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ON THE THEORY OF GENERALIZED HILBERT TRANSFORMS I
THEOREM OF SPECTRAL DECOMPOSITION OF G.H.T.

by
Sumiyuki Koizumi
Department of Mathematics,
Faculty of Science and Technology, Keio University,
3-14-1, Hiyoshi, Kohoku-Ku, Yokohama, 223 JAPAN

ABSTRACT
The theory of G.H.T. had constructed by the author about fifty years ago by
using N.Wiener’s Generalized Harmonic Analysis. Nevertheless the theorem
of spectral decomposition of G.H.T. is the core of this theory, we omitted the
proofs of several lemmas with which related to caleculations of simple poles by
using of the residue theorem of the theory of functions of complex variables,
Therefor we shall intend to give detailed proofs of this theorem for the sake
of completeness. We shall also give new estimations of the remainder terms of
this theory which enables us to present the more refined and advanced forms
of the theory.

1. Generalized Fourier Transforms (G.F.T.)

Class of Functions W?: It is defined by the set of function f(x) which satisfies the
following properties. It is a real valued measurable function f defined on the real line
—0 <X < and the integral

T FACIT N
2 1+x®

exists. .

For function f(x) € W* the Generalized Fourier Transform (G.F.T.) was defined by

N.Wiener as follows
s(u; f) = —== J‘ A flx )~—-~dx + Lim, J_[ j +{ ]f(x)f_—i;dx

where the notation Li.m. means limit in the mean.
If we take the difference, we have

s(u+s;f)-s(u-gf)= Lim. —jf( )

2singx

2SINEX ax g
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and we have by the theorem of Plancherel
1 o . 1 w0
— [IsQu+5;f)-s(u-g; f)Fdu=—[| fFG)F
478 =, 7E =,

It is also called the Parseval equality.
Class of Functions S, :It is defined by the set of functions f(x) which satisfies the

following properties. It is an element f of the class W* and the following limit

hm—jlf(x)l dx

T

sin®sx

dx .

exists.
Here we shall quote the so called the Wiener formula.
Theorem (The Wiener formula). Let us suppose that the funetion f(x) belong to

the class W?* . Then we have
. 1% .
lim -——j | fGOFdx = Tim — [If ()]
£-30 ﬂg_w

in the sense that if one of the limit on both side exist, then that of the other side does

and have the same value.

L]
sin® ex
—dx

Then applying the Wiener formula, we have the following theorem.

Theorem W,. Let us suppose that the function f(x) belongs to the class W?2.

Then we have
lim — j | FOOPdx = lim —— [{s(u+ &5 f)—s(u—s;)Fdu
£=Q 4”&‘_‘”

in the sense that if one of the Hmit on both side exist, then that of the other side does
and have the same value. Then the function f(x)belongs to the class S,.

This formula presents the total spectral intensity of system which behaves. As for the
Generalized Fourier Transform, we shall refer to N.Wiener ' The Fourier Integral and
Certain of its Applications, Cambridge Univ. Press (1933).

2. Generalized Hilbert Transforms (G.H.T)
Let F(¢)be defined on a Jordan curve C in the complex plane . Many authors

treated the problem of representing F(¢) in the form F(¢)+ F,{¢) where each
F,(¢) (j=12) is the limit of analytic function F,(z) (f =1,2) interior or exterior of

the Jordan curve C respectivelyas z=x+i,z >ceC .
H.Kober [6, 7] treated of the case C = (-, ) and F(x)/1+x* € L(—w0,). For this
purpose he introduced the modified Hilbert transform as follows
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P.V.-I-T F(t)[_l-u— ! ]dt
”—w

t—x 41
Concerning to this problem, he proved that if F(z)/(z+i)* belongs to the Hardy class

H then we have

1 [-=]
F@)=-—[ FO (—1— ——1—7] dr, (y>0) and F(2)=0, (y<0)
27l 5, t—z f+i
Let us remark that the above formula is just the generalized Cauchy integral of order 1

of us.
On the other hand N.I.Achiezer (c.f. [8], p.128~129) also introduced the generalized

Hilbert transform as follows
A
J@®)=(=i)Lim j (isignu)w (u)e™ du,.
—-A
where

4
w(u) =Lim, i@e"‘“‘ dr .

A —
—)au_At i

The author also introduced the generalized Hilbert transform of cerder 1 as follows

t+ix—t

(%D FO) dr
Fix) =Py jm

In later, the author became aware of the two modified formula to be just equivalent each
other and proved it (c.f. [10 ], Chap. 4, Theorem 41, pp.194~195 ).

Now we shall return to our generalized Hilbert transform and let us write the
multiplier x +1=({t+1)+(x—t) and let us transform }:(x) formally as follows
~ 15 f@ 1% f(t ~
7@ =Py A [ {00 L1100 - 34 acp.
T x—t T t+1
Thus if the constant A(f) is finitely determined, the ordinary Hilbert Transform

F(x) is well defined and A(f) is the difference between G.JHLT. }:(x) and f(x).

Therefore when we shall discuss the spectral decomposition of G.H.T. f(x) by the use
of Generalized Harmonic Analysis(G.H.A.) due to N.Wiener ,we should consider the
difference s(u+ a;f) —s(u —&';:f:) and so the influence of constant A(f) will be

vanish and we shall expect to be obtained the spectral decomposition of the ordinary

HT f(x).



KSTS/RR-13/002
April 22, 2013

About fifty years ago, the author established the following theorem (c.f.[10]Thecrem
49,pp.201~205)
Theorem A. Let f(x)belong to the classW?®. Then we have for any positive number
&,
@ if |uf>¢ then

s(u+&; 1) - s(u-& ) = (~isign w){s(u+&; f)—s(u~s; )}

and
G) if |u|<& then

su+sf)—stu-51) =i{s(u+e f)-su-s )} +2n,u+s f)+2n,@+sf)

where

rn{uf)= l:m J-f(s)e‘““

S+1 —is

and

r )= Lim— [ FEgmgs

1
Bow  for _J; S+1
3. Proofs of several Lemmas. .
We shall prove these by the so called complex method which means the use of complex
variable analysis, It is 8o elegant compared with the real method which means the use

of real variable analysis.
The ordinary Hilbert Transform (H.T.) is defined by the formula

. 2 F(t
Fa=pPv.=| PAGPY
Tl x-t
and behaves well on the space I?.The G. H. T. could be transformed as follows

F.0O _pyt If(t) dt =[ f ]“(x)

xX+1 t+ix—-t \tr+1

s0 it behaves as well as H.T. on the space W*® and keeps properties of H.T.
The ordinary Cauchy integral (C.I.) and the Generalized Cauchy Integral (G.C.L)
are defined by the formulas respectively

=] fo- 2

and

z+in(t) dt

27t L t+it—-z

C1(Z;f) =
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where z=x+iy, y>0. The G.C.L could be transformed as follows

Cl(z;f) f(t) dt C(Z'-—-‘f—)
t+i

zZ+1 2m-ft+1 t—z

so it behaves as well as C.I. on the space W* and keeps properties of C.I. As for the
Hilbert Transform and the Cauchy Integral, we shall refer to E.C.Titchmarsh :
Introduction to the theory of Fourier Integrals, Oxford Univ. Press (1937). We shall
also refer to theorems (c.f. [10] Chap. 4,pp.192~200).

Now we shall start to prove several lemmas.

Lemmsa A, Let us suppose that fbelong to W?. Then we have

tim. im e at

:é{s(u+e;f)—s(u—8;f)} +§{S(U+€§}:)_S(u—g;f)}

2sinst _,
e Tt

Proof. Because of

llm C.(z)

2sin et 2sin et

—-—(f +if)

we shall apply the Plancherel theorem , then we have

C,(5 Y2 g - s+ 55T f*) scu—sf ALY

é‘—'-s
:h'——ab

_J=

<2 j e j C,(z ,f)zsm e dt ~{s(u+;C, (2 )~ s(u-;C,(z; M} F du

+2f {s(u+&;C,(z; ) -s(u-&C,(z; f)} —(S(u+£;I+TUC-‘-)-—s(u—s;i—+2i)) [ d

- 2T I S(u+E;CI(Z;f)—i%i-}—)—s(u~8;01(z;f)—12—iﬁ) { du, (A—x)

edt [ du

_—..2?[1_}:1”_ J'(C( f)_f+lf1)281;18t

~2fiC -T2 e g o, o),

As for the Plancherel theorem, we shall refer to E.C.Titchmarsh : Introduction to the
theory of Fourier Integrals, Oxford Univ. Press (1937).
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Lemma A, We have
Lim.

2singt .,
Ao J— I r dt - JEZE(H)

where x_(u) isthe characteristic function of interval (—¢, ).

Proof. Because of

w w 2sin st
lj_m J—_—f\/—zg(u)e tdu = _[e*d —

the inverse Fourier transform of v2zy, (u) is 2singt/t and so the Fourier

transform of 2singt /t is V2w y (u).

To prove following two Lemmas, we have to apply the theorem of residues in the
complex analysis. As for these, we shall refer to E.C.Titchmarsh : Theory of Functions,
The Oxford Univ. Press (1932). The arguments to be required are very elementary, but

complicate and delicate a little.

Lemma A3 We have

A e—zut

lim.

Aw f— -[

where Z=1F+1Yy, y>0.

1+ signu . —i(sd
dtz( 29 )\/2me et ge u

Proof. To prove this, we shall consider the folowing integ‘ral

—1ut

J—j_dt lﬂi:/_—_js o

and translate it into the contour integral in the w -~ plane, (w =t +1iv) and calculate
it by the use of residue theorem on the theory of functions of complex variable.
Since 1/s—2z e I?,the integral

exists by the Plancherel theorem and so identifies with the above integral a.e. u.
We have to decompose into two cases according to the sign of u.
@) the case of u> 0. We shall calculate along the following contour in the w—

plane jiv
A L_A-- P - e EA_"' + LA = (.—A’A)
. ; i
: -ig s~ty C, = {w =Ae’,r <6< 27r}
/ - -1 7-
A P r,=CLUL
A
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Let us write

1 J- e
2ri L (s—iy)—-w
_ 1 . _f e' d = 1 . I e o
27i i (s—i)—w 27i & (s—-i)-w
If welL,,then w=1! and we have
—iuw 1 4 -wt
_[ dw =- ——dt
271 (s-zy) w 271 ¥, 5~

If weC,,then w=Ae”, (x <6 <27) and we have

e—iuw -mw X
dw = Aile'’dg,
27zi5‘:_!(s—iy)—w 27;1-[(3—1;;) w
where
[(s—iy)~w|-|w|= A, for sufficient large A
and

fe™ <1, e™ =g MMigutsint 0 ge u(r<s@<27),(A > w).
Then we have

—:uw

I dw —0, (A—>®).
27t (s—ly) w

On the other hand we have by the theorem of residues

—IHI.U

dw - _e—iu(s—iy)

2zi J. (s—ty) w

for all sufficiently large A.

Therefore we have

"Iut
lim —— I C dt =<JanieW,
A-roo ’2?{' _As z

1 1 .
Furthermore we have = e I’ , as function of t for y>o, we shall

s—z (s—-t)-iy

conclude that

-mt

- A
1
— j——dt =+27ie Y, e w
T 48



KSTS/RR-13/002
April 22, 2013

(ii) the case of u<0

P L
L, =(-A,4) e NG

Cj:{w=Ae“’,0<9<7z} {/f \\

—CiUL, ; . —
[¥) ]5 4
"A L'; 3 +
S-1

Let us write

l —fw

J v
27r1 s-iy)—-w

—iuw

1 J- e dw 1 J- e v

27z'iL:1 (s—i)—w 271']-.C; (s—)—w

If well,,then w=t and we have

—mw 1 A e—iut
I dw = — I dt.
271 ; (s—ly) w 27i Y, s—2

If weC},then w=Ae”, (0<f<7x) and we have

-t —mw
e

1 .
‘d > ig
271 j (s~-fy)-w " omi I o (s—1y)— wAIe d,

Ch
where
I(s—iy)-w|~jwl|= A, forsufficient large A
and’
|e™ <1, e™ =g awsfgusing 4  (0<@<7), (A—> o).
Then we have

—iuw

_[ dw —0, (A->wx).
271 (s—zy) w

On the other hand we have by the theorem of residues

~iuw

dw =0,

e
o2l I(s~—zy)—w

for all sufficiently large A.

Therefore we have
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. —IHI'

and similarly as before we have

A —zut

li_g; J;_J.;_z_dt =0, ae U

We shall state these results into one, we have

A e—iut
Lim.

di = (1 + signu) Nerie W ge. u,
Ay f A §—Z 2
where z=t+iy, (y>o0).

Lemma A4 We have

] osingt e™
lLim.

y J_ j t Edt’

(z=t+1iy, y>0)

. ei(s~iy)s - e—i(s—iy)s
Jarie ¥ — , (u>eg)
i(s~1iy)
o ef(s—iy)u _ e-i(s—iy)s
Ny . , (~e<u<g)
i(s —iy)
o, (u<-g).

Proof. We shall estimate the integral along contour I onthe w —plane
1 I2sin ew e™
oriy w (s-y)-w
where w=t+1w and the integrand has two singularities. The one 1s of simple pole at

w=5-1y and the other is that at w =0 of which we can exclude out. We shall

separate into three cases and estimate it by the use of the theorem of residues too

dw,

(i) the case of U>¢

Min
-7’ L,‘: o L, =(-A,A)
Y " C, ={w=Aeia,Jr<6’<27r}
\"N.-_h 0 C I,=C,uL,
4
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1 Izsinew e ™ dw
27z-i1_:1 w  (s-iy)-w
! Izsingw e ™ dip v L jzsinaw e dw
27:1'6,5 w (s-iy)-w 27:1'& w  (s-iy)-w
If weC;, then w=Ae” (w<@<27) and we have
A
L1 L L -1 Lo (A — )
w| A |(s-ip)-w] |w| A ’ ’
Yy
2sinsw 1 —e)si ;
I e T !SZ(BA(U £)sing +eA(u+s)smB) _)0, ae. u (A—)OO)
w
and
|2sinaw e | < 2
w A’

for all sufficiently large A . Therefore we have

100

1 Izsingw e
w (s-iy-w

l dw |

27 &

1 27 . 1 ax .
< J‘eA(u—a)smﬁde_'_ J'eA(u+.s:)sm9d9 - 0, (A - 00).
. 27 A 3

T 2rmA

If wel,,then w=f and we have

ori

n wo (s-wy)-w emis, t

where z=1+1y, y>o0.

On the other hand we have by the theorem of residues

1 ! osinsw e™ dw i T osin et e

dt,
§—z

1 _[ osinew  e™ i = g o) _ gricts-)
eriz  w  (s-iy-w i(s—1y)
Therefore we have
4 2si -iut s-ide _ —Hs-i)e
. 1 2sin¢st e v ifenit € —e
lim J' dt = Jogie-is-wu _ ¢
4w Jog s, t S—1zZ i(s — iy)

and so

10
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Lim.

osi i
sinef e dr

1 A
A—pem ’27[ -'[L t S—Z

(ii) the case of U <—&

Lti =(‘"A3A)
C; ={w=4e",0<0 <z}

I,=C,ul!

By the theorem of residue we have

2ﬂ'lm

for all sufficient large A.
On the other hand ,let us write

1 ,[ 2sinsw
w

1 J-2singw gt

2 r%

fuw

w (s-iy)-w

_ 2Eie—i(s—iy)u ei(s-—z’y)s _ e—i(s—iy)a e
is-p >
§
4
Ca
-4 L'Z' , o s A +
"t" s_‘g_
e—i'uw
- dw=0
(s-iy)-w

—fuw

1 J-2sinsw e

271 &

If welL, then w=t, sowe have

w (s~iy)-w

—iuw

1 Izsinsw e
271

where z=t+iy, y>0.

LW (s—iy)-w

1 Izsinsw e

a7l W (s—ty)—w

dw.

1 ¢osingt e™
dw _[

271

dr,

a Ut s—z

If weC}, then w=Ae? (0<@<rx),wehave

1 1 1

1 1

fw] A’

| a2sinew

and

| 2sinsw

for all sufficiently large A.Then we have

--w| |w| A

-0, (A-—>x)

y 1 acuosys ,
e | < Z(QA(U nd | gAY 50, ae. u (A )

e-iuw | < i’

A

11
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—fumy

Izsinew e

- - dw|
Zig, W (s—-iy)-w

1 7 swors 17 .
< Ie‘““ asinfdgy — j giildg 50, (A— ).
2mAv 27wAy
Therefore we have
4 osingt e™
Hm dt = o

A—w\/ 2 I s-—2z

and so

~iut

4 2gin gt e

\/_Atsz

dt = 0, ae u.

(iii) the case of |u |S £

We have
71 T 2singt e™ 1 T "‘(H)f 1 T it .
azis, t s—z " oni S t(s— z) 27[1'_At(s—z)
=1, -1,, say

where z=t+1y,y>0.

Estimation of J,. We shall use the contour integral

=i{u~g)w

1 J‘ e
27l 5 w((s—iy)-w)
where w =t+1v and apply the theorem of residues.

C: ={w=Ae"",o<€<7r}

Cr =—-{w=re"”,o<9<7c}

L, =(-A-r)u(r,A)

+ Yt + +
L =CiuCuly,

We shall decompose the contour integral into three parts as follows

~i(u—chw

j ("Ndw -—— j (“)dw+— | (dw

LA o

1 J' e
271 &, w((s-iy) -~ w) i

and estimate it as  —> 0 in the first and next A — « respectively.

" We have by the theorem of residues

12
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—l(u—s)w

1

=Q,
271 5, w((s-1y) - w)

for all¥>0 and A>0of A>r>o0.
On the other hand, if weC;, then we have w=Ae” and |wlA
Is—iy)-w|~|wl=A for all sufficiently large A. Since |u|<e, 0<0< 7, we

have 26 <u—£<0 and sin# <0, then

~i(u—g}w —i(u~g)A cosae(u—a)AsinH

e =e -0, ae u {(A—>wn),

and
fe™ |<1,

for all sufficiently large A. Therefore we have

| j (Mdw < i j QUG0S0 (A —>x).

If weC; thenwehave w=re” and |wl=r,(s-iy)-w —>s~1iy, (r - 0), then
g _ griu-chresdglu-akrsing _y (1 0
and
le™ |<1,
for all sufficiently large A. Therefore we have

e—t‘(u-—s)w 1

27t 3, I (Jddw 27:1 I w((s —iy) -~ w)d 27r(s —1y), I 2(3 —iy)’ (r-0).

If we L, then we havew =t and (s — iy) —w = s — z. .Therefore we have

J' ("Mdw T e t, (r »>0).

2mi ;. 2t

Now as for I, ,we shalltend r — 0 in the first and next A — ©, we have

1 A e—i(u—s)t 1
]_]m I llm I __dt = —, ae, u.
Ao A 27;’1 t(f Z) 2(3 - Iy)

Estimation of I,. We shall use the contour integral

e—i(u+e)w

dw,

1
271 rf[r w((s~-iy)—w)

where w ={f+1v and apply the residue theorem.

13
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C; ={w=A4e",x <6 <2z}

i~ -
"A\ ﬁr\ka.)/rc,‘: A 1 C: = {w =re? r<f< 27:}
_ -4 5~-1i4
\\ L,, =(A-1ru(r,A)
Co ]
I, =C,euC VL,

We shall decompose the contour integral into three parts as follows

~i(u+e)w

j ("Ndw-— j (Vdw-—— j (Ndw

LA T

1 J- e
ori o w((s-1iy)— w) 27rz

and estimate it as r —> O in the first and next A —> o« respectively.

By the theorem of residues we have

~i(u+ehw e—i(u+s)(s—1‘y)

1 I e . duw = —
271 5, w((s-iy)-w) s—1y

for all sufficiently small r and all sufficiently large A of A>r>o0.

If weC,, we have w=Ae” then |w|=A and |(s~fy)-w|~|wl|= A, for all
sufficiently large A . Since [uj<s , #<#<27 , we have 0Su+e£<2¢ and
sind <o,
then

grituen _ pritusts) st guiaddsingd 6 go y (A > o0)
and
le™ |1,

for all sufficiently large A . Therefore we have

[ Ol [ e“2*=%dg >0,  (A—>c0).

If weC; ,wehave w=re” then |wl=rand r=(s~iy)-w—s—iy,r —0).
Since|ul<e, 7 <@ <27 ,wehave O<uU+£<2¢ and sind <0 ,then
e—-i(u-t-s)w - e—i(u+a)rcosee(u+s)rsine - 1, ae. i (r - 0)
and
[em™ <1,

for all sufficiently small r . Therefore we have

14
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1

1 27
S 7 ——
27(s —iy) ;': 2(s - 1y)

(r —0).

2 [ (Vdw -
271 o

If wel,, ,we have w=1 then (s-iy)-w= (s—iy)~t=s5-2z, therefore we

have

A e-i(u+s)t
(I'ﬂ —_—d
oxi o LHt-z

Ar

t, (r—o).

Now we shall tend r — 0 in the first and next A — o, we have

1 A e—i(u+£)t

lim I, = lim —; = - +
A do 277 J t(t - 2) o(s —1y) s~y

Combining both estimations into one, we have

1 e—i(u+s s—iy)

) 4 asingt e ™
Hm

i
Ao for _-[ t s-z
—i(u+e )5~y
vl SN { 1 e }

dt

2(s - 1y) 2(s-1y) s—iy
—i(u+£)(s—~iy) i(s~iyYy —i(s—iyle
s—iy sy i(s —iy)
2sinet 1 .
Since —min D UI?, (z=t+iy,y>0), we shall identify its F.T. in the I*
§—Z

with its F.T. in the L. Thus we have proved

—jut B s—fy)u __ p-i(s~iy)e
Lim. I 2sinst e dt =+arieems 7€
Ao \/ t i(s-1iy)

In the last ,we shall prove the following lemma.

ae. u.

Lemma A, Foranyyand & (0<y<1,0<¢<1) there exist a constant A such

that the following inequalities are satisfied.
eis(s—:‘y) _ e—is(s—t'y) Siﬂ cs 1
— < A4 |+
i(s—1iy) s 1+|s|
Proof. It is transformed as follows

ex‘s(s—t‘y) _ e~is(s-z‘y) = (eiss __e—iss) + (eis(s—iy) _ eiss)_ (e—is(s—iy) _ e-iss)

= (eias _ e—l'.‘.‘s) + er’cs (eey __1) - e—:‘ss (e—sy _ 1)

and we have
eie(s—iy) _ e——ia(s-—iy) B 2Si11 £s eiss (e.«:y _ 1) e—iss (e-sy . 1)
i(s-1y) (s—-iy) i(s—1y) i(s-1y)

15
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=K +K,+K,, say.

Let us remark the following inequality
y 1ty

— < , o<y<1).
edy] S ar]s] (O<Y<Y:
Then we have
2sings , , 2sines s sings
K, X | IS o SinEs)
s~y s |s—iy| s
sy__
1K, <] 1 < Aa:y SA.e(1+y)S ’
ls—iy| ls—iy| 1+[s| 1+ s
K, Isl-—e < Asy <Auc:(1+y)<

|s~iyl |s—-iy|~ 1+|s| ~ 1+|s]

where we shall use the same A at each occurrence as an absolute constant.

4. Proof of Theorem A.
We shall begin to introduce the function fp(x)= f(x)y,(x), with which
characteristic function 7, on the interval (—B,B). Then we have fy(x)eL' nI?
and so it enable us to apply the Plancherel theorem.

Let us begin to consider the folowing formula

S(u+8;C (Z;f;B))_S(uHS"C](ZJ'fB))

—lim. i j Cl(z;f3)231;18t edt, (z=t+iy,y>0)

Ao f

4 osi -+
- 1im. sin gt oot g Z zj-f(s) ds
Amyeo 1/ w2t 27 Y, S+is—2

Since as

Z4+1 S+1

$—Z 8§—2
we have

s(u+e'C (z; fg))—s(u—g,C(z f3))

A : —iuf
1 28mst e
~lzm———ff(s)ds [Z2222 _ar
Ao 2] Ner?, ot s-z

B
~Lim - [ L8 2sinet

1
A 27:1'_-[,5—:-1' \/Ej t

—l'ur dt

asingt e™

J_I r s-z

= j f(s)ds Liam dt
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1 J—Ilg—)ds Ii ¢ 2sinst
o7 : p S+1 el J_ 2
The interchanges of integral and limit in mean are guaranteed as before by the theorem
of Plancherel . By the reason of Lemma A,, we shall estimate the above formula by
decomposing into the case {u|>¢ and |u|< & respectively.

--mt dt

(i) the case of |u[>&. We have by Lemma A,

s(u+e,C(z2; f3)—s(u—g; C’(z,fB))
- Lim. 1 J' C.(z; fB)2SIIlst ettt
T t

za(s—iy) — e—is(s—iy)

j f(s) — e Ve s

i(s—1y)

(1 +signu) 1
2

Now we shall remark that

. 2sinst 1 2singt
1.;._2’1.Cl(z,'f3) . =~5(f3 o ) ——

and

eis(s—-iy) _ e—:‘s(s-iy)

Lim. f(s)

_ 2sings
— e = f(s) :
y—o i(s—1y) s

Then we have
s(ut e (fy + o)) =5(u= 55 fy )

2sinet e

-tzm——\/=j ~(fy +ifa)

A—re0

(1+s;gnu) 1 _[ £(s )2511188 s g

Furthermore we shall remark that

2 sin st

Lim. zsz_j ([ +if gy ) e dt

=Lim. —— j Lersi fl)mfgt et

Then we have

S(u+e; (f+zf)) s(u—g:-;—(fﬂfw

A .

1 2 smel _;
J' _( e RE ot dy
s 2 t
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(1+Slgnu)l J'f( )251]133 —usd

o B->
The last formula shows that

-;—{s(u +&; f)-s(u-s; f)} +§{s(u +a;z)—s(u—3;z)}
= m—sf@{sw +&5f)-s(u-g; £} .

Thus we have proved that
s(u+g;f)-s(u—g;f,) = (—isignu) {stu+g; -stu-&/f)}.
(ii) the case of |u < &. We shall estimate it by the same method as before. By the use

of Lemma A,, Lemma A, and then by the interchange of the limit in the mean

between A and Yy ,we have

S(u+ 51 fy + i) =5(u=8:2(fy + )

1 41 2singt -
=lim. —| Iz(ﬁs i )~ dt
B —i(u+eds

1 e - S(s)
= — S dS

=l I —

and we have
J‘ f(S) B_l(uﬂ-)s - J‘ f(S) —-t(u-t-s)sds
s+i  —i S+

By the interchange of the limit in the mean between A and B, we have

s(u+e,-l(f+o":))—s(u—s;l(fw%))

2sinst et dp

=lim. —sz—(f if)

—i{u+e)s _ °
-" f(s) e . dS+l im. I f(S) -1(u+s)sd
Bhw 27;' B S+1 —18 Bow  jogr S+1i

=in(u+s fl+in,(u+ef), say

The last formula shows that
1 ) ~ —~
E{s(u+s;f)—s(u—s;f)} +E{s(u+a;f1)—s(u—s;ﬁ)}

=in(u+gfl+ir,(u+ef).

Thus we have proved
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s(u+g;f)—s(u—s;f)=i{s(u+3;f)—s(u—s;f)}+2r1(u+s;f)+2r2(u+s;f),

where

(s f=lim. — I fls)e™ -

S+1 —is

and

rz(u;f)=l.§';m If(s) s .

S+1

5 Hstimation of the remainder terms.
@) the case of 1,(u; f). We have

nwf) =1£;m I F(s) e —

s+1 -—is
J' f(s)isj'e—wsdv llm dU J'f(s) -ivs 1o
s+1 ¥ S+1

=]£dv (l.i.m _[ £ £ L2770 grivs g J

Bseo S+1

By the Schwartz inequality and then the Plancherel theorem, we have

[Intu+esnE du=finesAF du

< jdu[jdu](juﬂ_m =/ f Jsc(fl) e ds dv}
T|f(8)|

+|sF

Therefore we have the following proposition
(®) 2 In@nF du=0), (o).
(ii) the case of 1,(u; f). N
r,(w f) =I.§';m _[ f(s) L " e e s

S+1
Let us set the following hypothesis.
There exist a constant a(f) such that
1 7 T "
(R, 5o In@rs - ~a(F du—o, (s-o0).
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Let us examine this hypothesis as for some cases.
(2) The case of the constant A(f) to be finitely determined.  Let us suppose that

f(x) belong to W?®and if the constant A(f) is finitely determined, then the

ordinary Hilbert Transform }”(x) exist and belong to W?*. Because there is the
equality between them : 3":1 (x)= 7(x)+A( f) and ?1 (x) belong to W?. Then we
could define the G.F.T. of 7(36) and so the theorem of spectoral decomposition of

3‘11 (x) lead to that of f(x) by the use of Theorem A and Lemma A,. This is as

follows
(i) if |u|>& then

sQu+&;F)—su—g; f) = (~isignu){s(u+&; ) — s(u—¢; £}

and
() if Ju|<e then

s(u+e;f)-s(u-s;1)

=i{s(u+&; )~ su-g; )} +2or,(u+s f)+on,+s f)~-J2rAlf).

Now we shall desire to be satisfied the hypothesis with A(f) asfor a(f). Thatis

11m—j|r(u+sf) (A(f)lzdu 0,

£=0

where

r,(u+& )~ A(f) Lim. —— IJ; Ersl) iturers g _ ;; J'sfi) 5

The general case is still open. But if we could suppose that the integral

I|f(s)|ds<oo

S+1
exist, then the hypothesis is satisfied with the constant A(f). Because Fourier
transform of f(s)/s+1inL’identifies with the one in L' a.e. u and so continuous at

U =0 inthe mean, that is
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f(S) ={us (S) ~ius
lﬁll’fjs“ ds= }‘IEJ_J;SH ds —>\/7A(f), (u - 0).

Therefore we have by the theorem of bounded convergence,

1 f (8 gt |z
lm — l ds—,|— *du=o0.

(b) The case of polynomial. Nextif f(x) is polynomial p(x)= ¢, + Z c.e™* | we
Anz0

shall examine what the remainder term (R,) as for p(x) behaves. By the

I..emmaA3 we have

B Ms

- _1+sign(u- .
j s g = gn(u-2) Jemie ™ aqe u
2
B

then we have

J‘ D(8) _itusnrs ds

r(u+gp)=lim—
S+

Beyw

okt szgn(u + e) - J— iy 1+sign(u+sg -2, ),, ),

A0 2

Therefore we have for [ ule

r(u+e;p)=- \/— 2i(e, + >, c,e™)e ™, ae. u

Ap <0

for all sufficient small ¢ . Therefore if we put

a(p) =-2i(c, + Y c,e™)
A <0

then we have
1 f 4 1 5
=t : _ 2 d — il —(u+e) _ 4|2 — .
2€£|r2(u+a ) 2a(p)l u O[%ile 1| du] o(1), (¢ > 0)
(iii) the case of ;lgjls(u+g;f)—s(u—s;f) [*du

Let us estimate the above formula. Then we have by the Lemma A, and the theorem

of Plancherel
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jls(u+s;f)—8(u—8;f) {'du

_T  FY— o) — o e 3 [ |27 2sinet sine(x-t) , ,
—_[ol{s(u+s,f) s(u-&; )z, W} F du _N; Lf(r) - SE e dx

T sinex ? singtcoset dt cosex 7 sinstsinet dt
=8 t - t *dx

fl [ fO== — [ro——=—I
Then we have by the Minkowski inequality and the theorem of Hilbert transform

j]s(u-i-s;f)—s(u—s;f)ﬁdu

S16J¢|smsxj-f.(t)sn'wttcoss:t dt |2dx

1 6Ilcosngf( )smsttsmst dt P dx

<3zj|f( )rsm = dx

Applying the Wiener formula , we have

lim 4_f|s(u+gf) s(u- e,f)["’du<811m———j|f( )

sin® gx
dx

—811111 ———I]f(x) Pdx .

Now let us estimate for trigonometric polynomial p(x) 1nstead of f(x).Let us suppose
that

px)=c, +> c,e™

An#0
then, we have by the lemma A,

; 1 7 2singx
s(u+g;p)-s(u-g;p)=lim— | p(x)=———e™dx
PR var _‘[, x

=V2re, 1, W +v2r Y e,z (- 4,)=\2me,x, (u),

Ap®0
for all sufficient small £.

Then we have

hm——jl s(u+&; f)~s(u—-& £} —are, ! du

£—3>0
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£

=lim —I—IIS(u+8;f—p)—S(u~8;f-p) *du
s30 Qg ,

.17 .
<16zlim - [1.£00-pCa) P

Therefore it is natural to set the following hypothesis.
There exist a constant ¢, such that

(R,) lim —él;j'[{s(u+s;f)—s(u—s;f)}-—x[2—ﬂ—co Fdu =o0.

=0

If we put in the above formula, p(x)=c, then we shall conclude that the hypothesis
(R,) isequivalent to

(R,) 1:.-1_{% é_f]s(u+g;f—cu)—-s(u—-e;f—co)|2 du=o.

These mean that the spectrum of function f at the origin u=0 is isolate or concentrate to

it with energy a few.
17 ~ ~
(iv) the case of Py j Is(u+s; f)-s(u—g f ) du
2 -
By the part (i) |u|< & of Theorem A, we have

{s(ﬁ + 85?1) -s(u --a;}"‘”1 )} —2rc,

= i{s(u+s;f)—-s(u~s;f)—\/'2;co} +21;(u+s;f)+2{r2(u+e;f)— %a(f)}

where
co = ic, +a(f).
Then under the condition that hypothesis (R,) is satisfied, (R,) is equivalent to
I>; 1T -F . F foro B duy—
(Ro) 131_{13 -é;__[|{s(u+8,fl)—s(u~e,fl)}— 2rco F du=0,
This is easily verified by the Minkowski inequality and the proposition (R, )

These remarks will be useful to the application for almost periodic functions.
Furthermore we shall prove that if f(x) belongs to the class S, then we have

Iim L

60 Denf 2o

where ‘o(u) isthe GF.T. of ¢(x) the auto-correlation function of f(x}.

j: is(u+s; f)=s(u—e; ) du =0g(0+)—-o(0~)
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These are defined as follows
.1k _
o(x) = lim— j flx+t)f(t)dt
and
a(u)_——j orx)——1 dx+zzm——j go(x)———dx

We shall refer these to the forth-coming papers II and III in this series.
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