
Research Report

KSTS/RR-12/002
October 16, 2012

An efficient implementation of the block
Gram-Schmidt method

　

by

Yoichi Matsuo
Takashi Nodera

Yoichi Matsuo
Keio University

Takashi Nodera
Keio University

Department of Mathematics
Faculty of Science and Technology
Keio University

c©2012 KSTS
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan

An Efficient Implementation of the Block
Gram-Schmidt Method

Yoichi MATSUO∗ Takashi NODERA†

Abstract

The Block Gram-Schmidt method (BGS) computes the QR factorization rapidly
by partitioning matrix X into columns, which are then orthogonalized into blocks
with the dimension of block-size m. However, if the wrong block-size is chosen, the
computation time increases significantly. Moreover since the optimal block-size m
is not consistent when employing BGS, block-size m must be redetermined during
each calculation.

Recent developments in supercomputers have made parallelization mandatory
when solving large scale problems. One of the numerous parallelization procedures
is the Column-Wise Distribution method. In this paper, we have chosen to explore
this particular method of parallelization, and have also endeavored to determine
optimal block-size in this scenario.

Our new scheme for determining optimal block size m achieves this through
focusing on the relationship between computation time and complexity. Numer-
ical experiments were implemented to evaluate the effectiveness of our proposed
algorithms, and the results suggest that our scheme is effective.

key words. block Gram-Schmidt algorithm, optimal block size, parallel computing
AMS(MOS) subject classifications. 65F10, 65M12

1 Introduction

In the fields of science and technology, it is often necessary to find approximate solutions
for large scale problems, which are derived from partial difference equations by using
finite difference or finite element discretization. The QR factorization is arguably one of
the most important processes in a linear algebraic computation, and there are numerous
studies on this subject matter [1, 2, 6, 7, 9, 10, 11]. It is frequently used to solve least
squares problems and eigenvalue problems which arise in signal processing, structural
mechanics or magnetohydrodynamics [9].

There are several algorithms for computing the QR decomposition. One of these
algorithms is the Classical Gram-Schmidt orthogonalization (CGS). The CGS generates

∗School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio
University, 3-14-1 Hiyoshi, Kohoku, Yokohama, 223-8522, JAPAN, Mail address: matsuo@math.keio.ac.jp

†Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku, Yokohama, 223-8522, JAPAN, Mail address: nodera@math.keio.ac.jp

1

KSTS/RR-12/002
October 16, 2012

the orthogonal vector y from the given vector X. Using the orthogonal matrix Q, the
CGS algorithm is as follows:

y =
(
I −QQT

)
x = x−QQT x ≡ x−Qr. (1.1)

The CGS is sensitive to the round-off error, and the reorthogonalization process is em-
ployed to address this issue. A lot of iterative methods for solving eigenvalue problems
and large scale linear equations use this process. For example, the GMRES which is a
Krylov subspace method, relies on the reorthogonalization process to maintain accuracy.

Alongside accuracy, speed-up is important. The Block Gram-Schmidt orthogonaliza-
tion (BGS) enables us to compute the QR factorization quickly. A study by Stewart [8]
and Matsuo et al. [5] illustrates how the computation time of the QR factorization can be
shortened by employing the BGS. Stewart [8] also proposed a new method where a vector
was replaced with one with components with random values, when X is the ill-conditioned
matrix. However, if matrix X has a significantly large condition number, an orthogonal
vector with reorthogonalization is not always generated, and it would break down when
y = 0. In such a case, it becomes necessary to replace this with a new random vector,
which is:

x =
xnew

‖xnew‖2 × ‖x‖2, (1.2)

and this would prevent the breakdown from occurring. This makes it possible to con-
sistently generate an orthgonal matrix, but compromises the numerical precision of the
factorization of X.

Recent developments in supercomputers have made it mandatory to use parallelization
when employing various methods for solving large scale problems. There is a small body
of literature regarding block versions of the Gram-Schmidt algorithms, mostly in the area
of parallel computing [3, 10]. The algorithms in these studies block matrix Q, so that it
can be distributed over a system of processors.

In this paper, we have focused on the efficient implementation and speed-up of the
Block Gram-Schmidt method. Section 2 is an outline of the BGS and an explanation is
provided as to why this method was best suited for our schemes. Section 3, is a proposal
of the new schemes for determining optimal block-size automatically. In section 4, the
BGS was parallelized and adapted to these schemes. Section 5, analyzes data from our
numerical experiments and this is followed by a conclusion that our methods are effective.

2 The Block Gram-Schmidt Orthogonalization

2.1 Algorithm

The Block Gram-Schmidt algorithm is a natural generalization of the CGS. In this algo-
rithm, the matrix X which is orthogonalized is partitioned by columns into blocks. Each
block is sequentially orthogonalized and included into the block of matrix Q, where X
has p columns and the block-size is m. The BGS step is as follows:

R12 = QT Xblock, (2.1)

Ŷ = Xblock −QR. (2.2)

2

KSTS/RR-12/002
October 16, 2012

When this procedure is employed, the use of the orthonormal matrix Q is reduced com-
pared to the CGS. However, in general, each column of matrix Ŷ is not mutually orthog-
onal to those of matrix Q in equations (2.1) and (2.2).

Let Y1:k be the submatrix of column Y . Let the submatrix Y1:k be composed of rows 1
to k of column Y . Let ŷk+1, and yk+1 be the k+1th column vectors of Ŷ and Y . Consider
the following Gram-Schmidt step:

r = Y T
1:k ŷk+1,

yk+1 = ŷk+1 − Yk:1r.

Iterating the above step, we have the following equation:

Ŷ = Y R22. (2.3)

From equations (2.2) and (2.3), matrix Xblock satisfies the following recurrence relation:

Xblock = QR12 + Y R22. (2.4)

In order to implement a reorthogonalization process successfully, the first cycle of the
orthogonalization must produce a matrix Ŷ satisfying the following equation:

Xblock = QR12 + Ŷ R22,

where R22 is an upper triangular matrix. The second cycle must produce a matrix Y with
orthonormal columns satisfying:

Y = QS12 + ZS22, (2.5)

where S22 is a lower triangular matrix. Combining equations (2.4) and (2.5), the following
equation is obtained:

Xblock = Q (R12 + S12R12) + ZS22R22. (2.6)

Based on the above equation (2.6), the BGS with reorthogonalization is denoted in Al-
gorithm 1.

Since the matrix products of the BGS steps are equations (2.1) and (2.2), we can use
level 3 BLAS (basic Linear Algebra Subprogram) because the BGS will have a shorter
computation time. However in general, if the value of m is enlarged and the computation
time is shortened, the computation time increases after a certain threshold. This is why
it is necessary to pay attention to optimal block-size.

2.2 The Complexity of the Block Gram-Schmidt Algorithm

Let X be an n× n matrix, let the orthogonal matrix Q be n× h, let m be the block-size
(to simplify, divide n by m), and let one multiplication be one unit. Assume that every
column will require reorthogonalization. Now, consider the computational complexity for
one iteration. Firstly, equations (2.1) and (2.2) require the following multiplications:

(2nmh)× 2 = 4nmh. (2.7)

3

KSTS/RR-12/002
October 16, 2012

Algorithm 1: The Block Gram-Schmidt Method

Data: X ∈ Rn×n, Xblock ∈ Rn×m

Result: Q,R
begin

K ←− P/m;
for k = 0 : K − 1 do

Xblock ←− X[:; km : (k + 1)m];
R12 ←− QT Xblock;

Ŷ ←− Xblock −QR12;
for l = 1 : m do

r ←− Y T
1:l−1ŷl;

y ←− Y1:(l−1)r;
R22[1 : l − 1; l]←− r;
R22[k : k]←− ‖y‖;

end
if (ŷk < 1/2‖xk‖) then

Reorthogonalization;
end

S12 ←− QT Ŷ ;

Ŷ ←− Ŷ −QS12;
for l = 1 : m do

r ←− Y T
1:(l−1)ŷl;

y ←− Y1:(l−1)r;
S22[1 : l − 1; l]←− r;
S22[k : k]←− ‖y‖;

end
Q[:; km : (k + 1)m]←− Y ;
R12 ←− S12R22 + R12;
R22 ←− S22R22;
R←− R12 + R22;

end

end

4

KSTS/RR-12/002
October 16, 2012

Secondly, the number of multiplications of equation (2.3) requires:

m−1∑

k=1

2nk × 2 = 2nm (m− 1) . (2.8)

Finally, to generate R from R12, R22, S12, and S22, the following is required:

m2h + m3. (2.9)

From equations (2.7), (2.8) and (2.9), the computational complexity of one iteration of
the BGS step is:

4nmh + 2nm (m− 1) + (h + m) m2. (2.10)

Therefore, the entire complexity of the BGS Sbgs results in the following computational
complexity:

Sbgs =

n/m−1∑

k=1

(4nm2k + 2nm (m− 1) + (k + m) m2),

= −m3 +
1

2
nm2 +

1

2
n2m + 2n2 (n− 1) . (2.11)

Here, under the same conditions, the CGS requires:

Sgs = 2n2 (n− 1) , (2.12)

and the following is obtained:

Sbgs − Sgs = −m3 +
1

2
nm2 +

1

2
n2m. (2.13)

The computational complexity increases when the BGS with reorthogonalization is ap-
plied. However, in practice, we can compute the factorization of matrix X more quickly
by employing the BGS.

2.3 Computation Time

The computation time of the BGS increases constantly. We can make sure of this by
examining the computation complexity of the BGS. Let us consider function f(h), which
is obtained from (2.10):

f(h) = 4nmh + 2nm (m− 1) + (h + m) m2. (2.14)

f(h) is a linear function and it is possible to predict that the amounts of increase in the
complexity of the BGS will be constant. Figure 1 illustrates the computation time of
the QR decomposition when BGS m = 50. The test matrix BCSSTK15 is from the
Matrix Market [4], which is a nonsymmetric real matrix of 3948× 3948 which arises from
eigenvalue problems. This figure also shows that the graph is very similar to those with
a linear function.

The BGS is characterized by another property. Where the BGS is concerned, the
optimal block-size is not consistent. There is no unique block-size for all calculations.
Figure 2 illustrates the relationship between computation time and block-size. The test
matrix is the same as the one in Figure 1. It shows that the computation time of the
BGS changes according to block-size.

5

KSTS/RR-12/002
October 16, 2012

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

tim
e(

se
c)

colum

Figure 1: Computation Time of the BGS Steps

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 50 100 150 200 250 300

tim
e(

se
c)

block-size

Figure 2: Relationship Between Block-size m and Computation Time

3 Optimal Block-Size

As has been mentioned above, the computation time of the BGS changes significantly
depending on block-size. Conventionally, optimal block-size has been determined through
trial and error. This is not an issue with a small-scale matrix, but when the matrix is large,
the computation time for one iteration is lengthened so much that it becomes a problem.
To address this issue, we have proposed two methods that allow us to determine opti-
mal block-size automatically through exploiting the relationship between computational
complexity and computation time [5].

In a study by Matsuo et al [5], scheme A, which is one of the two methods, compares
the various computation times ci for one iteration of the computational complexity of the

6

KSTS/RR-12/002
October 16, 2012

multiplications:

ci =
(4nmih + 2nmi(mi − 1) + (h + mi)m

2
i)

ti
. (3.1)

Hence, block-size m as shown below is the optimal block-size:

m = {mi | min
i

ci}. (3.2)

Scheme B determines block-size by approximating the cubic function with respect to
m. As can be seen, the computation time is proportional to the computational complexity
of the multiplications. From this, it can be estimated that the total computation Ti time
is:

Ti = Sbgsmi
× ci. (3.3)

In this scenario, we only need three different computation times from the BGS. If we
take the h data along with the small value of m, we reduce the computation time and
minimize the computational complexity of the multiplications.

3.1 The New Scheme

As has been discussd in paper [5], we have proposed two schemes which can estimate
optimal block-size based on computation time and complexity. However, since the increase
of computation time for each step cannot be calculated, sometimes these schemes will find
a bad block-size which is either very large or small. In this study, we have improved this
method by implementing two steps of the BGS to compute sample points. Based on
computation time ti and the complexity of the two steps, the total computation time Ti

for each mi is estimated. The critical point of this method can be summarized as follows:
Let mi be mi = 2i, i = 1, · · · , 4 and Xblock ∈ Rn×m and Q ∈ Rn×h be the chosen
matrix. First the BGS with mi for two steps is executed to extract some sample points.
The practical relationship between ti and m can almost be classified as a linear function.
Next, the increase in computation time against one column is approximated:

a = (ti0 − ti1)/mi. (3.4)

In this manner, the computation time of the the BGS is approximated:

Ti :=
1

2
n2a + ti0 − a(h−mi). (3.5)

The algorithm of the new scheme is illustrated in Algorithm 2.

4 The Parallel Block Gram-Schmidt Orthogonaliza-

tion

4.1 Parallelization

The K supercomputer, which is located in the RIKEN Advanced Institute for Computa-
tional Science, is being used to solve large scale problems in various fields including data

7

KSTS/RR-12/002
October 16, 2012

Algorithm 2: The New BGS Method for Estimating Optimal Block Size

Data: X ∈ Rn×n

Result: m
begin

m1 ←− 1;
for i = 1 : 5 do

mi ←− m ∗ 2;
for j = 0 : 1 do

start←− gettimeofday();
The Block Gram-Schmidt Method;
end←− gettimeofday();
tij ←− end− start;

end
a←− (ti0 − ti1)/mi;
r[i]←− 1

2
n2a + ti0 − a(h−m);

for j=5:1 do

A[ij] = mj−1
i ;

end

end
solve Ax = b;
f(m)←− x1m

4 + x2m
3 + x3m

2 + x4m + x5;
solve opt−m←− minm∈[0, 1

2
N] f(m);

end

mining and climate prediction. When dealing with large scale problems in these fields,
it is integral to parallelize the BGS to speed-up computation time. Vanderstraeten [10]
and Gudula [3] developed a parallelized BGS orthogonalization referred to as the PBGS.
The PBGS involves less communication and high parallelization compared to the Paral-
lel Modified Gram-Schmidt method. However, like the CGS, the BGS suffers from low
accuracy. To address these shortcomings, we have proposed a new scheme that focuses
on the speed-up of the BGS without compromising accuracy.

There are a number of existing parallelization procedures, and and the Column-Wise
Distribution method is one of them. Other methods are also easily implemented. In the
following section, the BGS was parallelized employing Column-Wise Distribution and the
optimal block-size was defined.

4.2 Optimal Block-size for the Parallel Block Gram-Schmidt Or-
thogonalization

We have parallelized the new schemes in section 3.1 for the PBGS, and have proposed a
new method which will be referred to as PBGS-m. The PBGS-m is different from the
PBGS in that the PBGS-m can determine optimal block-size automatically. However,
it should be noted that optimal m is not consistent in this scenario either. The critical
point of this method can be summarized as follows: Let mi be mi = 2i, i = 1, · · · , 4 and
Xblock ∈ Rn×m and Q ∈ Rn×h be the matrix. In the first step, one PE sends Xblock to

8

KSTS/RR-12/002
October 16, 2012

Algorithm 3: PBGS-m Method

Data: X ∈ Rn×n

Result: m
begin

m1 ←− 1;
for i = 1 : 5 do

mi ←− m ∗ 2;
for j = 0 : 1 do

if myrank==0 then
start←− gettimeofday();

end
The Parallel Block Gram-Schmidt Method;
if myrank==0 then

end←− gettimeofday();
tij ←− end− start;

end

end
if myrank==0 then

a←− (ti0 − ti1)/mi;
r[i]←− 1

2
n2a + ti0 − a(h−m);

for j=5:1 do

A[ij]←− mj−1
i ;

end

end

end
if myrank==0 then

solve Ax = b;
f(m)←− x1m

4 + x2m
3 + x3m

2 + x4m + x5;
solve opt−m := minm∈[0, 1

2
N] f(m);

end

end

the other PEs, and the PBGS with mi for two steps as sample points, is executed. The
practical relationship between ti and m can almost be classified as a linear function. In
the next step, the computation time of the BGS is approximated:

a = (ti0 − ti1)/mi, Ti :=
1

2
n2a + ti0 − a(h−mi).

From the computation time ti and the complexity of the two steps, the total computation
time Ti for each mi in each PE is estimated according to the method proposed by Matsuo
et al. [5]. One PE gathers the information of Ti. Then using the information of samples
Ti and mi, the fastest computation time and optimal m are approximated. Please refer
to Algorithm 3 for the PBGS-m algorithm.

9

KSTS/RR-12/002
October 16, 2012

Table 1: BGS versus BGS with Scheme A, B, C: BCSSTK

Name Matrix Size mtrial tm mA tmA
mB tmB

mC tmC

BCSSTK02 112× 112 60 0.0008 32 0.0013 41 0.0014 51 0.0009
BCSSTK06 420× 420 40 0.065 128 0.076 41 0.066 15 0.077
BCSSTK15 3948× 3948 80 35.01 1024 64.93 43 39.27 53 37.3316
BCSSTK19 11948× 11948 100 872.63 1024 1137.3 43 1035.5 55 959.9

5 Numerical Experiments

This section evaluates the Block Gram-Schmidt orthogonalization and Parallel Block
Gram-Schmidt orthogonalization with an optimal block-size.

• mtrial: Block-size is determined by trial and error

• mA: Block-size of the BGS with Scheme A from Matsuo et al. [5]

• mB: Block-size of the BGS with Scheme B from Matsuo et al. [5]

• mC: Block-size of the BGS with the new scheme

• mD: Block-size of the PBGS-m (in section 4.2)

• t: Time (sec)

• PE: Number of Processor Elements

Algorithms were programmed in C-language with double precision.

5.1 The Block Gram-Schmidt Method with Optimal Block-size

In this subsection, we have compared the QR decomposition of a conventional BGS
versus a BGS with schemes A, B and C [5], to illustrate the effectiveness of this new
method. The algorithms were run on the sun fire X2250 with a 4G byte main memory.

5.1.1 Example 1

The test matrices selected for this experiment were BCSSTK02, 06, 15 and 19 from the
Matrix Market [4]. These are nonsymmetric real matrices which arise from eigenvalue
problems. The data from these numerical experiments are shown in Table 1. In Table 1,
the figures for mA became very large as the matrix sizes were large. In contrast, mB

resulted in similar values for each problem. mA, mB and mC took the nearest value m
to block-size mopt for BCSSTK02, 15 and 19. The computation times for tmC

were also
faster than that of tmA

and tmB
. It can be concluded that the performance of Scheme C

was the best in this experiment.

5.1.2 Example 2

The test matrices selected for this experiment were CAVITY03, 06, 10 and 19 from the
Matrix Market [4], which are symmetric real matrices which arise from the discretization

10

KSTS/RR-12/002
October 16, 2012

Table 2: BGS versus BGS with Schemes A, B, C: CAVITY

Name Matrix Size mtrial tm mA tmA
mB tmB

mC tmC

CAVITY03 317× 317 90 0.035 128 0.041 41 0.037 55 0.038
CAVITY06 1182× 1182 40 1.092 128 1.30943 1.175 13 1.601
CAVITY10 2597× 2597 80 10.57 256 15.25 46 11.47 55 11.00
CAVITY19 4562× 4562 100 53.38 256 62.36 46 59.26 55 56.95

of partial differential equations. The results of the numerical experiments are shown in
Table 2.

The results were similar to Example 1. mA ended-up with large values as the size of
the matrices were large. In contrast, mB resulted in similar values for each problem. mA,
mB and mC took the nearest value m to the block-size mopt for CAVITY10 and 19. The
computation times for tmC

were also faster than the computation times for tmA
and tmB

.
The performance of Scheme C was better than the other schemes in this experiment as
well.

5.2 The Parallel Block Gram-Schmidt Method

In this subsection, numerical experiments were implemented in the environment below,
to illustrate the effectiveness of the PBGS-m. The derived algorithm was programed in
C-language using double precision and run on a Six-Core AMD Opteron Processor 2439
SE which has 12 processors and an AuthenticAMD with a 2.8GHz CPU.

5.2.1 Example 3

The performances of the PBGS and the PBGS-m were compared in this section. The
test matrices were the same as those used in Example 1. BCSSTK15 and BCSSTK19
were selected from the Matrix Market [4]. These are nonsymmetric real matrices which
arise from eigenvalue problems. Numerical experiments are shown in Table 3, Table 4
and Table 5. For each problem and each processor element, the computation time of
the PBGS-m was faster than that of the BGS. For each problem, parallelization ren-
dered block-size mD large, in comparison to block-size mopt. This is why the matrix size
orthogonalized for one step, became large when using several processors.

5.2.2 Example 4

The performances of the PBGS-m and the PBGS were compared with different block-
sizes: m = 50, 100, 200 and 300. In this experiment, the total number of processor
elements was eight. The test matrix was the same as that used in Example 1. BCSSTK15
from the Matrix Market [4], is a nonsymmetric real matrix which arises from eigenvalue
problems. The results of the numerical experiments are shown in Table 6. In this table,
speed-up refers to the ratio of speed-up of each method versus those of the PBGS-m.
The data for the PBGS-m was not the fastest in Table 6. However, when m = 50, the

11

KSTS/RR-12/002
October 16, 2012

Table 3: BGS versus PBGS-m 1

Name Matrix Size mtrial tm mD(PE2) tD(PE2) mD(PE4) tD(PE4)

BCSSTK15 3948× 3948 80 35.01 150 28.40 210 18.15
BCSSTK19 11948× 11948 100 872.6 180 524.0 230 489.3

Table 4: BGS versus PBGS-m 2

Name Matrix Size mtrial tm mD(PE6) tD(PE6) mD(PE8) tD(PE8)

BCSSTK15 3948× 3948 80 35.01 250 15.18 260 15.39
BCSSTK19 11948× 11948 100 872.6 290 451.3 320 440.2

Table 5: BGS versus PBGS-m 3

Name Matrix Size mtrial tm mD(PE10) tD(PE10) mD(PE12) tD(PE12)

BCSSTK15 3948× 3948 80 35.01 280 14.83 310 15.55
BCSSTK19 11948× 11948 100 872.6 380 392.6 420 376.3

Table 6: PBGS-m: BCSSTK15

Algorithm m t Speed-up
PBGS (PE8) 50 35.67 1.96
PBGS (PE8) 100 21.22 1.17
PBGS (PE8) 200 15.62 0.86
PBGS (PE8) 300 16.20 0.89
PBGS-scheme D (PE8) 180 18.16 1.00

PBGS-m was twice as fast as the PBGS, and and when m = 100, the PBGS-m was
also faster. When m = 200 and 300, the PBGS-m was slower by about 10-15%.

6 Conclusion

The Parallel Block Gram-Schmidt method can compute the QR factorization rapidly.
However, determining optimal block-size has always been an issue. To address this issue,
we have developed a new method that automatically determines block-size, and the results
of our numerical experiments in section 5.2.1 and 5.2.2 show that the PBGS-m is an
effective option.

In our paper, a number of ideas used in the development and extension of the Block
Gram-Schmidt and Parallel Block Gram-Schmidt algorithms were explored, and four
schemes on how to determine optimal block-size when applying the BGS and the PBGS
were proposed.

The key role of our schemes was to determine optimal block-size automatically through

12

KSTS/RR-12/002
October 16, 2012

the use of sample points. By applying this method, the BGS can be implemented more
efficiently. The numerical experiments in section 5.1.1 and 5.1.2 also illustrate the effec-
tiveness of our new schemes for almost any problem.

References

[1] Chang, X. W., “On the Perturbation of the Q-factor of the QR factorization,”
Numer. Lin. Alg. Appl., Vol.19, pp. 607–619, 2012.

[2] Elden, L., and Park, H., “Block Downdating of Least Squares Solutions,” SIAM J.
Matrix Anal. Appl., Vol. 15, pp. 1018–1034, 1994.

[3] Gudula, R. and Michael, S., “Comparison of Different Parallel Modified Gram-
Schmidt Algorithms,” Euro-Par 2005, LNCS 3648, pp. 826–836, 2005.

[4] “MATRIX MARKET,” http://math.nist.gov/MatrixMarket/, Information Technol-
ogy Laboratory of the National Institute of Standards and Technology, USA.

[5] Matsuo, Y., Nodera, T., “The Optimal Block-Size for the Block Gram-Schmidt Or-
thogonalization,” J. Sci. Tech, Vol. 49, pp. 348–354, 2011.

[6] Paige, C. C., and Elden, L., “Loss and Recapture of Orthogonality in the Modified
Gram-Schmidt Algorithm,” SIAM J. Matrix Anal. Appl., Vol. 13, pp. 176–190, 1992.

[7] Qiaohua, L., “Modified Gram-Schmidt-based Methods for Block Downdating the
Cholesky Factorization,” J. Comput. Appl. Math., Vol. 235, pp. 1897–1905, 2011.

[8] Stewart, G. W., “Block Gram-Schmidt Orthogonalization,” SIAM J. Sci. Comput.,
Vol. 31, pp. 761–775, 2008.

[9] , “The Effect of Rounding Errors on an Algorithm for Downdating a Cholesky
Factorization,” J. Inst. Math. Appl., Vol. 23, pp. 203–213, 1979.

[10] Vanderstraeten, D., “An Accurate Parallel Block Gram-Schmidt Algorithm without
Reorthogonalization,” Numer. Lin. Alg. Appl., Vol. 7, pp. 219–236, 2000.

[11] Yoo, K. and Park, H., “Accurate Downdating of a Modified Gram-Schmidt OR
Decomposition,” BIT, Vol. 36, pp. 166–181, 1996.

13

KSTS/RR-12/002
October 16, 2012

