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Abstract

A method to construct noncommutative instantons as deformations from commuta-
tive instantons was provided in [1]. Using this noncommutative deformed instanton,
we investigate the spinor zero modes of the Dirac operator in a noncommutative
instanton background on noncommutative R4, and we modify the index of the Dirac
operator on the noncommutative space slightly and show that the number of the
zero mode of the Dirac operator is preserved under the noncommutative deforma-
tion. We prove the existence of the Green’s function associated with instantons
on noncommutative R4, as a smooth deformation of the commutative case. The
feature of the zero modes of the Dirac operator and the Green’s function derives
noncommutative ADHM(Atiyah-Drinfeld-Hitchin-Manin) equations which coincide
with the ones introduced by Nekrasov and Schwarz. We show a one-to-one corre-
spondence between the instantons on noncommutative R4 and ADHM data. An
example of a noncommutative instanton and a spinor zero mode are also given.

Key words: Noncommutative geometry, Yang-Mills theory, Instanton
PACS: 11.10.Nx

1 Introduction

Deformation Quantization, introduced by Flato et al [2] provided an idea
for the method of quantization, whose crucial point is not to employ the
representation space, and treat it from purely algebraic point of view. It might
be worth to apply this idea to gauge theories for geometry and physics. One of
the important problems for the gauge theory is an instanton, which has been
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tried by several people. Our approach presented in this paper is to develop it
in the context of the deformation quantization.

Nekrasov and Schwarz [3] discovered noncommutative ADHM equations and
constructed noncommutative instantons using the ADHM construction [4]. (In
the following, we call these solutions briefly noncommutative ADHM instan-
tons.) This work initiated the study of noncommutative ADHM instantons,
and at present there is a large body of work on this problem [5]. Several non-
commutative instantons have been discovered, by the ADHM method. How-
ever, some of them like U(1) instantons do not smoothly connect to commuta-
tive instantons. ( There are several noncommutative instanton solutions whose
commutative limits have been studied, and some of them are constructed with-
out the ADHM method [6].) In [7–11], the topological charge of a noncom-
mutative ADHM instanton is studied, where it is shown that the topological
charge is given by an integer and coincides with the dimension of a vector
space appearing in the ADHM construction. (Strictly speaking, the proof of
the equivalence between the topological charge defined as the integral of the
second Chern class and the instanton number given by the dimension of the
vector space in the ADHM construction is not completed. In [8], this identifi-
cation is shown when the noncommutative parameter is self-dual for a U(N)
gauge theory. In [11], the equivalence is shown with no restrictions on the
noncommutative parameters, but a noncommutative version of the Osborn’s
identity (Corrigan’s identity) is assumed.) However, the relation between the
topological number and the corresponding numbers in the commutative space
had not be clarified. Moreover, the calculation in [7,8] shows that the origin
of the instanton number is deeply related to the noncommutativity.

On the other hand, we have constructed previously new noncommutative de-
formations of solitons in gauge theories. These deformations smoothly connect
a commutative soliton to a noncommutative soliton [1,12,13]. In the following,
we call these smooth noncommutative deformed instantons SNCD instantons
for short. The SNCD instantons have a formal power series expansion in the
noncommutative parameter, and the leading terms are instantons in commu-
tative space. In particular, this produces instanton solutions on noncommu-
tative R4 which are deformations of instanton solutions on commutative R4.
We showed that the instanton numbers of these noncommutative instanton
solutions coincide with the commutative instanton numbers on R4. Thus, it
is natural to ask if there is a correspondence between the SNCD instantons
and the noncommutative ADHM construction. Answering this question is the
main purpose of this paper.

In the section 3.3 in [3], the completeness of the noncommutative ADHM con-
struction is already discussed without any proofs. In this paper, we give a
complete proof for the completeness for the SNCD instanton. The procedure
of the proof is basically followed by the commutative case. One of the cru-
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cial points for the differences to the commutative case is to observe the decay
properties for the instantons on the noncommutative 4-space which has been
obtained in [1]. Moreover, we have to have the asymptotic behavior of the zero
modes of the Dirac operator associated with the SNCD instanton, the index of
the Dirac operator, and the Green’s function with the SNCD instanton back-
ground. In this article, we first investigate zero modes of the Dirac operator
associated with the SNCD instanton. We give a (modified) index of the Dirac
operator on the noncommutative space. It is shown that this index is deter-
mined by the index associated with the commutative instanton. We show the
existence of the Green’s function with the background SNCD instanton. Using
these properties, we derive the noncommutative ADHM equations from the
SNCD instanton. The ADHM equations coincide with the ones discovered by
Nekrasov and Schwarz [3,5]. We construct one example of a SNCD instanton
deformed from a k = 1 BPST instanton in commutative R4, and we check its
consistency with the theorems in this article. In the Appendix, we show that
there is one-to-one correspondence between the ADHM data and the SNCD
instantons.

This paper is organized as follows. In Section 2, we set the notation and
review basic facts about star products and SNCD instantons. In Section 3,
we show that the (modified) index of the Dirac operator is constant under
noncommutative deformations. In Section 4, we construct the Green’s function
for the noncommutative Laplacian. In Section 5, we prove the main result, that
the ADHM equations derived from noncommutative instantons are the same
as the equations constructed by Nekrasov and Schwarz. In Section 6, we give
a worked example of a noncommutative instanton. Section 7 is the conclusion.
In Appendix A, some extension of the completeness relation of the Dirac zero
modes is derived. In Appendix B, we show the one-to-one correspondence
between ADHM data and noncommutative instantons, and in Appendix C,
we discuss constraints imposed by the choice of the U(N) gauge group.

2 Notations, Definitions and Known Facts

Noncommutative Euclidean 4-space R4 is given by the following commutation
relations of the coordinates:

[xµ, xν ]⋆ = xµ ⋆ xν − xν ⋆ xµ = iθµν , µ, ν = 1, 2, 3, 4 , (2.1)

where (θµν) is a real, x-independent, skew-symmetric matrix, whose entries
are called the noncommutative parameters. ⋆ is known as the Moyal (or star)
product [14]. To consider smooth noncommutative deformations, we introduce
a parameter ~ and a fixed real constant −∞ < θµν

0 < ∞ with
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θµν = ~θµν
0 . (2.2)

We define the commutative limit by letting ~ → 0.

The Moyal product is defined on functions by

f(x) ⋆ g(x) := f(x) exp
(

i

2

←−
∂ µθ

µν−→∂ ν

)
g(x)

= f(x)g(x) +
∞∑

n=1

1

n!
f(x)

(
i

2

←−
∂ µθ

µν−→∂ ν

)n

g(x) .

Here
←−
∂ µ and

−→
∂ ν are partial derivatives with respect to xµ for f(x) and to xν

for g(x), respectively.

Moreover, we consider ~-expansions functions f(x) (formal power series in ~
with the values in C∞(R4)) in the following:

f(x) =
∞∑

n=0

f (n)(x)~n, (2.3)

where f (n)(x) ∈ C∞(R4). We mainly consider each f (n)(x) ∈ C∞(R4)∩L2(R4).
We extend the Moyal product to the above fields (2.3) and also to other fields
like spinors ~ linealy. In the following, we consider all subjects by using this
formal expansion and solve equations (Dirac equations, etc.) recursively in
increasing orders of ~.

We often use order estimates in the radius |x|. If s is a function on R4 and s =
O(|x|−m), the “natural growth condition” is defined by |∂k

µs| = O(|x|−m−k).
In this article, this natural growth condition of gauge fields and spinor fields
is always required. (s = O′(|x|−m) is defined by s = O(|x|−m) and |∂k

µs| =
O(|x|−m−k) in [15]. We do not use this symbol O′(|x|−m) because it is not
standard in physics. )

We define a Lie algebra structure by [Ta,Tb] = fabcTc, where the generators
Ta are anti-Hermitian matrices. In this article, U(N) (N > 1) gauge theory
on noncommutative R4 is considered. The covariant derivative for a some
fundamental representation field f(x) is defined by

Dµ ⋆ f(x) := ∂µf(x) + Aµ ⋆ f(x) , Aµ = Aa
µTa. (2.4)

A gauge transformation of A is given by A → A + g ⋆ dg−1 , where g is an
element of the gauge group G = {g | g† ⋆ g = In×n}. Here g has a formal

expansion g =
∞∑
l=0

g(l)~l. As we see in [12] and Appendix C, g† ⋆ g = I is
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equivalent to an infinite hierarchy of algebraic equations which we can solve
recursively starting with the ~0 term. The Laplacian is defined by

∆A ⋆ f := Dµ ⋆ Dµ ⋆ f. (2.5)

The curvature two-form F is defined by

F :=
1

2
Fµνdxµ ∧ dxν = dA + A ∧ ⋆A, (2.6)

where ∧⋆ is defined by

A ∧ ⋆A :=
1

2
(Aµ ⋆ Aν)dxµ ∧ dxν . (2.7)

Let S = S+ ⊕ S− be the spinor bundle of R4. We define σµ and σ̄µ by

(σ1, σ2, σ3, σ4) := (−iτ1,−iτ2,−iτ3, I2×2),

(σ̄1, σ̄2, σ̄3, σ̄4) := (iτ1, iτ2, iτ3, I2×2), (2.8)

where τi are the Pauli matrices:

τ1 =

 0 1

1 0

 , τ2 =

 0 −i

i 0

 , τ3 =

 1 0

0 −1

 , (2.9)

and I2×2 is the identity matrix of dimension 2. Note that σ†
µ = σ̄µ. σµ and σ̄µ

are a 2-dimensional matrix representation of the quaternions such, i.e.

σµσ̄ν + σν σ̄µ = σ̄µσν + σ̄νσµ = 2δµν . (2.10)

We define σµν and σ̄µν as

σµν :=
1

4
(σµσ̄ν − σν σ̄µ), σ̄µν :=

1

4
(σ̄µσν − σ̄νσµ), (2.11)

which are the components anti-selfdual and selfdual two-form, respectively.
The Dirac(-Weyl) operators DA⋆ : Γ(S+ ⊗ E)[[~]] → Γ(S− ⊗ E)[[~]] and
D̄A⋆ : Γ(S− ⊗ E)[[~]] → Γ(S+ ⊗ E)[[~]] are defined by

DA⋆ := σµDµ ⋆ and D̄A⋆ := σ̄µD†
µ⋆ , (2.12)
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respectively. It is worth to comment on the spinor in the context of the de-
formation quantization. Since noncommutativity violates Lorentz symmetry
of R4, spinor as a representation of usual Poincare symmetry does not ex-
ist. However, as shown in [16,17], there exists a twisted Poincre symmetry in
noncommutative space-time.

Instanton solutions or anti-selfdual connections satisfy the (noncommutative)
instanton equation

F+ =
1

2
(1 + ∗)F = 0 , (2.13)

where ∗ is the Hodge star operator. Note that in this article instantons are
anti-selfdual connections, not selfdual connections. Formally, we expand the
connection as

Aµ =
∞∑
l=0

A(l)
µ ~l. (2.14)

Then,

Aµ ⋆ Aν =
∞∑

l,m,n=0

~l+m+n 1

l !
A(m)

µ (
←→
∆ )lA(n)

µ , (2.15)

where

←→
∆ ≡ i

2

←−
∂ µθ

µν
0

−→
∂ ν .

Using the selfdual projection operator

P :=
1 + ∗

2
; Pµν,ρτ =

1

4
(δµρδντ − δνρδµτ + ϵµνρτ ), (2.16)

the instanton equation is

Pµν,ρτF
ρτ = 0. (2.17)

In the noncommutative case, the l-th order equation of (2.17) is given by

P µν,ρτ (∂ρA
(l)
τ − ∂τA

(l)
ρ + [A(l)

ρ , A(l)
τ ] + C(l)

ρτ ) = 0, (2.18)

where
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C(l)
ρτ :=

∑
(p; m,n)∈I(l)

~p+m+n 1

p !

(
A(m)

ρ (
←→
∆ )pA(n)

τ − A(m)
τ (

←→
∆ )pA(n)

ρ

)
,

I(l) ≡ {(p; m,n) ∈ Z3|p + m + n = l, p,m, n ≥ 0, m ̸= l, n ̸= l}.

Note that the zeroth order equation is the commutative instanton equation
with solution A(0)

µ a commutative instanton. The asymptotic behavior of the

commutative instanton A(0)
µ is given by

A(0)
µ = g(0)∂µ(g(0))

−1
+ O(|x|−2), g(0)d(g(0))

−1
= O(|x|−1), (2.19)

where g(0), the zeroth order term in the expansion of g, is an element of the
gauge group in commutative space. We impose a boundary condition that is
a natural extension of (2.19):

Aµ = g ⋆ ∂µg
−1 + O(|x|−2), g ⋆ dg−1 = O(|x|−1). (2.20)

In [1], we found a solution of (2.18), which we call a SNCD instanton. The
order of the SNCD instanton is given by

A(l)
µ = O(|x|−3+ϵ) , l = 1, 2, 3, . . . , (2.21)

for arbitrarily small ϵ > 0. We denote (2.21) by A(l) = O(|x|−3+ϵ) for simplic-
ity. We proved also that the instanton number of SNCD coincides with the
instanton number of A(0):

1

8π2

∫
trF ∧ ⋆F =

1

8π2

∫
trF (0) ∧ F (0). (2.22)

For a later convenience, we introduce covariant derivatives associated to the
commutative instanton connection by

D(0)
µ f := ∂µf + A(0)

µ f, (2.23)

and the Laplacian associated with the commutative instanton connection by

∆
(0)
A f := D(0)µD(0)

µ f. (2.24)

Let us introduce a ~-valued pairing for formal expansions f(x), g(x) ∈ (C∞(R4)∩
L2(R4))[[~]] as
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⟨f, g⟩⋆ :=
∫

R4
d4x(f †(x), g(x))⋆. (2.25)

Here ( , )⋆ is the ~-valued point wise product used in Euclidean scalar
product with contraction of spinors or tensors, that is (f †(x), g(x))⋆ is defined
by

(f †(x), g(x))⋆ := f †µ1,...µn ⋆ gµ1...µn . (2.26)

Since each f (n) and g(n) are in C∞(R4) ∩ L2(R4), we obtain

∫
R4

d4xf (n)(x)
←→
∆ g(m)(x) = 0. (2.27)

then

⟨f, g⟩⋆ =
∫

R4
d4x(f(x)†, g(x))

=
∞∑

n=0

∫
R4

d4x
∑

k+l=n

(f(x)†(k), g(l)(x))~n, (2.28)

where (f †(x), g(x)) is defined by (f †(x), g(x)) := f †µ1,...µngµ1...µn . We also use
the usual L2 inner product, that is for ~ independent function f(x), g(x), we
set

⟨f(x), g(x)⟩ :=
∫

R4
d4xf †(x)g(x). (2.29)

If f(x) and g(x) are not scalar functions, we regard f †(x)g(x) as a point wise
production with contraction.

We note that our formal space (C∞(R4)∩L2(R4))[[~]] is considered only as a
formal expansion space.

3 The Index of the Dirac Operator

In this section, we investigate zero modes of the Dirac operators acting on
the formal expansion space. The index theorem for the Dirac operator in a
noncommutative ADHM instanton background was studied in [18], where it
was shown that the number of zero modes of the Dirac operator equals the
instanton number of the background instanton in the ADHM construction. In
our case, we start with a commutative instanton and deform it into a SNCD
instanton. The relation between SNCD instantons and ADHM instantons will
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be clarified by using the theorem 3 proved in this section. To construct the
ADHM data from SNCD instantons, we have to investigate the spinor zero
modes and the index. In Section 5 these results will be used to derive the
ADHM equations.

In this article, we treat the index theorem in a formal deformation setting.
The usual index is defined by the difference between the kernel and the cok-
ernel of the Dirac operator. In our context, the differential operators like the
Dirac operator act on (C∞(R4) ∩ L2(R4))[[~]] that is considered only as for-
mal expansion space. We introduce a (~-valued ) inner product in the formal
expansions, we employ the orthonormal bases as in (3.20), and then we define
the modified index as (3.27).

We consider operators acting on the weighted Sobolev spaces

W̃ k,p
δ =

{
u⃗

∣∣∣∣ ∑
j<k

||∂ju⃗||p,δ−j =: ||u⃗||k,p,δ < ∞
}
, (3.1)

where j = j1 + j2 + j3 + j4 , ∂j = ∂j1
1 ∂j2

2 ∂j3
3 ∂j4

4 , and

||u⃗||p,δ :=
∣∣∣∣ ∫

R4
{(1 + |x|2)

1
2}−δp−4|u⃗(x)|pdx

∣∣∣∣ 1
p

< ∞. (3.2)

Here |u⃗(x)| =
√

u⃗†u⃗. See [19] for the properties of weighted Sobolev spaces
used here. We do not introduce the norm from the pairing (2.25) usual to
complete spaces of ~ - expansions. We deal with the Hilbert spaces (Sobolev
spaces) as usual L2-space step by step for ~ - expansions.

Let DA⋆ : Γ(S+ ⊗ E)[[~]] → Γ(S− ⊗ E)[[~]] and D̄A⋆ : Γ(S− ⊗ E)[[~]] →
Γ(S+ ⊗ E)[[~]] be the Dirac operator defined by (2.12). By the Weitzenbock
formula,

D̄A ⋆ DA = ∆A + σ+F+ , (3.3)

DA ⋆ D̄A = ∆A + σ−F− , (3.4)

where σ+F+ = 2σ̄µνF+
µν , σ−F− = 2σµνF−

µν and ∆A = Dµ ⋆ Dµ. Assume that
A is a noncommutative anti-selfdual connection, i.e. F+ = 0. We consider the
~ expansion of ψ ∈ Γ(S+ ⊗ E)[[~]]:

ψ =
∞∑

n=0

~nψ(n). (3.5)
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Set

KerDA⋆ :=
{

ψ ∈ Γ(S+ ⊗ E) ∩ L2(S+ ⊗ E)[[~]]∣∣∣ DA ⋆ ψ = 0 ∈ Γ(S− ⊗ E)[[~]]
}

. (3.6)

As in the commutative case, we obtain the following theorem.

Theorem 1 Assume that A is a SNCD anti-selfdual connection. Then If DA⋆
ψ = 0 for ψ(n) ∈ L2, we have ψ(n) = 0 for all n, i.e. KerDA⋆ = 0.

PROOF. We show this theorem by induction. The zeroth order term DA⋆ψ =
0 is D(0)

A ψ(0) = 0, and this equation only has the solution ψ(0) = 0. We assume
that the ψ(k) = 0 (k ≤ n). The equation of order n + 1 is

0 = ~n+1

D(0)
A ψ(n+1) + σρA(n+1)

ρ ψ(0) +
∑

(p; l,m)∈I(n+1)

1

p !

(
σρA(l)

ρ (
←→
∆ )pψ(m)

) 
= ~n+1D(0)

A ψ(n+1),

so ψ(n+1) = 0. ¤

We investigate the zero modes of D̄A⋆. Set

KerD̄A⋆ :=
{

ψ̄ ∈ Γ(S− ⊗ E) ∩ L2(S− ⊗ E)[[~]]∣∣∣ D̄A ⋆ ψ̄ = 0 ∈ Γ(S+ ⊗ E)[[~]]
}

. (3.7)

By expanding ψ̄ ∈ Γ(S− ⊗ E)[[~]] as

ψ̄ =
∞∑

n=0

~nψ̄(n), (3.8)

the zeroth order equation of D̄A⋆ψ̄ = 0 is D̄(0)
A ψ̄(0) = 0, and there are k linearly

independent zero-modes for a commutative instanton A(0) whose instanton
number is −k. We define ψ̄i (i = 1, . . . , k) as

ψ̄i =
∞∑

n=0

~nψ̄
(n)
i , (3.9)

where ψ̄
(0)
i (i = 1, . . . , k) are a basis of the k independent zero modes of D̄(0)

A .
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The n-th order equation of D̄A ⋆ ψ̄ = 0 is

0 = ~n

D̄(0)
A ψ̄

(n)
i + σ̄ρA(n)

ρ ψ̄
(0)
i +

∑
(p; l,m)∈I(n)

1

p !

(
σ̄ρA(l)

ρ (
←→
∆ )pψ̄

(m)
i

) 
= ~n

{
D̄(0)

A ψ̄
(n)
i + H

(n)
i

}
, (3.10)

where H
(0)
i = 0 and

H
(n)
i = σ̄ρA(n)

ρ ψ̄
(0)
i +

∑
(p; l,m)∈I(n)

1

p !

(
σ̄ρA(l)

ρ (
←→
∆ )pψ̄

(m)
i

)
for n ∈ N. (3.11)

We can solve these equations recursively in the order in ~, so H
(n)
i is deter-

mined by Eq. (3.10). D̄(0)
A ψ̄

(n)
i in Eq. (3.10) has k zero modes. We denote

an orthonormal basis of KerD̄(0)
A by ηi (i = 1 . . . k). Note that D(0)

A H
(n)
i is

orthogonal to KerD̄(0)
A with respect to usual L2 inner product :

⟨(D(0)
A H

(n)
j ), ηi⟩ =

∫
R4

d4x(D(0)
A H

(n)
j )†ηi = −⟨H(n)

j , D̄(0)
A ηi⟩ = 0. (3.12)

Then we get

ψ̄
(n)
i =

k∑
j=1

aj
n,iηj −

1

D(0)
A D̄(0)

A

D(0)
A H

(n)
i , (3.13)

where aj
n,i are arbitrary constants. Here

1

D(0)
A D̄(0)

A

denotes integration over R4

against the Green’s function of D(0)
A D̄(0)

A . Note that the ambiguity in the aj
n,i

are occur only in the coefficients of the zero modes of the commutative Dirac
operator D̄(0)

A . aj
n,i is a constant matrix in general, because the symmetries

realized in matrix representations remain after noncommutative deformation.

We denote K(x, y) by the kernel function of (D(0)
A D̄(0)

A )−1. We recall the Weitzen-
bock formula,

D(0)
A D̄(0)

A = ∆
(0)
A + σ−F−(0).

The following is known (cf. see [19], Theorem 1.7):

K(x, y) =
C

|x − y|2
+ O(

1

|x − y|3
). (3.14)

In the following, we consider ψ̄ := (ψ̄1, . . . , ψ̄k), H := (H1, . . . , Hk) as matrices.
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Theorem 2 Assume that A is a SNCD anti-selfdual connection. Let ψ̄ =

(ψ̄i) =
∞∑

n=0

ψ(n)~n be a zero mode of D̄A⋆ as above. Then

ψ̄
(n)
i =

k∑
j=1

aj
n,iηj −

1

D(0)
A D̄(0)

A

D(0)
A H

(n)
i , (3.15)

ηj = O(|x|−3),
1

D(0)
A D̄(0)

A

D(0)
A H

(n)
i = O(|x|−5+ϵ), (3.16)

and

ψ̄i =
∞∑

n=0

(
k∑

j=1

aj
n,iηj)~n + O(|x|−5+ϵ) , ηj = O(|x|−3). (3.17)

PROOF. We prove this theorem by induction. (i) By (2.21), A(k) = O(|x|−3+ϵ),
so we obtain

H(1) = σ̄ρA(1)
ρ ψ̄(0) +

(
σ̄ρA(0)

ρ (
←→
∆ )ψ̄(0)

)
= O(|x|−6+ϵ). (3.18)

From K(x, y) = C
|x−y|2 , we have

1

D(0)
A D̄(0)

A

D(0)
A H(1) = O(|x|−5+ϵ). The detailed

derivation of this equation is similar to the proof of Proposition 1 in [1].
ηi = O(|x|−3) is a well-known fact (see for example [15,20] and Appendix B).
Using ηi = O(|x|−3) and (3.13), we obtain

ψ̄(1) = O(|x|−3). (3.19)

(ii) Assume

ψ̄
(l)
i =

k∑
j=1

aj
l,iηj + O(|x|−5+ϵ), (0 ≤ l ≤ n).

Then we obtain H(n+1) = O(|x|−6+ϵ) and
1

D(0)
A D̄(0)

A

D(0)
A H(n+1) = O(|x|−5+ϵ) .

Therefore, ψ̄
(n)
i =

∑k
j=1 aj

n,iηj + O(|x|−5+ϵ). ¤

Note that this theorem implies that each ψ̄(n) ∈ L2(S− ⊗ E).

We give a canonical choice of zero modes of D̄A⋆ by introducing a formal
orthonormalization of the zero modes of D̄A⋆. Let ψ̄0 be a zero mode of D̄A⋆.
Formal expansion of the pairing ⟨ψ̄†

0, ψ̄0⟩⋆ (defined by (2.25)) is given by
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∫
R4

d4xψ̄†
0 ⋆ ψ̄0 =

∫
R4

d4xψ̄†
0ψ̄0 =

∞∑
n=0

∑
k+l=n

∫
R4

d4xψ̄
(k)†
0 ψ̄

(l)
0 ~n

=
∞∑

n=0

[⟨ψ̄†
0, ψ̄0⟩](n)~n. (3.20)

Here we use the decay condition ψ̄0 → 0 as |x| → ∞. The inverse of the

formal power series of
∞∑

n=0

a(n)~n with a(0) ̸= 0 is defined by
∞∑

n=0

b(n)~n, where

b(0) =
1

a(0)
and b(n) = − 1

a(0)

n−1∑
i=0

a(n−i)b(i). Since ⟨ψ̄(0)†
0 , ψ̄

(0)
0 ⟩ ̸= 0, its formal

inverse is defined by

(
⟨ψ̄†

0, ψ̄0⟩⋆
)−1

:=
∞∑

n=0

~n[⟨ψ̄†
0, ψ̄0⟩−1

⋆ ](n), (3.21)

where [⟨ψ̄†
0, ψ̄0⟩−1

⋆ ](n) is determined by

[⟨ψ̄†
0, ψ̄0⟩−1

⋆ ](n) = − 1

⟨ψ̄(0)†
0 , ψ̄

(0)
0 ⟩

n−1∑
i=0

[⟨ψ̄†
0, ψ̄0⟩](n−i)[⟨ψ̄†

0, ψ̄0⟩−1](i). (3.22)

This construction allows us to construct an orthonormalization. Let the 2N×k
matrix ψ̄ be a zero mode of D̄A⋆. We set the following orthonormal condition

∫
R4

d4xψ̄† ⋆ ψ̄ = Ik×k. (3.23)

The l-th order equation in ~ for (3.23) is

∑
n+m=l

∫
R4

d4x
( k∑

j=1

η†
ja

j†
n,i −Hn†

i

)( k∑
j=1

aj
m,pηj −Hm

p

)
= δipδl0, (3.24)

where

Hn
i =

1

D(0)
A D̄(0)

A

D(0)
A H

(n)
i . (3.25)

Gram-Schmidt orthonormalization determines the constants aj
n,i recursively.

We introduce a linear space that is expanded by these formal orthonormalized
zero modes
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K̂erD̄A⋆ :=
{
ψ̄

∣∣∣∣ ψ̄ =
k∑

i=1

ciψ̄i, ψi ∈ KerD̄A⋆ , ψ̄
(0)
i = ηi,∫

R4
d4xψ̄†

i ⋆ ψ̄j = δij, ci ∈ C
}

. (3.26)

We recall the index for the D̸0
A is defined by

Ind D̸0
A := dim kerD(0)

A − dim kerD̄(0)
A

as usual. We define the modified index for the D̸A⋆ as

Înd D̸A⋆ := dim KerDA ⋆ −dimK̂erD̄A ⋆ . (3.27)

Thus we have the following theorem.

Theorem 3 If Ind D̸0
A = −k, then Înd D̸A⋆ = −k .

Note that this Înd D̸A⋆ is not index in usual sense. One reason is that the DA⋆
and the D̄A⋆ are not Fredholm operators because we consider formal power
series. Another reason is that K̂erD̄A⋆ ̸= KerD̄A⋆ (K̂erD̄A⋆ ⊂ KerD̄A⋆). For
example, if ψ̄ =

∑
n=0

~nψ̄(n) is a zero mode of D̄A⋆, then ψ̄′ =
∑
n=0

~n+kψ̄(n)

is also a zero mode for arbitrary integer k. We find that ψ̄′ ∈ KerD̄A⋆ but
ψ̄′ ̸∈ K̂erD̄A⋆. However, in our context, it is a natural extension of the index
of usual commutative space, because the dimension of the K̂er is essential
for the construction of the ADHM data and the relation with the instanton
number.

4 Green’s Function

In this section, we construct the Green’s function for ∆A. The definition of
the Green’s function is

∆A ⋆ GA(x, y) = δ⋆(x − y), (4.1)

where

∫
d4xδ⋆(x − y) ⋆ f(y) = f(x). (4.2)

Note that if f(x) is smooth,
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∫
d4xδ⋆(x − y) ⋆ f(y) =

∫
d4xδ⋆(x − y)f(y). (4.3)

Then, we do not distinguish δ⋆(x − y) and δ(x − y) in the following. (This
discussion might be too naive. To avoid any risk of error, we should define
GA(x, y) by ∆A ⋆ GA(x, y) = δ(x − y). )

We expand (4.1) in ~:

~0 : ∆
(0)
A G

(0)
A (x, y) = δ(x − y) (4.4)

~1 : ∆
(0)
A G

(1)
A (x, y) + [∆A ⋆ G

(0)
A (x, y)](1) = 0 (4.5)

...

~n : ∆
(0)
A G

(n)
A (x, y) + [∆A ⋆

∑
0≤k<n

~kG
(k)
A (x, y)](n) = 0. (4.6)

...

We solve (4.4)-(4.6) recursively as

G
(n)
A (x, y) =

∫
d4wG

(0)
A (x,w)[∆A ⋆

∑
0≤k<n

~kG
(k)
A (w, y)](n) . (4.7)

Note that G
(0)
A (x,w) was constructed in [21–23], and

G
(0)
A (x, y) = O(|x − y|−2) . (4.8)

From (2.19) and (2.21) A(l) = O(|x|−3+ϵ) we found that

[∆A

∑
0≤k<n

~kG
(k)
A (x, y)](n) = O(|x − y|−5) . (4.9)

Therefore,

G
(n)
A (x, y) = O(|x − y|−3) . (4.10)

5 From Instantons to The ADHM Equations

In this section we derive the ADHM equations from a noncommutative in-
stanton.
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We let ⋆x denote ⋆ with respect to the variable x = (x1, . . . , x4). Let ψ̄i (i =
1, . . . , k) be orthonormal zero modes of D̄A⋆ and set matrix ψ̄ = (ψ̄i) as in
Section 3. The concept of completeness in the Hilbert spaces is extended to
the one in formal expansion spaces, and we obtain the following identity for
arbitrary functions f(x), g(y).

∫
R4
d4x

∫
R4
d4y f(x) ⋆x ψ̄(x)ψ̄†(y) ⋆y g(y) (5.1)

=
∫

R4
d4x

∫
R4
d4y

{
f(x) ⋆x δ(x − y) ⋆y g(y)

−f(x) ⋆x DA ⋆x GA(x, y) ⋆y

←−̄
DA ⋆y g(y)

}
,

The proof for (5.1) is given in Appendix A. For consistency, we impose the
commutation

[xµ, yν ]⋆ =

 iθµν , (x = y),

0, (x ̸= y).
. (5.2)

In the following derivation of the ADHM equations, we use the completeness
condition and the asymptotic behavior of the zero modes of the D̄A⋆ given by
Theorem 2.

We first define T µ by

T µ :=
∫

R4
d4x

1

2

(
xµ ⋆ ψ̄† ⋆ ψ̄ + ψ̄† ⋆ ψ̄ ⋆ xµ

)
(5.3)

=
∫

R4
d4x(xµ ⋆ ψ̄† ⋆ ψ̄) =

∫
R4

d4x(ψ̄† ⋆ ψ̄ ⋆ xµ).

Here we use
∫

R4
d4x∂µ(ψ̄† ⋆ ψ̄) = 0 in the second and third equalities in (5.3),

which follows from ψ̄ = O(|x|−3) (see Theorem 2 ). Then,

T µT ν =
∫

R4
d4x

∫
R4

d4y(xµ ⋆x ψ̄†(x) ⋆x ψ̄(x))(ψ̄†(y) ⋆y ψ̄(y) ⋆y yν) (5.4)

Using (5.1) and integration by parts, (5.4) becomes
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T µT ν =
∫

R4
d4x xµ ⋆ ψ̄† ⋆ ψ̄ ⋆ xν

+
∫

S3
dSρ

x

∫
R4

d4y(xµ ⋆x ψ̄†(x)σρ) ⋆x GA(x, y) ⋆y

←−̄
DA ⋆y (ψ̄(y) ⋆y yν)

−
∫

R4
d4x

∫
R4

d4y(ψ̄†(x)σµ) ⋆x GA(x, y) ⋆y

←−̄
DA ⋆y (ψ̄(y) ⋆y yν),

where dSµ
x = |x|2xµdΩ and dΩ is the solid angle. The first term is deformed

as follows.

∫
R4

d4x xµ ⋆ ψ̄† ⋆ ψ̄ ⋆ xν

=
∫

R4
d4x

(
ψ̄† ⋆ ψ̄ ⋆ xν ⋆ xµ + [xµ, ψ̄† ⋆ ψ̄]⋆ ⋆ xν + ψ̄† ⋆ ψ̄ ⋆ [xµ, xν ]⋆

)
=

∫
R4

d4x
(
ψ̄† ⋆ ψ̄ ⋆ xν ⋆ xµ + iθµρ∂ρ(ψ̄

† ⋆ ψ̄) ⋆ xν + iθµνψ̄† ⋆ ψ̄
)

=
∫

R4
d4x ψ̄† ⋆ ψ̄ ⋆ xν ⋆ xµ. (5.5)

Here ψ̄ = O(|x|−3) is used in the third equality. By integration by parts again,
we get

T µT ν =∫
R4

d4x ψ̄† ⋆ ψ̄ ⋆ xν ⋆ xµ (5.6)

+
∫

S3
dSρ

x

∫
S3

dSτ
y (xµ ⋆x ψ̄†(x)σρ) ⋆x GA(x, y) ⋆y (σ̄τ ψ̄(y) ⋆y yν) (5.7)

−
∫

S3
dSρ

x

∫
R4

d4y(xµ ⋆x ψ̄†(x)σρ) ⋆x GA(x, y) ⋆y (σ̄νψ̄(y)) (5.8)

−
∫

R4
d4x

∫
S3

dSτ
y (ψ̄†(x)σµ) ⋆x GA(x, y) ⋆y (σ̄τ ψ̄(y) ⋆y yν) (5.9)

+
∫

R4
d4x

∫
R4

d4y(ψ̄†(x)σµ) ⋆x GA(x, y) ⋆y (σ̄νψ̄(y)). (5.10)

(5.7) and (5.9) vanish when Ry → ∞, where Ry is a radius of S3
y . (5.10)

will vanish on the selfdual projection [T µ, T ν ]+ := P µν,ρτ [Tρ, Tτ ] (see (2.16)),
because σµσ̄ν − σν σ̄µ is anti-selfdual with respect to the µ, ν. Thus only (5.6)
and (5.8) remain.

We introduce an asymptotically parallel section g−1S of S+ ⊗ E by

ψ̃ = −g−1Sx†

|x|4
+ O(|x|−4), (5.11)

where S is a constant matrix, x† := σ̄µx
µ, ψ̃ := tψ̄σ2, and t means transpos-

ing the spinor indices. (See also Appendix B.) Recall that A has asymptotic
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behavior given by (2.20), and note that Dµ ⋆ g−1 → 0 as r → ∞. Using these
facts and D̄A ⋆ ψ̄ = 0, we can prove that ψ̃ has the expression (5.11) by di-
rect calculations similar to the commutative case. Note that ψ̃ and ψ̄ have
one-to-one correspondence and Dµ ⋆ ψ̃σµ = 0 iff D̄A ⋆ ψ̄ = 0 (see Appendix B).

Let us introduce χ by

χ(x) := 4π
∫

R4
d4y GA(x, y)ψ̃(y) = 4π

∫
R4

d4y GA(x, y) ⋆y ψ̃(y). (5.12)

Lemma 4 χ is given asymptotically by

χ = −g†Sx†

|x|2
+ O(|x|−2) . (5.13)

PROOF. Consider

∆A ⋆ (|x|2ψ̃) = 8ψ̃ + 4xµ(Dµ ⋆ ψ̃) + |x|2(Dµ ⋆ Dµ ⋆ ψ̃) + O(|x|−4). (5.14)

Here

xµ(Dµ ⋆ O(|x|−4)) = O(|x|−4) , (5.15)

and

xµ(Dµ ⋆
g†Sx†

|x|4
) =−3

g†Sx†

|x|4
+ O(|x|−5). (5.16)

Using (5.15) and (5.16), we have

xµDµ ⋆ ψ̃ = −3ψ̃ + O(|x|−4). (5.17)

Note that

Dµ ⋆ Dµ ⋆ O(|x|−4) = O(|x|−6) (5.18)

and

Dµ ⋆ Dµ ⋆
g†Sx†

|x|4
= O(|x|−6). (5.19)
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Thus, we get

Dµ ⋆ Dµ ⋆ ψ̃ = O(|x|−6). (5.20)

From (5.17) and (5.20),

∆A ⋆ (|x|2ψ̃) = −4ψ̃ + O(|x|−4) (5.21)

Applying the Green’s function and using (4.8) and (4.10), we get the desired
result. ¤

Note that

D2
A ⋆ χ = −4πψ̃.

By this relation and the asymptotic behaviors of χ and ψ̄, (5.8) becomes

1

8
tr(S†Sσ̄µσν), (5.22)

where the trace tr is taken with respect to the spinor indices.

In the [T µ, T ν ]+ combination, (5.6) becomes −iθµν+ = −iP µν,ρτθρτ .

Then from (5.6)-(5.10) and the definition of [T µ, T ν ]+, we obtain the following
theorem.

Theorem 5 Let Aµ be a SNCD instanton, and ψ̄ be the zero mode of D̄A⋆
determined by Aµ as in Section 3. Let T µ, S be constant matrices defined by
(5.3) and (5.11), respectively. Then, they satisfy the ADHM equations:

[T µ, T ν ]+ =
1

2
tr(S†Sσ̄µν) − iθµν+Ik×k. (5.23)

These ADHM equations are the same as those given by Nekrasov and Schwarz
[3].

In [3], it is shown that instantons can be constructed from ADHM data sat-
isfying (5.23). The spinor zero modes of the Dirac operator in a background
of noncommutative ADHM instantons are studied, and the index of the Dirac
operator is given in [18]. The question of whether there is a one-to-one corre-
spondence between ADHM data and instantons is answered affirmatively.
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Theorem 6 There is a one-to-one correspondence between ADHM data sat-
isfying (5.23) and SNCD instantons in noncommutative R4.

The proof for this theorem is given in Appendix B.

It may be useful to note the relation between Theorem 2 and the term S in
the ADHM data. S is given as the coefficient of the O(|x|−3) term in ψ̄, and

Theorem 2 implies that the O(|x|−3) term is a zero mode of D(0)
A . For example,

when we consider k = 1, there is only one zero mode ψ̄. One might think
that the O(|x|−3) term in each ψ̄(n) is proportional to ψ̄(0), and S(n) is also
proportional to S(0), but this is not true in general, due to gauge symmetries
and global symmetries. g† can also be expanded as a power series in ~ (see
Appendix C). For example, ψ̃(1) is given by

ψ̃(1) = −{(g†)(0)S(1) + (g†)(1)S(0)}x†

|x|4
+ O(|x|−4). (5.24)

As a result of this twisting by (g†)(1), S(1) is not proportional to S(0) in general,
and so tr(S†Sσ̄µσν) is not proportional to tr(S(0)†S(0)σ̄µσν). In fact, taking
the trace of (5.23) shows that Tr{tr(S†Sσ̄µσν)} is deformed by the noncom-
mutative parameter from 0 to ikθµν+, where trace Tr is taken with respect to
the k × k matrix indices.

6 Example

In this section, we compute a simple example of a noncommutative instanton
that is deformed smoothly from a commutative one. The notation used in this
section is given in Appendix B.1.

We start from a U(2) BPST instanton in commutative R4 with the instanton
number k = −1 [24]. Its ADHM data is given by

T µ = bµ, S =

 ρ 0

0 ρ

 , ρ, bµ ∈ R. (6.1)

The ADHM data (6.1) satisfies

[T µ, T ν ]+ =
1

2
tr(S†Sσ̄µν).
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We deform the ADHM equations to the (5.23). For simplicity, we set

θ12 = −θ21 = ~, θµν = 0 ((µ, ν) ̸= (1, 2), (2, 1)) (6.2)

in this section. Then the ADHM data satisfying (5.23) deforms to

T µ = bµ, S =


√

ρ2 + ~ 0

0
√

ρ2 − ~

 . (6.3)

Note that the data (6.3) connects smoothly to (6.1) in the commutative limit,
and the noncommutative deformation of the ADHM data is not unique. By
setting yµ = xµ − bµ, the solution of ∇† ⋆ Ṽ = O is given by

Ṽ = (Ṽ1Ṽ2) =

 σ̄µy
µ

M

 , (6.4)

where Ṽi is a 4-vector and

M :=−(σ̄µy
µ)−1

⋆ ⋆


√

ρ2 + ~ 0

0
√

ρ2 − ~

 ⋆ (σ̄νyν). (6.5)

Here (σ̄µy
µ)−1

⋆ is defined by (σ̄µy
µ)−1

⋆ ⋆ (σ̄µy
µ) = I2×2. Expanding M as M =

∞∑
k=0

M (k)~k, we have

M (0) = −ρI2×2,

M (1) = M + O(|x|−2), M = − 1

2ρ|y|2
y

 1 0

0 −1

 y†, (6.6)

where y := yµσµ and y† := yµσ̄µ. We set the orthonormalization condition
V † ⋆ V = I2×2 for the solution of ∇† ⋆ V = O. This normalization is not
elementary because of the ⋆ product, even if we use the Gram-Schmidt process,
i.e.

V1 := Ṽ1 ⋆ |Ṽ1|−1
⋆ ,

V ⊥
2 := Ṽ2 − V1 ⋆ (V †

1 ⋆ Ṽ2), (6.7)

V2 := V ⊥
2 ⋆ |V ⊥

2 |−1
⋆ ,
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where |ṼI |−1
⋆ is defined by |ṼI |⋆ |ṼI |−1

⋆ = 1. The explicit expressions for V1 and
V2 are given by

V1 =
1√

|y|2 + ρ2



z2

−z̄1

−ρ

0


+

~
2ρ|y|2

√
|y|2 + ρ2



0

0

|z2|2 − |z1|2

2z̄1z2


+O(~2) + O(|x|−2), (6.8)

V2 =
1√

|y|2 + ρ2



z1

z̄2

0

−ρ


+

~
2ρ|y|2

√
|y|2 + ρ2



0

0

2z̄2z̄1

|z1|2 − |z2|2


+O(~2) + O(|x|−2), (6.9)

where z1 = y2 + iy1 and z2 = y4 + iy3. Finally, we obtain

V = (V1V2) =
1√

|y|2 + ρ2

 y†

M (0) + ~M (1)

 + O(~2) + O(|x|−2). (6.10)

For this V , the SNCD instanton is given by

Aµ = V † ⋆ ∂µV

= A(0)
µ +

~√
|y|2 + ρ2

−ρ 0

0 ρ

 ∂µ

{
1

2ρ|y|2
√
|y|2 + ρ2

 |z2|2 − |z1|2 2z̄2z1

2z̄1z2 |z1|2 − |z2|2

 }

+
~

2ρ|y|2
√
|y|2 + ρ2

 |z2|2 − |z1|2 2z̄2z1

2z̄1z2 |z1|2 − |z2|2


−ρ 0

0 ρ

 ∂µ
1√

|y|2 + ρ2

+O(~2) + O(|x|−4), (6.11)

where A(0)
µ is a commutative instanton from [24]:

A(0)
µ =

yµI2×2 + σµy
†

|y|2 + ρ2
. (6.12)
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A(1)
µ , the term in proportional to ~ in (6.11), is O(|x|−3), and this fact is

consistent with (2.21) (see also [1]). As we show in Appendix B.2, the zero
mode of D̄A⋆ is given as ψ̃ = 1

π
(V †C) ⋆ f , where C and f are defined in

Appendix B.1. Substituting our ADHM data (6.3) and (6.10), we get

ψ̃ = ψ̃(0) + ~ψ̃(1) + O(~2) + O(|x|−4)

= ψ̃(0) +
~

π(|y|2 + ρ2)
3
2

M (1) + O(~2) + O(|x|−4)

= ψ̃(0) +
~

π|y|3
M + O(~2) + O(|x|−4), (6.13)

where ψ̃(0) is a zero mode of D̄(0)
A :

ψ̃(0) =
−ρ

(|y|2 + ρ2)
3
2

I2×2. (6.14)

By Theorem 2, the O(|x|−3) term in the (6.13) should satisfy D(0)
µ ψ̃(1)σµ = 0,

as in this example,

(∂µ + A(0)
µ )

(
1

|y|3
M

)
σµ = 0. (6.15)

This equation is easily verified by direct calculation.

7 Conclusion

Noncommutative deformations of zero modes for the Dirac operator with
SNCD instanton backgrounds, the Green’s function for SNCD instantons, and
the ADHM equations are investigated. From Theorem 1, Theorem 2 and the
solutions (3.13), we find that there are no new zero modes of DA⋆ and D̄A⋆,
so the (modified) index of the Dirac operator is unchanged under noncom-
mutative deformation. The asymptotic behavior of the zero mode of D̄A⋆ is
computed. In particular, the O(|x|−3) terms in the zero modes of D̄A⋆ are ob-
tained from the zero modes of the Dirac operator in commutative space. This
result implies that the term S in the ADHM data is constructed from a linear
combination of the corresponding S in the ADHM data of commutative R4.
The Green’s function with a background SNCD instanton is also constructed
recursively. Using these zero modes and the Green’s function, we derive the
noncommutative ADHM equations and prove a one-to-one correspondence be-
tween the ADHM data and SNCD instantons. One simple example is studied
as confirmation of our results: we deform k = −1 BPST instanton into the
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SNCD instanton via the ADHM method. Consistency checks are verified by
comparing the term proportional to ~ in the SNCD instanton and the zero
mode of the D̄A⋆.

Our method is based on the ~ expansion, which means that noncommutative
instantons whose commutative limits are singular, such as U(1) instantons,
are not considered in this article. The relation between the ADHM equations
and a noncommutative instanton with a singular commutative limit remains
to be investigated in a future work.
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A Derivation of (5.1)

In this section, we derive (5.1). The identity for commutative space is proved
by [25,26]. We extend the identity to our formal expansion space. Let us
introduce a ~-valued spinor propagator P (x, y) =

∑∞
i=0 P (i)(x, y)~i in a k-

instanton background by

γµDµ ⋆ P (x, y) = δ(x − y) −
k∑

n=1

Ψn(x)Ψ†
n(y), (A.1)

where we use γ-matrices

γµ =

 0 σ̄µ

σµ 0

 (A.2)

and zero modes Ψn(x) of the Dirac operator γµDµ. We expand (A.1) in ~:
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γµD(0)
µ P (0)(x, y) = δ(x − y) −

k∑
i=1

Ψ
(0)
i (x)Ψ

†(0)
i (y), (A.3)

γµD(0)
µ P (1)(x, y) = R(1)(x, y),

...

γµD(0)
µ P (n)(x, y) = R(n)(x, y), (A.4)

...

where

R(n)(x, y) :=−γµA(n)
µ P (0)(x, y) −

∑
(l ;k,m)∈I(n)

γµA(k)
µ (

←→
∆ )lP (m)(x, y)

−
k∑

i=1

n∑
j=1

Ψ
(j)
i (x)Ψ

†(n−j)
i (y). (A.5)

In the [26], the existence of P (0)(x, y) satisfying (A.3) is shown. We can solve
recursively (A.4) for P (n)(x, y)(n = 1, 2, 3, . . . ) by separating P (n)(x, y) into
two parts by chirality and using the similar way of Section 3. Then we find
that there exist P (x, y) =

∑∞
i=0 P (i)(x, y)~i such that (A.1).

Next, we derive (5.1). Similar to [25], we take the form

P (x, y) =

 0 s(x, y)

s̄(x, y) 0

 , (A.6)

then s(x, y) and s̄(x, y) satisfy

D̄A ⋆ s̄(x, y) = δ(x − y), (A.7)

DA ⋆x s(x, y) = δ(x − y) −
k∑

i=1

ψ̄i(x)ψ̄†
i (y). (A.8)

Here ψ̄i(x) is a zero mode of D̄A⋆ given in Section 3. s̄(x, y) is obtained as

s̄(x, y) = DA ⋆x GA(x, y). (A.9)

By multiplying P †(z, x) from left side of (A.1), we obtain

−s̄(z, y) +
∫

R4
d4x

k∑
i=1

ψ̄i(z)ψ̄†
i (x) ⋆x s̄(x, y) = s†(z, y). (A.10)
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Because of (A.9),

∫
R4

d4x
k∑

i=1

ψ̄i(z)ψ̄†
i (x) ⋆x s̄(x, y) =−

∫
R4

d4x
k∑

i=1

ψ̄i(z)(D̄A ⋆x ψ̄i(x))†) ⋆x GA(x, y)

= 0.

Then the following relation is obtained:

s(x, y) = −s̄†(x, y). (A.11)

From (A.8), (A.9) and (A.11), we obtain (5.1):

⋆xψ̄(x)ψ̄†(y)⋆y = ⋆xδ(x − y) ⋆y − ⋆x DA ⋆x GA(x, y) ⋆y

←−̄
DA ⋆y .

B A One-to-One Correspondence between Instanton and ADHM
Data

In this Appendix, we prove a one-to-one correspondence between ADHM data
and SNCD instanton solutions. It is shown that instantons can be constructed
from ADHM data satisfying (5.23) in [3]. The spinor zero modes of the Dirac
operator in a background of noncommutative ADHM instantons are studied,
and the index of the Dirac operator is given in [18]. In this paper, we show
that the index of the Dirac operator does not depend on noncommutative pa-
rameters and the ADHM equations are constructed from SNCD instantons in
this article. The proof to show the one-to-one correspondence between ADHM
data and SNCD instantons is completed if we show the completeness and the
uniqueness. We will prove the completeness and the uniqueness in subsection
B.2 and B.3, respectively. In commutative R4, there is the same one-to-one
correspondence (see for example [25,27,20,28]. ). Many parts of the proofs for
the completeness and the uniqueness are parallel to the commutative cases.

We use the asymptotic behavior of the SNCD instanton (2.21) and the spinor
zero modes (3.17) and other results derived from the decay conditions as
needed throughout.
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B.1 Notation for The ADHM Construction

In this subsection, we set the notation for the ADHM construction. (N +2k)×
2k matrices C and ∇ are defined by

C :=

 ON×2k

I2k×2k

 , ∇ :=

 S

σµ(xµ − T µ)

 .

From this definition, we have

∂µ∇ = σµC. (B.1)

If T µ and S satisfy the ADHM equations (5.23), we have the following:

∇† ⋆ ∇ = S†S + σ̄µσν(xµ − T µ) ⋆ (xν − T ν) =

 ¤ Ok×k

Ok×k ¤

 , (B.2)

where

¤ :=
1

2
tr(D†D) + 2Tµx

µ + |x|2,

D =

−S

T

 . (B.3)

Here T = T µσµ.

Let us introduce the (N + 2k) × N matrix V satisfying

∇† ⋆ V = O, (B.4)

V † ⋆ V = IN×N , (B.5)

V ⋆ V † = I(N+2k)×(N+2k) −∇ ⋆ f ⋆ ∇†. (B.6)

Here

f := ¤−1
⋆ , (B.7)

and we define g−1
⋆ , the inverse of g, by g ⋆ g−1

⋆ = 1.

We obtain a noncommutative instanton solution as
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Aµ = V † ⋆ ∂µV. (B.8)

B.2 Completeness: ADHM ⇒ Instanton ⇒ ADHM

In this subsection, we start with ADHM data satisfying the ADHM equations
(5.23) is given.

We can obtain an instanton from this ADHM data as in [3]. We show that we
can reproduce the ADHM data from the instanton.

In this subsection, ∇ is associated to the given ADHM data.

Let us introduce ψ̃ by

ψ̃ = tψ̄σ2,

where the transpose t is with respect to spinor indices. Using σ2σµσ2 = −tσ̄µ,
we find that

D̄A ⋆ ψ̄ = 0 ⇔ Dµ ⋆ ψ̃σµ = 0. (B.9)

Therefore, to show D̄A ⋆ ψ̄ = 0, it suffices to prove Dµ ⋆ ψ̃σµ = 0.

Lemma 7 Set ψ̃

ψ̃ = tψ̄σ2 =
1

π
V † ⋆ (Cf), (B.10)

where V and f are defined in the previous subsection B.1 with respect to the
given ADHM data. Then ψ̃ satisfies

Dµ ⋆ ψ̃σµ = 0. (B.11)

PROOF.

πDµ ⋆ ψ̃σµ = Dµ ⋆ (V † ⋆ (Cf))σµ

= (∂µV
† + (V † ⋆ ∂µV ) ⋆ V †) ⋆ (Cσµf) + V † ⋆ Cσµ ⋆ ∂µf (B.12)

= ∂µV
† ⋆ (1 − V ⋆ V †) ⋆ (Cσµf) − V † ⋆ (Cσµf) ⋆ ∂µ(∇† ⋆ ∇) ⋆ f,

where we use I = f ⋆ (∇† ⋆∇) . Using 1−V ⋆V † = ∇⋆f ⋆∇†, (B.12) becomes

∂µV
† ⋆ (∇ ⋆ f ⋆ ∇†) ⋆ (Cσµf) − V † ⋆ (Cσµf) ⋆ ∂µ(∇† ⋆ ∇) ⋆ f.
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Differentiating of V † ⋆ ∇ = 0, we get (∂µV
†) ⋆ ∇ = −V †∂µ∇ = −V †σµC.

Therefore,

πDµψ̃σµ = (B.13)

−V † ⋆
{
(Cσµf ⋆ ∇†) ⋆ (Cσµf) + 4(Cf) ⋆ C†∇ ⋆ f − 2(Cf) ⋆ C†∇ ⋆ f

}
.

Since ∇†C = σ̄ν(x
ν − T ν) and σµσ̄νσ

µ = −2σν , the first term in (B.13) equals

−V † ⋆ (Cσµf ⋆ ∇†) ⋆ (Cσµf) =−V † ⋆ Cσµf ⋆ σ̄ν(x
ν − T ν)σµ ⋆ f

= 2V † ⋆ Cf ⋆ C†∇ ⋆ f. (B.14)

Then we obtain

πDµ ⋆ ψ̃σµ = 0.

¤

Next, we show the following lemma.

Lemma 8 Let ψ̄ be the zero mode of D̄A⋆ defined by (B.10). Then,

ψ̄† ⋆ ψ̄ = − 1

4π2
∂2f. (B.15)

PROOF.

ψ̄† ⋆ ψ̄ = tr(tψ̄† ⋆ tψ̄)

=
1

π2
tr((fC†) ⋆ V ⋆ V † ⋆ (Cf))

=
1

π2
tr((fC†) ⋆ (1N+2k −∇ ⋆ f ⋆ ∇†) ⋆ (Cf)), (B.16)

where tr denote the trace with respect to spinor indices. By definition,

(fC†) ⋆ (∇ ⋆ f ⋆ ∇†) ⋆ (Cf) = f ⋆ ((xµ − T µ)σµ) ⋆ f ⋆ (σ̄ν(x
ν − T ν)) ⋆ f.

(B.17)

Differentiating 1 = f ⋆ ¤, where ¤ is given by (B.3), we get

f ⋆ (σ̄ν(x
ν − T ν)) ⋆ f = −1

2
∂νfσ̄ν . (B.18)
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Using (B.18), (B.17) can be rewritten as

(fC†) ⋆ (∇ ⋆ f ⋆ ∇†) ⋆ (Cf) = −1

2
f ⋆ ((xµ − T µ)σµ) ⋆ (∂νfσ̄ν). (B.19)

Since (fC†) ⋆ (Cf) = f ⋆ f , tr σµσ̄ν = tr δµν , and by (B.19), (B.16) equals

1

π2
tr(f ⋆ f +

1

2
f ⋆ (xµ − T µ) ⋆ ∂µf). (B.20)

From ∂2(¤ ⋆ f) = ∂21 = 0 , we obtain the following identity:

f ⋆ f +
1

2
f ⋆ (xµ − T µ) ⋆ ∂µf = −1

8
∂2f. (B.21)

Using this identity in (B.20), we obtain

ψ̄† ⋆ ψ̄ =
−1

π2
tr(

1

8
∂2f) = − 1

4π2
∂2f. (B.22)

¤

For the next step, we show orthonormality.

Lemma 9 If ψ̄ is a D̄A⋆ zero mode given above, we have the orthonormal
condition

∫
d4x ψ̄†ψ̄ = 1. (B.23)

PROOF. Define |x|−2
⋆ by |x|2 ⋆ |x|−2

⋆ = 1. Explicitly, we have

|x|−2
⋆ =

1

|x|2
+ ~2 1

2
θµν
0 θ0µ

τ 1

|x|6
(−δντ + 4

xνxτ

|x|2
) + · · · + ~nO(

1

|x|2n+2
) + · · ·

=
1

|x|2
+ O(|x|−6). (B.24)

Then,

f = ¤−1
⋆ = |x|−2

⋆ ⋆ (1 +
1

2
tr(D†D)|x|−2

⋆ − 2Tµx
µ ⋆ |x|−2

⋆ )−1
⋆ . (B.25)
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By (B.22), (B.24) and (B.25),

ψ̄†ψ̄ = δ4(x) + ∂2O(|x|−3), (B.26)

and therefore we obtain
∫

d4x ψ̄†ψ̄ = 1. ¤

Now we can show the completeness; that is to say, we can show that the
original ADHM data can be reproduced from the noncommutative ADHM
instanton by the definition (5.3) and (5.11).

Theorem 10 Let T and S be ADHM data and let A be a noncommutative
instanton constructed from the ADHM data. Let ψ̄ be the spinor zero mode of
D̄A given above. Define T ′ and S ′ by

T ′µ =
∫

d4x xµ ⋆ ψ̄† ⋆ ψ̄,

ψ̃ =−g−1S ′x†

|x|4
+ O(|x|−4). (B.27)

Then

T = T ′ and S = S ′.

PROOF.

T ′µ =
∫

d4x xµ ⋆ ψ̄† ⋆ ψ̄

=− 1

4π2

∫
d4x xµ ⋆ ∂2f

=− 1

4π2

∫
dS3ν (xµ∂ν − δµ

ν ) ⋆ f

=− 1

4π2

∫
dS3ν (xµ∂ν − δµ

ν ) ⋆ |x|−2
⋆ ⋆ (1 +

1

2
tr(D†D)|x|−2

⋆ − 2Tρx
ρ ⋆ |x|−2

⋆ )−1
⋆

=− 1

4π2

∫
dS3ν (xµ∂ν − δµ

ν )
1

|x|4
(−2Tρx

ρ)

= T µ. (B.28)

The proof for S = S ′ is given by a direct calculation similar to the commutative
case. ¤
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B.3 Uniqueness : Instanton ⇒ ADHM ⇒ Instanton

In this subsection, we start with a some noncommutative instanton A. Let
Dµ be the covariant derivative associated with the given noncommutative
instanton connection Aµ. We introduce ξ̃, χ̃ by

Dµ ⋆ Dµ ⋆ ξ̃ = 0, Dµ ⋆ Dµ ⋆ χ̃ = −4πψ̃ (B.29)

with the boundary conditions as |x| → ∞:

ξ̃ → g†, χ̃ → −g†Sx†

|x|2
. (B.30)

Lemma 11 Let V be

V =

 ξ̃†

χ̃†

 . (B.31)

Then

∇† ⋆ V = 0, V † ⋆ V = IN×N . (B.32)

PROOF. The identity Dµ ⋆ Dµ ⋆ ξ̃ = 0 implies that Dµ ⋆ ξ̃ can be written as
a linear combination of ψ̃σµ:

Dµ ⋆ ξ̃ = ψ̃σµL, (B.33)

where L is a 2k × N matrix. By orthonormality,

4L =
∫

d4x σ̄µψ̃
† ⋆ Dµ ⋆ ξ̃

=
∫

dS3µ σ̄µψ̃
† ⋆ ξ̃

=
∫

dΩ |x|2xµσ̄µ

(−xS†g

π|x|4
⋆ g†

)
= −4πS†, (B.34)

which implies

Dµ ⋆ ξ̃ = −πψ̃σµS
†. (B.35)
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A similar computation gives

Dµ ⋆ χ̃ = πψ̃σµT
† − πψ̃σµ ⋆ x†. (B.36)

From (B.35) and (B.36), we have

Dµ ⋆ V † = −πψ̃ ⋆ σµ∇†. (B.37)

We show that V † ⋆ ∇ = 0. Note that

Dµ ⋆ (V † ⋆ ∇) = (Dµ ⋆ V †) ⋆ ∇ + V † ⋆ ∂µ∇
=−πψ̃ ⋆ (σµ∇†) ⋆ ∇ + V †Cσµ, (B.38)

where we use (B.37). Then

Dµ ⋆ Dµ(V † ⋆ ∇) =−πψ̃ ⋆ σµ((∂µ∇†) ⋆ ∇ + ∇† ⋆ ∂µ∇) + (Dµ ⋆ V †)Cσµ

=−πψ̃ ⋆ σµ(C†σµ∇ + ∇†σµC + ∇†Cσµ) = 0 (B.39)

As we saw in Section 4, the Green’s function of Dµ⋆Dµ = ∆A exists. Therefore,
we obtain (V † ⋆ ∇) = 0.

We now verify that V † ⋆ V = IN×N . V † ⋆ V is a covariant constant, as

Dµ ⋆ (V † ⋆ V ) = (Dµ ⋆ V †) ⋆ V + V † ⋆ (Dµ ⋆ V †)†

=−π(ψ̃ ⋆ σµ∇† ⋆ V + V † ⋆ ∇σ̄µ ⋆ ψ̃†) = 0, (B.40)

By its asymptotic behavior, V † ⋆ V → g−1 ⋆ g = IN×N , shows that V † ⋆ V =
IN×N . ¤

Finally, we show the uniqueness of the noncommutative ADHM instanton.

Theorem 12 Let A′
µ be a noncommutative ADHM instanton constructed from

V , i.e. A′
µ = V † ⋆ ∂µV , where V is defined in (B.31). Then, A′ is equal to A:

A′
µ = Aµ. (B.41)

PROOF.
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A′
µ = V † ⋆ ∂µV

= V † ⋆ (∂µV − V ⋆ Aµ) + V † ⋆ V ⋆ Aµ

= V † ⋆ (Dµ ⋆ V †)† + Aµ

=−πV † ⋆ ∇ ⋆ σ̄µψ̃
† + Aµ = Aµ. (B.42)

¤

C Gauge Group Elements

In this Appendix, we study the conditions forced by the choice of the U(N)

gauge group. If g ∈ G then g† ⋆ g = IN×N . By expanding g as g =
∞∑
i=0

g(i)~i,

each term in the equation g† ⋆ g = IN×N is given by

~0 : (g†)(0)g(0) = IN×N (C.1)

~1 : (g†)(1)g(0) + (g†)(0)g(1) +
i

2
θµν∂µ(g†)(0)∂νg

(0) = 0 (C.2)

...

~n : (g†)(n)g(0) + (g†)(0)g(n) +
∑

(p;m,l)∈I(n)

1

p !

(
(g†)(m)(

←→
∆ )pg(l)

)
= 0 (C.3)

...

(C.1) show that g(0) is an element of the U(N) gauge group in commutative
space. Let us introduce a N ×N Hermitian matrix ϕ(x) by g(0) = exp iϵϕ with
infinitesimal gauge parameter ϵ. By expanding g(1) as

g(1) =
∞∑

k=0

ϵkg
(1)
k =

∞∑
k=0

ϵk(H
(1)
k + A

(1)
k ), (C.4)

where H
(1)
k and A

(1)
k are Hermitian part and anti-Hermitian part of g

(1)
k , re-

spectively, (C.2) becomes
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ϵ0 : H
(1)
0 = 0 (C.5)

ϵ1 : H
(1)
1 =

i

2
{A(1)

0 , ϕ} (C.6)

ϵ2 : H
(1)
2 =

−1

2

{
i{A(1)

0 , ϕ2} + i[H
(1)
1 , ϕ] − i{A(1)

1 , ϕ} +
i

2
θµν∂µϕ∂νϕ

}
(C.7)

ϵ3 : H
(1)
3 =

−1

2

{
i{A(1)

0 , ϕ3} − {H(1)
1 , ϕ2} + [A

(1)
1 , ϕ2] + i[H

(1)
2 , ϕ] − i{A(1)

2 , ϕ}
}

... .

These conditions show that we can chose A
(1)
k freely, and the choice of A

(1)
k de-

termines H
(1)
k . For example, it is possible to choose g(1) as a non-zero constant

matrix in the limit as |x| → ∞. Therefore we can not ignore the asymptotic
effect of g(1) in the estimation of the ADHM data as mentioned in Section 5.
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