£) on the identity. Then we have

| fFE+x)+ fEYP - fE+x)- FOF +i fE+ )+ (EIF —i| f(E+2)-Tf(E)
=4f(E+2)f(&).

Let us also remark that
(2+e™ +e™)—(2—e™ —e™)+i(2+ie™™ —ie"™)—i(2—ie™ +ie™)
= 4e™
Then we have proved that the following limit
.1 7 ——
}Bl_lgggglf(s” +x) f(O)dE
exist for all x and equal to

lm —— e |s(u+g; f)—stu—g; )P du.
E=0 471'8_09

Thus we have proved the half part of Theorem W,.
Theorem W,. Let us suppose that f{(x) belong to the class S. If ¢(x;f) is

continuous at X = O, then it is continuous everywhere and therefore f(x) belongs to

the class S'.

Theorem W,. Let us suppose that f(x) belong to the classS . Then the necessary

and sufficient condition for f(x) to belong to the class S' will be that the
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following property

lim E-—L[TJ }ls(u+s;f)—s(u—a;f)|2 du =0

A—w £-30 477;&- A

is satisfied.

Let us remark that the condition means the spectrum of f(x) to vanish at x = 1o
or to concentrate there with energy a few.

There is also the notion as for functions of positive definite due to S.Bochner, but we
shall not use it here and so we shall not go into. We shall refer to S.Bochner : Lectures
on Fourier Integrals with an author’s supplement on Monotonic Functons, Stieltjes
Integrals, and Harmonic Analysis, Annals of Mathematics Studies, No. 42, Princeton
Univ., (1959)(c.f. Chap.IV. § 20,pp.92~96;Auther’s supplement, § 8,325~328).

7. Spectral Synthesis of Generalized Hilbert Transforms.

By the use of Theorem A as for spectral decomposition, we shall prove several theorems
of spectral synthesis of G.H.T. according to those of G.F.T. due to N.Wiener. The
following theorems are refined forms of which we proved in the previous paper [6] (c.f.
Theorems 51,52,54,55,pp.206~211).

Theorem B, . Let us suppose that f € S,. Let us suppose that hypothesis (R,) and

(jéo) are satisfied. Then we have }T e S, and the following equality
N .1 T ~
lim o [1A ) de=lim oz [1fPderle P =le P
Proof. We shall prove the following equality

11m—j|s(u+gf) stu-g;f)F du

&30 471'

—11m—--_[|s(u+g F-s(u- gf)izdu+|c F-le, I

E—=0 47?
For this purpose we shall divide the integral of left-hand side into two parts

___J'|s(u+s,f) s(u-— a,fl)l du=— _[ |(")[2du+z— I | (") Pdu

Iulzs lul<e

=1I +1I,,say.
Then by the part (i) of theorem A ,we have
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= 4—~Ils(u+s,f) ~s(u~g; ) du

|ulze

=,4_ I Is(u+e;f)—s(u~-g; )
fujze

and by the part (ii) of Theorem A and applying the Minkowski inequality and

hypothesis(R,), (Ro) we have

— [ Is@u+&F)-su-s:F)F du

'4 g lulze

j'|1 {su+e f)—su-& ) +an(u+e fl+er,u+e N du

471’- ltl<e

-t j ll{s(u+sf) stu—g; f)— 27rco}+21;(u+s;f)+2(r2(u+a;f)— %a(f))-:-@f::]“ du

47E {ulse
¢, +o(1), (¢—0),

and similaxly

| |sut e -su-e; )P

4?1- ulze

- [ [{stu+23.f)-stu-z£)-2me, | + 2, [ du

4”’- tulss

= ¢, [F +0(1), (¢ > 0).

Then we have

74— [ 1su+8F)-su-5F)F du

luj<e

=— [ s+ f)-s@-e ) Pdu +|e [ ~|c, P +o(1), (¢ 0).
47r£ lul<e

Therefore, combining the estimations of I, and I, we have the required equality and
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applying the Theorem W, to the equality, we have proved Theorem B, .

Theorem B, . Let us suppose that f €S . Let us suppose that the hypothesis

(Ry ). ( I‘éo ) are satisfied. Then we have }: € S and the following equality

m% IF Fax+f @t = %i.?lﬁ [T Flc+ O f@dt+| e F -lc, [ -

Proof. We shall prove the following equality
. 1 % fux CEY L LEY 2
151_1)1(}4%8;2 ts(u+eg; f)—s(u—g;f,) du

o

BT i fax . _ . 2 o 2 2
—13151(}—4”8%6 |s(u+e;f)—s(u-g& I dut|c, [P -le, [F.

‘We shall decompose into two part as before
—1—J‘e""“ |s(u+s;f)-s(u—g,f)F du -1 I e™ |(") [* du+—— _f e™ [ (" Pdu.
4”8 o 4 |ufze lulse
As for first part of right hand-side, we have by the case of (i) of Theorem

1

Z;gmu e |s(u+e f)-s(u-g FII du= ﬁh{i[s e™ | (—isignu){s(u+&; )~ s(u-g; )} du

=2 [ e |s(u+e;f)—s(u—e; f)F du.
A47E jor

As for second part of right hand side, we have

— _f e™ |s(u+e; f)-stu-gf)IF du
47:8 |ujss

= I (e™ ~1)|s(u+s;f)-s(u-g;f) [ du
472'8 lulge

r f [s(u+s;'j‘:)—s(u—8;}:)|2 du,
£

[u|ss

and let us remark that 3“: €S, by Theorem B, and €™ —1=0(¢), as &€ - O,then

we have by the use of our new estimation in § 5,the case (iif)

- ' 7 F .1t
r— wx ; — _ ; : 2 d - 1 1 i 2 ’
4ﬂg“};g(e 1) |s(u+eg; f)-s(u-g; f)f du O(E)TlﬂzT_-‘;rlf(x)l dx
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as £ —0.

Therefore we have by running on the same lines as the estimations of Theorem B,

L e™ | s(u+e; f) s(u—g; f)[2 du
4” lu[se

=1 [1stu+eF)-su-gF)F du+ o@), (¢ 0)
4”“" lulge

¢, [P +0(1), (& - 0),

and similarly we have

———Ie"‘"IS(uw F)=su-m; /I du
4” lui<e

-1 _" |s(u+e;f)-stu—g; fIF du+ o(1), (¢ —>0)
A7E |ise

= ¢, [* +0(1), (¢ > 0).
Now we have

L[ e™|suresF)-su—eF) du

4 e |ei<e

-—4—1- ™ | s(u+g; f)-su-n; P du+|c, F ~|c, I +0(2), (¢ ->0).
e [[E

Therefore we have the required equality and applying the Theorem W, to the equallty

we have proved Theorem B,

Theorem B, . Let us suppose that f e §'. Let us suppose that the hypothesis

(Ro),(ﬁo) are satisfied. Then we have }“: eS’.

Proof. Let us remark the equality of the Theorem B, . This is as follows

g0 ) =0(x; e I e, P
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Then the continuity of ¢(x,_}c:) will be obtained by that of ¢(x;f).

According to the Theorems of W,,W, due to N.Wiener, we have Theorems of B,,B,

by running on the same lines as his proofs respectively.
Theorem B , - Let us suppose that f € 8. Letus suppose that the hypothesis
(R, ),(Ro) are satisfied. If the function #(x; f) is continuous at x =0, then we
have 3‘: eS'.
Proof. By the Theorem B,, we have f €S and ¢(x,f) is continuous at X =0.
Then if we apply the Theorem W, to the function }':(x) , we obtain the continuity of

¢(x;}“:) everywhere and so z eS'.

Theorem B,.Let us suppose that f € S. Let us suppose that the hypothesis

(R,), (Eo) are satisfied. Then the necessary and sufficient condition for }: eS'is

that the following property

IimH_n1_—L[_f+T } [s(u+e; f)-s(u-—g; f)P du=o0

A= £=0 47[6‘ = A

is satisfied.
Proof. By the Theorem B,, we have 3“: € §. Let us remark that the property of

the Theorem identifies with

hmhm——r T:|]S(u+£, F)-stu-&F)F du=o0

Ay g0 47!‘8 A
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by the case () of the Theorem A. Then if we apply the Theorem VVa ,we can conclude

thatf1 € S’ when and only when the property is true.

8. Applications to the Almost Periodic Function.
One of typical examples of our theory is almost periodic functions, We shall treat the
almost periodic function in the sense of Besicovitch and check the reminder terms for
this class of functions. Then we shall obtain the new or refined theorems of which we

have proved in the previous paper[6l(c.f Theorems 67,68.pp.216~219).

As for preparations, we shall quote the following theorem that is the so called One Sided
Wiener Formula(c.f N, Wiener [4]).
Theorem(S.Bochner-G.H.Hardy-N.Wiener). Let us suppose that function f(x)

belong to the class W*. Let us suppose that the limit
T
- 1
?525}‘ jT FBdt
exist. Then the following limit

Sll’l & t
i 2 ] sty

exist too and has the same limiting value.

Let us remark that in the theorem it is not supposed the non - negativity of function .
As for these circumferences we shall refer to the book of S Bochner[9](c.f.Chap II, § 9,

pp.35~38)

The class of functions of almost periodic in the sense Besicovitch of order 2 are denoted
by B® and are defined as the set of function f(x) that is approximated arbitrarily by
trigonometric polynomials P(x) in the following sense

T
.1 .
_ —_ <
lim 7 [ 1 /G- P Pdx <s,
where £ is an arbitrarily positive small number and

N
P(x) — ZAnelAnx .
n=1
The principal properties of B*-almost periodic function are as follows. We shall refer
to the book of A.S.Besicovitch [2].

(DIf f e B?, the following limit
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hm—— j FGe ™ dx =c(A)
exist and naught for at most enumerable infinite number A . We shall denote these

Ao(=0), 4,4, A ey Ay ey and c(A)=c, (1=0,1,2,3,-)
then we shall write
f(x) ~ > ce™
n=0

and it is called the Fourier series of f(x) as well as the case of purely periodic function.

Now we have the Parseval equality
T
1 o
lim — X)fFdx=)|c, P< »
lim 2T_jT|J°( )P de=3 e, |
and
1 7 — e
lim— | flx+)f)dt=> |e, [ e
T_mﬂ_j;f f@xt=3le, |
Thus we shall conclude that if f(x) is B®-almost periodic function, it is also belongs to
the Wiener class S'.
(2) The Bochner-Fejer polynomial
The Fejer sums for the case of a purely periodic function

f(x) ~ i cveiVﬂx,

Ve=—wn

are given by the formula

o, (x; )= Z(l— I)ce""’*

Iv|<n
where the £ is certain positive real constant.

Since
1 T
c, =lim— x)e M dt,
v T 2T _J;f( )
and we shall denote it as M{f(t)e ™" }. It follows that

zvﬂt M {f(t)e—wﬁ(t—x)} M {f(x + t)e—wﬁt}

whence

o, (x; ) = M f(x + DK, (8D},
where the kernel K, (ft) is defined by the equation
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2

. 1

IV! 1 Sln;t

K@= a-hew L2
|,,|;1 n n .

sin—

2

This kernel has two properties important for the summation. It is never negative and
its the mean value is equal to 1.
If f(x) is continuous, then we have
o, f)— f(x), uwnif, (n— o).
On the otherhand ,if f € L* then we have

M{{ f()-0,(x;fIF} >0, (n—>w).
S.Bochner replaced this simple kernel by a finite product of such kernls

Kof®=K, (BOK, (B0 K, (8= ¥ - e o lshgnmsmy

Wal<ry pmlbrg <ty n:z P
where, f,,8,,.....,5, are certain real linearly independent numbers.

This composite kernel has the same characteristic properties as the Fejer kernel. It is
never negative and its mean value is equals to 1. Since the constant term being 1 on

account of the linear independence of the £’ s. We call this kernel the Bochner-Fejer

kernel and we form a Bochner-Fejer polynomial

O g ) =MAS (X +OK ()] =
i ) (i )

[v, |

n,

vV V. ;
(]_ — .L...‘..l)(]_ _.!;Ll.) - (1 )C(Vxﬂ + Vzﬁz ot Vpﬁp )el(lﬂﬁﬁ-vzﬂz'* +vpfp )
1 2

[ <7 [Va| <Ry vpleny

where as usual
c(A)= M{f(t)e™}.

Thus only those terms of the Bochner-Fejer polynomial differ from zero whose

exponentsare Fourier exponents of f(x), When v, 8 +v, 8, +---+ v, B, isa Fourier

exponent of f(x},we write

and we have
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LAY vl
N €O > (-2 -2 (1= 12 )¢ e
(ﬁ“ﬂz’..».’ ﬂp] lvli<nll|"2|<n2r---)l"p|<np n1 ng np
We call the numbers S,, 5, ,....., #, basic numbers, and the numbers n,,n,,..... o1,

indices of the Bochner-Fejer kernel or of the polynomial.
We shall denote the symbol

and write the above formula in the form

op(x)=> dPe,e™,
(B) . . .
where all d.” satisfy the inequality

o<d® <1,

and only finite number of them are different of zero.
We shall quote the following theorems.
Polynomial Approximation Theorem.
(1) To any u.a.p. function in the sense of H.Bohr, there exist a sequence of

Bochner-Fejer polynomials convergent uniformly to the function. That is
o ()~ f(x)—>0, unif., (M- x).

{c.f. [2],Chap.I, § 9,pp.46~51)

(2) To any B? almost periodic function, there exist a sequence of Bochner-Fejer
Polynomials convergent in the mean to the function. That is

M{| f(x)~o, (6 f)F =0, (m—>w)
(c.f. [2],Chap.I1, § 8,pp.104~109)

Let us call it the Bochner sequence and denote it as o, (x;f) and write it as

follows

O-Bm (x:',f) = zn:drEM)cnefﬂnx’ (m =1,2,3,----- ) .

=1

where
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d™ =1, 0<d™ <1, and d"™ -1, as m =, foralln.

Now we shall consider the following problem.
Problem. Let us suppose that f(x) is the almost periodic function in the sense

of Besicovitch, then is its G.H.T. f(x) too ?

In the previous paper [6](c.f Theorems 67,68. pp.216~219) , we have had proved some
result to the problem , we shall give the more advanced result with perfect proof.

Let us start the following Lemmas.

Lemma C,.Let us suppose that f(x)e W?. Let us also suppose that the limit

hm——— j fedt =c,

exist for a real number A.Then we have for this A
Ate

1 ¢
Im— | {s(u+¢;f)~s(u-¢g; flidu=—"2=.
£-20 4yrg A—s{ f f } ’271.

In particular, for the A = 0, if we suppose that

.1 ¢
}gggf__[" fdt=c,,

then we have
&

lim 2 {s(u+s; f)-s(u-g fidu= \/(;iz.

&0 47;-5 il

Proof. We have

Ate

I, —Ilm—J{s(u+s f)—s(u-g; flidu

£—=30 47z‘£ s

iy asinex
-181_1)1("1% _[ a,},ﬂ} —J——_mjf(x)“;we dx)du .

Since the strong convergence imply that of weakly, so the above formula equals to

Ate

llmllm—j( If( X)————e

£50 Aow 47'['8 e

asinex do)du

and we change the order of integrations by the theorem of Fubini as for double integral,

so the above formula equals to
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_hmhm-—-~ j fx )2*‘“‘“(-— j e du)dx

£-»0 A—)oo

1
e AL

In the last we shall apply the one sided Wiener formula, I, equalsto

sin® ex s

~ing | et

Thus we have proved the Lemma C,.

=

Lemma C,. Let us suppose that f(x) is B®almost periodic function. Then the
hypothesis (R,) is satisfied with ¢, where it is the constant term of Fourier series
expansion of f .

Proof. Let us write the Fourier series of f(x) and its Bochner sequence of which

approximate f in the mean are as follows
@) ~c,+> c,e™,
and

0 (G f)=c, + Y e, e
where Z means that the term 4, =0 is excluded in the summation.

We have by the Lemma A,

s(u+e;0p () —su~-g 05 (%)) =2z, z, (u),
and therefore we have

~1—j| {su+8;f)—~s(u—g; I} ~2mc, [ du

" 4ne Ils(””f 0y )—su—g;f~o, )P du+o@), (- 0).

Now if we apply the results of estimation of the remainder terms in § 5 (iii), we have

11m—-~_"| s(u+sg; f)-s(u-e )} - ~J27e, * du

£—0 47;
<167 ITIPJIT | fx)~o, (6 f)Pdx—>o0, (m—>w).

Thus we have proved the Lemma C,.
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Then we shall prove the following refined and advanced theorem.

Theorem C.If f belongs to the class B*a.p., then E belongs also to the class

Ba.p. when and only when the hypothesis (Ro) with E; is satisfied. If the

Fourier series of f is
fx)~e, + 2 c e
then that of f is
f)~c + Z (~isigni_ )c, e’
where z means that the term A, = O is excluded in the summation.

Proof of necessity of the condition(Ro). The necessity of the hypothesis (Ro) with

—

¢, is clear, because if we apply Lemma C, to the function }‘T in stead of f, we

have

11m———_[|{s(u+gf) s(u— s,f)} \/_2_71‘.6 Fdu=o.

=30 471-

Next, by the Theorem A (i),the case of |u[2 £ and Lemma C, with A=A (#0),

we have

lim— I F.(xX)e * dx

T-—)w
Ate

= V27 lim—— j {stu+s;7)-s(u- & f.)}du

£—=0 47[

Ante

=2z (~isigna, )llm— _f su+sg; f)-s(u—s; fidu
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T
= (cisigna, lim— | £ de = (-isigni, e,

In the last by the hypothesis (Ro) with 6: , it is clear that

—

Co

Joz

&

Jim— {s(u + s;f) —s(u- e;}j)}du =

&0 47z-g el

and so we have
.1 T .1 ~ —~ —~
yﬁgiﬁ(x)dx = \[2—1151%:&;—:[{3(11 +e&5f,)—s(u— 3;fl)}du =C, .
Proof of sufficiency of the condition (Eo) . Let us denote the Bochner sequence
oy, (5 f)=c, + ) dMe, e
and its eonjugate polynomial by
om () =c, + Y (~isigni, e, e
We have by the Lemma A,
s(u+e;o, (6 ))-stu—g;0, (x;1))
=\ame, 7, W+2r Y, diVe, z, (u-4,)
and
s(u + 63075, (6 ) - s(u~5301, (6. 1)
=varze,y, W +Var Y (isigni, )d™e, x, (u-2,).
We shall consider these by decomposing into the two cases as before.

(i) the case of |u |2 €.. Let us denote intervals and sets as follows
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Is,o =(—8’8)’ Is,n =(;Ln _E}ﬂ‘n +8) and C = UIg,n’ D:(--—OO,-{-CO)-——C,

n#0

Let us notice that these intervals did not overlap each other for all sufficient small
positive number £.
If ue{ujul s}nC , there exist an interval I, =(4, ~&,4, +¢) and uel
signj, = signu . Therefore we have
s(u+ 8305, (x; ) - s(u-£564, 06 1))
=2z (~isignu)d™e, = Vax (-isignu)y. d™c, z, (u-4,)
=(~isignu){s(u+¢;0, (x;f))-s(u-&;0, (x;1)).
If ue{u;|ulz a}ﬂD , wehave
s(u +&;03, (36 ) - s(u~&;65, (x; f))
= suteop () -s(u-¢g0, (x;)) =0.
Then we have
s+ f, - o5, (fN-su-&Ff, ~65,(f)
=(-isignu){s(u+&; f ~o, (f))-s(u-g; f-o, (fN}.
(ii) the case of |u[<g&. From
s(u+8305, (%3 f)) -5t~ 865, (x; f)) =J2ne,

we have

s+ f, —on, (FN-su-sF, —65,(f))

42



KSTS/RR-13/003
April 22, 2013

= s{u+ e;}él) ~-s(u- e;:fl)—~ \/27r?:: .
Therefore by the hypothesis (Ro) we have

lim—— j s(u+ & f, ~on (FN-su-&F, - on (M du

£330 4 ﬂ'&'

lgl_r)gz——jls(me,f) s(u—g;f)—~[2mee | du=o.

Similarly we have by the hypothesis (R, )

hm————jls(u+8,f oy, (N-s(u-gf-o, (fNFdu

E=>0 47&9

= 11m——_[|s(u+g,f) s(u-—g;f)- Jz_ﬂc Fdu=o.

E—=0

Summing up two cases, we shall conclude

lim —— j ls(u+8; f, 05, (fN~s-&Ff, -5, (I du

80 472'8

= lim - [loCu+ 55 f —p (fN-sCu—5:f -0, (FHF du.

£-30 472'5
Next we have by the Theorem W,,
1 T Fry
;.i_g;—j | F,() =05, (6 )P dx
=lim— [Is(u+5;F, - 58, () -s(u-5;F, ~5a, () du
£—0Q 471'8

and
hm—— j | F(X)~ o, (3 ) Pdx
= lim—— j su+ s f—op (FN-su—g;f-o, (FF du.
On the other hand as we have supposed that f(x) is B*a.p. function, we have by the

Parseval equality
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1 T

lim— j | f() -0, (x; ) P =

. {1k . 1§ ——— 1 T 1 7 .
lim (E.— j | fCOP dx—— f fx)o,, (x,f)dx—;f_JT FCdo, (e +— j |05, (6. de
=(le, P+, e, F)—2(e, F +2.'d™ e, P)+(c, F +Y, (™) le, )
>0, (m-» o).
Because we have asfor n =0, d"™ =1 andfor n=o0, d™ 1, (m—> ).
Thus we have proved
1 TiFry
3 . 2 —
fim — j | £ () =05, (6 ))F dx=0, (m—>w).
and at the same time we have proved that the conjugate polynomial &z, (x; f) isthe

Bochner-Fejer polynomoial o (X; ;1) of Fourier series of }':(x)
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