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Abstract

The GMRES is a commonly used iterative method for the numerical solution of a
system of linear equations derived from the Fredholm integral equation of the first kind.
Such a system of linear equation is categorized as a linear discrete ill-posed problem. It
has been analyzed by many researchers to illustrate various phenomena. However, its
property as an ill-posed problem has resulted in many unresolved issues. Our proposed
stopping rule is based on the Tikhonov regularization, which is one of the traditional
regularization methods for an ill-posed problem. The conventional way to stop the iter-
ation of the GMRES is to employ the relative residual norm. This, however, does not
work for any ill-posed problems. In this study, we are proposing a new stopping rule for
the GMRES, utilizing a simplified Tikhonov value to stop the iteration appropriately.
Numerical experiments have been used to illustrate the effectiveness of this proposed
algorithm.

1 Introduction
The GMRES is one of the popular iterative methods for the numerical solution of a system
of linear equations:

Ax = b, A ∈ Rn×n, b, x ∈ Rn, (1)

where the coefficient matrix A is non-symmetric. This paper specifically studies the type
of linear systems derived from the discretization of Fredholm integral equations of the first
kind, which are classified as a linear discrete ill-posed problem. These problems commonly
occur during the restoration of blurred satellite images, computed tomography images, oil
exploration and gravity surveys.

Ill-posed problems are unable to secure at least one of following: uniqueness, existence
and/or stability of a solution. To resolve this issue, regularization methods are often applied
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to them to enable arrival at a meaningful solution. With small problems, regularization meth-
ods related to singular value decomposition is a viable alternative. However, problems of
computational effort and accuracy arise when dealing with solutions to large-scale problems.
Currently, Krylov subspace methods are the most frequently used regularization method for
large-scale problems. Björck [2], Hanke [6, Ch.4] and Hansen [8] illustrated the effectiveness
of the conjugate gradient (CG), one of the Krylov subspace methods, as a plausible regular-
ization method for linear discrete ill-posed problems. However, when coefficient matrix A
is non-symmetric, methods utilizing the CG are rendered ill-conditioned for use during the
step of introducing a normal equation of (1). The GMRES, another Krylov subspace method
works better than the CG in such a situation, because the GMRES can solve non-symmetric
linear systems. Calvetti et al. [3] suggested using the GMRES for linear discrete ill-posed
problems and proposed the RRGMRES. The RRGMRES is a modified GMRES restricting
the Krylov subspace within the range of A to make solutions more stable [4]. The aug-
mented GMRES/RRGMRES proposed by Baglama et al. [1] supplements a user-supplied
subspace to the Krylov subspace generated by the GMRES/RRGMRES to improve the accu-
racy of approximate solutions and to reduce the number of iterations necessary. Kuroiwa et
al. [9, 10] proposed the adaptive augmented GMRES/RRGMRES to automate the selection
of subspaces to augment, when applying the augmented GMRES/RRGMRES. While these
GMRES algorithms work well as a regularization method, they do not have an adequate
stopping rule like the residual norm in well-posed problems. The residual norm can be ob-
tained naturally in the steps of the GMRES, but it does not work as a stopping rule for linear
discrete ill-posed problems. The reasons for this will be discussed in the following section.
Our findings indicate that the GMRES for linear discrete ill-posed problems is inadequate for
determining an appropriate solution. From this perspective, we have attempted to modify the
GMRES and have incorporated a new stopping rule for linear discrete ill-posed problems.

Linear discrete ill-posed problems are discussed in Section 2, followed by a proposal of
the simplified Tikhonov value along with a modification of the GMRES as a new index for
terminating the iterations of the GMRES in Section 3. In Section 4, numerical experiments
are used to illustrate the effectiveness of this method. Lastly in Section 5 which constitutes
the conclusion of this paper, there is a short discussion on the future issues that need to be
resolved.

2 Linear Discrete Ill-posed Problems
When we discretize a linear Fredholm integral equation of the first kind such as:

∫ b

a
K(s, t) f (t) dt = g(s), c ≤ s ≤ d, (2)

where K(s, t) and g(s) are known smooth functions and f (t) is a desired unknown function, a
linear system of equation (1) is obtained. The functions g(s) and K(s, t) correspond to a mea-
surement value and a phenomenon making f (t) change, respectively. The Fredholm integral
equation of the first kind is one of the models of an inverse problem. Inverse problems are
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often ill-posed and when this is the case, the derived linear systems become ill-conditioned.
The coefficient matrix A in equation (1) derived from equation (2) is characterized by a
property wherein the larger the problem scale n becomes, the more the singular values are
likely to cluster around zero. This property means that the larger n becomes, the larger the
condition number of A is likely to be. Thus, the derived linear system (1) is rendered sensi-
tive to the perturbation of each element. In particular, the right hand side vector b is often
contaminated by measurement error berror as a perturbation in the following manner:

b̃ = b + berror. (3)

If only the contaminated vector b̃ is known, the following system is rendered inconsistent:

Ax , b. (4)

Applying the GMRES to a known set of A, b̃ solves the following system of equation and
obtains the approximate solution to x̃.

Ax̃ = b̃. (5)

The GMRES will generate an approximate solution which has a minimum residual norm
in the Krylov subspace K j:

K j(A, r̃0) = span{r̃0, Ar̃0, . . . , A j−1 r̃0}, (6)

where the index j is an iteration number, r̃0 is the initial residual r̃0 = b̃−Ax̃0 in equation (5),
and x̃0 is the initial guess. When we apply GMRES to a discrete ill-posed problem, an ap-
propriate approximate solution x̃ j is determined by a constraint which helps the approximate
solution x̃ j becomes closer to the exact solution x. Therefore, we solve the least squares
problem with constraint Ψ as follows:

min
x̃∈x̃0+K j(A,r̃0)

‖b̃ − Ax̃‖2 subject to x̃ j satisfies Ψ, (7)

where the most ideal constraint is:

Ψ : min ‖ x̃ j − x ‖2. (8)

It is unrealistic to use the exact solution x in this scenario, and it has made it necessary to
investigate other constraints to determine an appropriate approximate solution without the
use of x.

In a classical GMRES, the constraint Ψ for GMRES to equation (1), requires that the
relative residual norm ‖r j‖/‖r0‖ becomes small enough. However, when solving discrete
ill-posed problems, not only does b̃ including perturbation cause equation (5) to become
unstable. It also fails to guarantee that the resulting approximate solution x̃ j will get closer
to x when the iteration number j becomes larger. The instability of this system can increase
the margin of error of the approximate solution as the iterations of the GMRES proceeds.
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Due to this, the norm of residual r̃ j = b̃ − Ax̃ j from equation (5) fails to play the role of the
index to halt the iterations of the GMRES for linear discrete ill-posed problems.

Calvetti et al. [5] proposed condition L-curves for determinating an adequate approxi-
mate solution. Condition L-curves use a condition number of a matrix appearing in each
iteration step of the GMRES. Unfortunately, there are two issues with this method. Ex-
pensive and complicated computation is required to calculate the condition number of the
matrices. Additionally, there is the unresolved issue of when the iteration of the GMRES
should be stopped. With this background in mind, we have explored the possibility of using
a new constraint. This not only enables us to determine a suitable approximate solution, but
also to stop the iteration of the GMRES without additional computations. Details of the new
constraint follows.

3 Modified GMRES Utilizing a New Stopping Rule
This section discusses a new modified GMRES that addresses some of the issues posed by
discrete ill-posed problems. The new method introduces a new constraint, which uses a
certain value based on Tikhonov regularization to generate adequate approximate solutions.

3.1 Tikhonov Regularization
The Tikhonov regularization [13] is one of the popular classical regularization methods.
When solving equation (5) with this method, the desired approximate solution is generated
by the least squares problem as follows:

min
x̃

{‖b̃ − Ax̃‖22 + λ‖Lx̃‖22
}
, (9)

where λ ∈ R is the Tikhonov regularization parameter and L ∈ Rn×n is the Tikhonov regu-
larization matrix. In this example, the identity matrix I, the diagonal matrix, or the matrix
yielding the first or second derivative are often used as L. The identity matrix I affects noth-
ing, but the other matrices are applied to reduce the effects of perturbation. The Tikhonov
regularization matrix L is determined a priori because the appropriate L will be different for
each problem. For simplicity’s sake, L = I. In addition, it should be noted that there is no
confirmed way to determine the exact λ. In most cases, the most likely parameter is found
through running a few numerical experiments and identifying which one appears to produce
a smooth approximate solution. In relation to the Krylov subspace methods as regularization
methods, Lewis [11] proposed the RRAT method, which includes a scheme to calculate λ, to
solve linear discrete ill-posed problems.

We considered utilizing the philosophy of the Tikhonov regularization method as con-
straint Ψ for the GMRES in formula (9). As shown in (9), the Tikhonov regularization
determines the approximate solution which minimizes the sum of the residual norm and so-
lution norm with λ and L. The Tikhonov regularization parameter λ and matrix L seem to
play a role in balancing the effect of the norms. The parameter is key to determining the ap-
proximate solution. This means that it is integral to balance the effect of the norms. Hence,
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the new formula:
log j ‖r̃ j‖22 + log j ‖x̃ j − x̃0‖22. (10)

When applying the GMRES, the residual norm decreases as the number of iterations in-
creases. Simultaneously, small unknown errors in b̃ are enhanced by singular values close
to zero. The resulting approximate solution x̃ j would have a large norm due to the enhanced
errors as the iterations proceed. This suggests that the difference between them would grow,
in correspondence to the iteration number. Logarithms in formula (10) help to scale their
magnitudes. It should be noted that the change of the residual norm and the solution norm
will affect the iteration number j. In view of this property, j was set to be the base of each
logarithm.

This is why the solution norm is used as an index to measure how much difference the
perturbation is causing, as the number of iterations proceeds. The norm ‖x̃ j − x̃0‖2 is used to
omit the effects of the initial guess x̃0.

Formula (10) can be rewritten as follows:

log j ‖r̃ j‖22 + log j ‖x̃ j − x̃0‖22 = 2 log j ‖r̃ j‖2 + 2 log j ‖x̃ j − x̃0‖2
= 2

(
log j ‖r̃ j‖2 ‖x̃ j − x̃0‖2),

where we define τ j as the Tikhonov value:

τ j = log j ‖r̃ j‖2 ‖x̃ j − x̃0‖2. (11)

Using τ j, a new constraint Ψ j can be defined based on the Tikhonov regularization:

Ψ j : τ j < τ j−1. (12)

3.2 Derivation of the Simplified Tikhonov Value
The constraint Ψ j is applied to the GMRES here. τ j in Ψ j consists of the residual norm
‖r̃ j‖2 and ‖x̃ j − x̃0‖2. In consideration of the constraint Ψ j being applied to the GMRES,
the Tikhonov value τ j in Ψ j consists of the residual norm and the norm ‖x̃ j − x̃0‖2 with an
approximate solution. The calculation of the Tikhonov value τ j can be simplified, by using
the approximate values obtained from the GMRES iterations.

3.2.1 Approximation of the Residual Norm

It is a given that the residual norm is approximated by certain values in the steps of a GM-
RES. When applying a classical GMRES to a system of linear equations (5), the Arnoldi
decomposition of A after j iterations is expressed as follows:

AV j = V j+1H j, (13)

where the columns of V j ∈ Rn× j are the orthonormal basis of the Krylov subspace K(A, r̃0)
and H j ∈ R( j+1)× j is an upper-Hessenberg matrix. The approximate solution x̃ j in the Krylov
subspace K(A, r̃0) is written as follows:

x̃ j = x̃0 + V jy j. (14)
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Using relations (13) and (14), the jth residual is rewritten as follows (see Saad [12]):

b̃ − Ax̃ j = b̃ − A(x̃0 + V jy)
= r̃0 − V j+1H jy
= V j+1(‖r̃0‖2e1 − H jy)

= V j+1GT
j G j(‖r̃0‖2e1 − Hy)

= V j+1GT
j ( g̃ j − R jy),

where y ∈ R j, G j = Π
i= j
1 Ωi and Ωi is a Givens rotation matrix. Let γ j be a last element of g̃ j,

and g̃′j and R′j be a vector and matrix which will remove the last element of g̃ j and the last
row of R j. As G j and V j are both orthogonal matrices, the norm of the residual is written as
follows:

‖b̃ − Ax̃ j‖2 = ‖ g̃′j − R′j ỹ j‖2 + |γ j| (15)

y j = argmin
y
‖ g̃′j − R′jy‖2, (16)

where y j minimizes the norm ‖ g̃′j − R′jy‖2, i.e. the approximate solution of the linear system
of equations R′y = g′j. Since the resulting norm ‖g′j − R′jy j‖2 must be small enough, the
residual norm can be approximated as follows:

‖b̃ − Ax̃ j‖2 ≈ |γ j|. (17)

3.2.2 Approximation of the Solution Norm

Consider the norm ‖x̃ j − x̃0‖2 with the approximate solution. Using relations (13) and (14),
the norm can be rewritten as follows:

‖x̃ j − x̃0‖2 = ‖x̃0 + V jy j − x̃0‖2
≤ ‖V jy j‖2.

Moreover, since V j has orthonormal columns, the norm is approximated as follows:

‖x̃ j − x̃0‖2 ≤ ‖y j‖2. (18)

3.2.3 The Simplified Tikhonov value

It has been confirmed that the residual norm ‖r̃ j‖2 and the norm ‖x̃ j − x̃0‖2 are approximated
to equations (17) and (18), respectively. The Tikhonov value τ j introduces the following
relation:

τ j = log j
(‖r̃ j‖2 ‖x̃ j − x̃0‖2)

/ log j
(|γ j| ‖y j‖2

)
,
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where we define τS
j as the simplified Tikhonov value:

τS
j = log j

(|γ j| ‖y j‖2
)
. (19)

As elements constructing the simplified Tikhonov value do not need extra computations, the
calculation of τS

j allows us to omit the following computations from τ j:

1. Solve system R′y = g′ ( O( j2) )

2. Compute x̃ j − x̃0 = V y j ( O( jn) )

3. Compute ‖x̃ j − x̃0‖2 ( O(n) )

3.3 The Modified Algorithm of the GMRES
The other alternative for a new constraint ΨS

j , using the simplified Tikhonov value τS
j , is

defined as follows:
ΨS

j : τS
j < τ

S
j−1. (20)

The following problem is redefined with ΨS
j :

min
x̃∈x̃0+K j(A,r̃0)

‖b̃ − Ax̃‖2 subject to x̃ j satisfies ΨS
j . (21)

This means that the iterations to generate the approximate solution will proceed until the
simplified Tikhonov value τS

j increases. When value τS
j increases, the iterations of the GM-

RES will stop and it will determine the approximate solution x̃ j = x̃ j−1. In this manner, the
simplified Tikhonov value can be used as an index of a stopping criteria for the GMRES. In
addition, it can determine the appropriate approximate solution automatically.

Figure 1 is the aforementioned modified algorithm of the GMRES, using the simplified
Tikhonov value. Steps 4–14 generate the orthonormal basis of the Krylov subspace, and
the simplified Tikhonov value τS

j is computed at step 11. If the dimension of the Krylov
subspace is larger than 2 and τS

j is less than τS
j−1, the iteration continues. If τS

j increases or
the iteration number is maximized, the final approximate solution is determined in step 15.

4 Numerical Experiments
In this section, numerical experiments were used to illustrate the effectiveness of the modified
GMRES with the simplified Tikhonov value shown in Figure 1. All computations were run
on the following equipment:

• Computer : ThinkPad X201s

• CPU : Intel(R) Core(TM) i7 2.13GHz

• OS : Ubuntu 10.10

7

KSTS/RR-12/001 
March 29, 2012



Input A ∈ Rn×n, x̃0, b̃ ∈ Rn,m
Output x̃ j

01: r̃0 := b̃ − Ax̃0, v1 := r̃0
02: For j = 1, . . . ,m do
03: w j := Av j

04: For i = 1, . . . , j do
05: hi j := (w j, vi)
06: w j := w j − hi jvi

07: End for
08: h j+1, j := ‖w j‖2
09: v j+1 := w j/h j+1, j
10: Compute y j of (16)
11: Compute τS

j of (19)
12: If j > 2 and τS

j > τ
S
j−1 then

13: Set j = j − 1 and break
14: End for
15: x̃ j := x̃0 + V j y j

Figure 1: The Modified GMRES Using the Simplified Tikhonov Value

Table 1: Properties of the Numerical Experiments

function A ‖A−1‖2‖A‖2
Ex.1 foxgood Symmetric 1.85 × 1019

Ex.2 baart Non-symmetric 2.55 × 1019

Ex.3 gravity Non-symmetric 1.80 × 1022

• Software : Octave 3.2.4

These methods were applied under the conditions detailed below:

• Initial guess : x̃0 = 0
• Elements of berror: normal random numbers with 0 mean and 1.0 × 10−5 variance

The Fredholm integral equations of the first kind which are used as test problems in
the “Regularization Tools” by Hansen [7] were implemented. “Regularization Tools” is a
MATLAB package including functions to analyze linear discrete ill-posed problems. The
properties of each experiment are shown in Table 1. One symmetric problem and two non-
symmetric problems were solved. The second non-symmetric problem was derived from a
real world problem. In every experiment, the problem (21) with A, b, x discretized by the
functions of the “Regularization Tools” were considered.

In each of the numerical experiments, the behavior of the simplified Tikhonov value
τs

j versus the Tikhonov value τ j were compared. Further to this, the performance of the
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Figure 2: Numerical Experiment 1: The Relative Residual Norm ‖r̃ j‖2/‖r̃0‖2 and the Solution
Norm ‖x̃ j − x̃0‖2 by GMRES

modified GMRES with the simplified Tikhonov value versus the classical GMRES were
also compared and evaluated

4.1 Numerical Experiment 1

The first experiment dealt with the Fredholm integral equation of the first kind:
∫ 1

0

(
s2 + t2) 1

2 f (t) dt =
1
3

((
1 + s2) 3

2 − s3
)
, 0 ≤ s ≤ 1, (22)

where the exact solution f (t) = t. In this particular case, A, b, x were generated on Octave
by using the foxgood(2048) command.

The results of the classical GMRES are shown in Figure 2, 3 and 4. Figure 2 shows
the history of the relative residual norm ‖r̃ j‖2/‖r̃0‖2 and ‖x̃ j − x̃0‖2 corresponding to the
iteration numbers. The former decreases, then stagnates, while the latter increases. Thus, the
difference between them grows as the iterations proceed. Figure 3, illustrates the changes
in the absolute values |τ j − τS

j | of the Tikhonov value τ j and the simplified Tikhonov value
τS

j . Even though it may appear to be increasing, it should be noted that the value at the 20th
iteration is less than 1.0 × 10−9. This indicates that the simplified Tikhonov value τS

j has
enough accuracy for τ j. In Figure 4, the relative error norm ‖x− x̃ j‖2/‖x‖2 and the simplified
Tikhonov value τS

j were compared. The features of their history appear to be similar. In
particular, it should be noted that they become minimal at the same iteration.

The results from the exercises with the GMRES with constraints Ψ in (8), Ψ j in (12) and
ΨS

j in (20) have been tabulated in Table 2. Each resulted in the same relative error norm.
In Figure 4, it is shown that the simplified Tikhonov value increases at the 4th iteration for
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Figure 3: Numerical Experiment 1: The Distance between Tikhonov Value τ j and the Sim-
plified Tikhonov Value τS

j by GMRES

Figure 4: Numerical Experiment 1: The Relative Error Norm ‖x− x̃ j‖2/‖x‖2 and the Simpli-
fied Tikhonov Value τS

j by GMRES
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Table 2: Numerical Experiment 1: A Comparison of Each Constraint for the GMRES

Constraint Iteration Count Achieved Relative Error Norm Time (Sec.)
Ψ 3 6.66 × 10−3 –
Ψ j 4 6.66 × 10−3 0.05
ΨS

j 4 6.66 × 10−3 0.03

Table 3: Numerical Experiment 2: A Comparison of Each Constraint for the GMRES

Constraint Iteration Count Achieved Relative Error Norm Time (Sec.)
Ψ 3 3.61 × 10−2 –
Ψ j 4 3.61 × 10−2 0.05
ΨS

j 4 3.61 × 10−2 0.04

the first time. This indicates that the constraint ΨS
4 determines the final approximate solution

x̃4 = x̃3. Further to this, these exercises suggest that the GMRES converges faster when
using ΨS

j rather than Ψ j.
The results of these numerical experiments suggest that the simplified Tikhonov value is

a feasible alternative for determining the best approximate solution.

4.2 Numerical Experiment 2

The following Fredholm integral equation is considered here:
∫ π

0
exp (s cos t) f (t) dt = 2

sin s
s
, 0 ≤ s ≤ π

2
, (23)

where the exact solution is f (t) = sin t. A, b, x by using the baart(2048) command were
generated on Octave.

The results of the numerical experiments performed with the classical GMRES are shown
in Figure 5, 6 and 7. The history of the relative error norm ‖r̃ j‖2/‖r̃0‖2 and the solution norm
‖x̃ j − x̃0‖2 have been tabulated in Figure 5. As in Experiment 1, their distance gradually in-
creases. Figure 6 illustrates the changes in the absolute values |τ j−τS

j | of the Tikhonov value
τ j and the simplified Tikhonov value τS

j . The results indicate that the simplified Tikhonov
value τS

j provides a good approximation of the nonsimplified version τ j. The relative error
norm ‖x − x̃ j‖2/‖x‖2 and the simplified Tikhonov value τS

j are compared in Figure 7.
The results of the numerical experiments implemented to find approximate solutions

through the GMRES with three different constraints, Ψ, Ψ j and ΨS
j , are shown in Table 3.

All three constraints resulted in identical relative error norms. The GMRES using the con-
straint ΨS

j , resulted in the approximate solution x̃4, because τS
4 became larger than τS

3 . This
constraint was also the most efficient in determining the final approximate solution. As in
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Figure 5: Numerical Experiment 2: The Relative Residual Norm ‖r̃ j‖2/‖r̃0‖2 and the Solution
Norm ‖x̃ j − x̃0‖2 by GMRES

Figure 6: Numerical Experiment 2: The Distance Between Tikhonov value τ j and the Sim-
plified Tikhonov Value τS

j by GMRES
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Figure 7: Numerical Experiment 2: The Relative Error Norm ‖x− x̃ j‖2/‖x‖2 and the Simpli-
fied Tikhonov value τS

j by GMRES

Experiment 1, the simplified Tikhonov value was able to determine the best approximate
solution in the shortest period of time.

4.3 Numerical Experiment 3

A 1D model from an actual gravity survey is solved here:
∫ 1

0

(
s2 + t2) 1

2 f (t) dt =
1
3

((
1 + s2) 3

2 − s3
)
, 0 ≤ s ≤ 1. (24)

The exact solution is f (t) as f (t) = sin(πt) + 0.5 sin(2πt). A, b, x by gravity(2048,1.0,0.5)
were generated on Octave.

The results from the numerical exercises using the classical GMRES are shown in Fig-
ure 8, 9 and 10. Figure 8 shows the history of the relative residual norms ‖r̃ j‖2/‖r̃0‖2 and
‖x̃ j − x̃0‖2. As mentioned in the previous experiment, though the norms ‖x̃ j − x̃0‖2 produce
similar results during the early iterations, the difference between them grows after that. Fig-
ure 9 illustrates the changes in the absolute values |τ j − τS

j | of the Tikhonov value τ j and the
simplified Tikhonov value τS

j . Although this appears to be increasing, it should be noted that
the value in the 20th iteration is less than 1.0 × 10−8 and still minimal. In Figure 10, the
relative error norm ‖x− x̃ j‖2/‖x‖2 and the simplified Tikhonov value τS

j are compared. Here,
τS

j appears to roughly approximate the relative error norm.
The results of the GMRES numerical experiments using the constraints Ψ of (8), Ψ j

of (12) and ΨS
j of (20) are tabulated in Table 4. The achieved relative error norm by Ψ

was 9.66 × 10−2 and smaller than those achieved by Ψ j and ΨS
j . Figure 10 shows that the

simplified Tikhonov value increases at the 8th iteration for the first time. The approximate
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Figure 8: Numerical Experiment 3 : The Relative Residual Norm ‖r̃ j‖2/‖r̃0‖2 and Solution
Norm ‖x̃ j − x̃0‖2 by GMRES

Table 4: Numerical Experiment 3: The Comparison of Each Constraint for the GMRES

The Constraint Iteration Count Achieved Relative Error Norm Time (sec.)
Ψ 10 1.84 × 10−2 –
Ψ j 8 1.15 × 10−1 0.16
ΨS

j 8 1.15 × 10−1 0.08

solution obtained by the modified GMRES was x̃8 = x̃7, while the best approximate solution
by the GMRES with Ψ was generated at the 10th iteration. In this experiment, ΨS

j was
not only unable to find the best approximate solution. The computed approximate solution
contained too many errors.

4.4 Discussion
Numerical experiments 1 and 2 show that constraint ΨS

j with the simplified Tikhonov value
τS

j helps stop the iterations of the modified GMRES, and it can determine the best approxi-
mate solution. In numerical experiment 3, the determined approximate solution was not the
best one, but it had enough accuracy.

To evaluate effectiveness, the changes in the simplified Tikhonov value in each exper-
iment were compared and analyzed. The first increments of τS

j in Figure 4 and Figure 7,
equal to τS

4 − τS
3 in each case, were large, compared to the increments in Figure 10, equal to

τS
8 − τS

7 . The small changes in τS
j in Figure 10 continued to the 11th iteration.
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Figure 9: Numerical Experiment 3: The Distance Between Tikhonov value τ j and the Sim-
plified Tikhonov Value τS

j by GMRES

This suggests that the amount of the first increase of the simplified Tikhonov value in-
fluences the effectiveness of the value itself. If the amount of the increment is too small,
the approximate solution determined by constraint ΨS

j has not yet reached the point where it
delivers the highest possible accuracy. This problem can be resolved if we set the threshold
for the increment of the simplified Tikhonov value τS

j in constraint ΨS
j .

5 Conclusion
This paper explored the possibilities of using the simplified Tikhonov value τS

j as a new index
in constraint ΨS

j for stopping the iterations of the GMRES and determining an approximate
solution. The proposed value, which is suspected to yield a property of the Tikhonov regu-
larization, consists of some approximate values appearing in the iterations of the GMRES.

The numerical experiments have illustrated that the modified GMRES using this pro-
posed value can automatically determine an approximate solution when the corresponding
relative error norm becomes small enough.

Although this study has shown that the simplified Tikhonov value τS
j can work as a

new index in constraint ΨS
j for stopping the iterations of the GMRES and determining an

approximate solution, there are some outstanding issues that remain unresolved. Future
work would include proposing constraints and preconditioners which can deliver a higher
accuracy in terms of providing an appropriate approximate solution. The application of this
proposed method to large-scale practical problems also needs further exploration.
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Figure 10: Numerical Experiment 3: The Relative Error Norm ‖x − x̃ j‖2/‖x‖2 and the Sim-
plified Tikhonov Value τS

j by GMRES
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