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ON THE TOPOLOGICAL DERIVATIVE DUE TO KINK
OF A CRACK WITH NON-PENETRATION

A.M. KHLUDNEV∗, V.A. KOVTUNENKO†, AND A. TANI¦

Abstract. We define a topological derivative caused by kinking
of a crack, thus, representing the topology change. Using vari-
ational methods, the objective function of the potential energy
is expanded with respect to an incipient crack branch. For the
sensitivity analysis we provide a Saint-Venant principle, and we
decompose the solution of a model problem in the Fourier series.

Introduction

The problem of kinking and determining of the direction in which
a crack will propagate is the subject for discussion in the literature
on fracture mechanics, see [2], [4], [8], [24], [26]. There is no explicit
formulas of the kink angle even in the simple, linear setting of crack
problems. We investigate a non-linear model problem for the crack
subject to non-penetration conditions [13]. To emphasize the main
difficulties arising here, in the paper we rely on a model scalar-valued
problem and on a piecewise-linear path of the crack. We are aimed to
derive an expansion of the objective function of the potential energy
with respect to an incipient crack branch.

Our task lies within the general framework of structure optimiza-
tion. To account the common approaches adopted in shape and topol-
ogy optimization, we refer to [1], [7], [11], [19], [25]. In spite of the
known techniques, singular character of solutions dealing with cracked
geometries requires always separate investigation. In the crack context,
variational methods of the shape sensitivity analysis were developed in
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2 A.M. KHLUDNEV∗, V.A. KOVTUNENKO†, AND A. TANI¦

[13], [16], [17], [20], [21], [22], and other works by the authors. For the
appropriate numerical methods, see [12], [28].

Utilizing the optimization approach due to [6], evolution of a crack
with kink and non-penetration is described recently in [14]. The evo-
lution process implies that it is global in time. Nevertheless, local
characteristics at the time, when a kink occurs, are of especial interest.
Indeed, the kinking phenomenon implies arrest of the tangential move-
ment along the pre-kinked crack and appearance of a different branch
at the point of kink. In this sense, it is close to the phenomena of crack
splitting into few branches as well as appearance of a crack-like defect
in a continuum. ¿From a geometric viewpoint, these features present
the change of topology.

Treating changes of topology is the key difficulty in the structure
analysis and optimization. The generic change of topology due to cre-
ating infinitesimal holes in a continuum was introduced successfully in
the works [9], [27]. The mathematical formalism exploits a respective
topological derivative of the objective function when the hole dimin-
ishes. The topological sensitivity based approach was tested numeri-
cally for the problem of crack identifiability in [3]. However, the disad-
vantage concerns the fact that the topological derivative was defined for
a-priori smooth geometries only. Pre-described cracks are not the case.
By these reasons, in the paper we adapt the notation of the topological
derivative specifically for the phenomenon of kink.

Denoting by r and φ the length of a branch and its angle with the
pre-kinked path of a crack, respectively, we will consider the objective
function (of the potential energy) r 7→ Π(r, φ) : (0, R) 7→ R for arbi-
trary fixed φ ∈ (−π, π). Under suitable regularity assumptions, it can
be decomposed as

(A) Π(r, φ) = Π(0) +

r∫

0

Π′(t, φ) dt,

where Π(0) := Π(0, φ) does not depend on φ, and the shape derivatives

(B) Π′(r, φ) := lim
s→0

{1

s

(
Π(r + s, φ)− Π(r, φ)

)}

are well defined for r > 0 by the smooth velocity arguments of [14].
Restating a Saint-Venant principle (see [5], [18]) for the constrained
crack problem, we obtain the uniform estimate

(C)

r∫

0

Π′(t, φ) dt = O(r).
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TOPOLOGICAL DERIVATIVE DUE TO KINK OF A CRACK 3

In the general case, (C) admits bounded oscillations when r → 0. For
particular cases it can be specified in more details. If an expansion
holds

(D)

r∫

0

Π′(t, φ) dt = rΠ′(0, φ) + o(r),

then we can define a topological derivative (for φ 6= 0) as the first
asymptotic term in (D). Obviously, from (A) and (D) it follows that

(E) Π′(0, φ) = lim
r→0

{1

r

(
Π(r, φ)− Π(0, φ)

)}
.

Note that according to (B) and (E), generally speaking,

Π′(0, φ) 6= lim
r→0

Π′(r, φ)

in view of interchanging the limits. Using a Fourier series arguments
of [10], [15], [23], for the linearized crack problem we will specify these
expressions in the terms of stress intensity factors, which are of the
first importance for engineers.

1. Formulation of the model problem with crack

Let Ω be a bounded domain in R2 with Lipschitz boundary ∂Ω and
normal vector q at ∂Ω. We assume that the origin O of a Cartesian
coordinate system x = (x1, x2) ∈ R2 is located strictly inside Ω. De-
noting with Bδ a ball of radius δ > 0 centered at O, this assumes that
R > 0 exists such that BR ⊂ Ω.

Ω

- x1

6x2

Γ0

¡
¡ γ(r,φ)

¡
¡

¡
r

@@Iφr
−l

A r
0

O

r
6

ν

-τ

­
­Áq

Figure 1. Example configuration of the kinked crack Γ(r,φ).

We consider the reference crack Γ0 as a segment AO of length l > 0
posed in Ω along the x1-axis. Its right end-point lying at the origin O
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4 A.M. KHLUDNEV∗, V.A. KOVTUNENKO†, AND A. TANI¦

will be associated with the point of kink. We specify shape parameters
r ∈ [0, R] and φ ∈ (−π, π) such that kinked cracks Γ(r,φ) will be formed
by two parts: fixed one Γ0 and varying branches γ(r,φ). The branch
γ(r,φ) is assumed to be a rectilinear segment of the length r starting
from O with the kink of angle φ counter-clockwisely from the x1-axis.
An example configuration is illustrated in Figure 1. The tangential
vector τ and the normal vector ν at Γ(r,φ) are:

{
τ(0) = (1, 0), ν(0) = (0, 1) on Γ0,
τ(φ) = (cos φ, sin φ), ν(φ) = (− sin φ, cos φ) on γ(r,φ).

With Ω(r,φ) we denote Ω \ Γ(r,φ). For the further use we fix the radius
0 < R < l of the ball BR inscribed in Ω, thus the left end-point A is
located outside of BR.

Starting modeling we fix r and φ. To model a solid which occupies
the domain with crack Ω(r,φ), we rely on the scalar-valued setting of
the problem.

Let ∂Ω consist of two parts ΓN and ΓD such that meas (ΓD) > 0.
The volume force f ∈ C1(Ω) and the boundary traction g ∈ L2(ΓN)
are given. For x ∈ Ω(r,φ), unknown displacements u(x) are assumed to
be zero at ΓD. Along the crack, they are restricted by non-penetration
conditions due to possible contact between the opposite crack faces:

(1) [[u]] := u|Γ+
(r,φ)

− u|Γ−
(r,φ)

≥ 0 on Γ(r,φ).

The positive Γ+
(r,φ) and the negative Γ−(r,φ) faces can be distinguished

geometrically as the limit of points x going to Γ(r,φ) ”from above” and
”from below”, respectively.

The potential energy of a solid is represented by the domain-dependent
functional

(2) Π(u; Ω(r,φ)) =
1

2

∫

Ω(r,φ)

|∇u|2 dx−
∫

Ω(r,φ)

fu dx−
∫

ΓN

gu dx

defined over the Sobolev space

(3) H(Ω(r,φ)) = {u ∈ H1(Ω(r,φ)) : u = 0 on ΓD}.
It is equipped with the norm

(4) ‖u‖2
H(Ω(r,φ))

=

∫

Ω(r,φ)

|∇u|2 dx,

which is equivalent to the standard H1-norm due to the Dirichlet
boundary condition at ΓD. The non-penetration condition (1) accounts
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TOPOLOGICAL DERIVATIVE DUE TO KINK OF A CRACK 5

for the set of admissible displacements

(5) K(Ω(r,φ)) = {u ∈ H(Ω(r,φ)) : [[u]] ≥ 0 on Γ(r,φ)},
which is a convex cone in H(Ω(r,φ)).

The equilibrium of a solid with crack is described by the following
constrained minimization problem: Find u(r,φ) ∈ K(Ω(r,φ)) such that

(6) Π(u(r,φ); Ω(r,φ)) ≤ Π(v; Ω(r,φ)) for all v ∈ K(Ω(r,φ)).

Optimality conditions for (6) are expressed by the variational inequality
∫

Ω(r,φ)

∇u(r,φ) · ∇(v − u(r,φ)) dx ≥
∫

Ω(r,φ)

f(v − u(r,φ)) dx

+

∫

ΓN

g(v − u(r,φ)) dx for all v ∈ K(Ω(r,φ)).

(7)

By the Lax–Milgram theorem, there exists the unique solution to prob-
lem (6), equivalently, (7). Variational inequality (7) describes a weak
solution to the boundary-value problem:

(8a) −∆u(r,φ) = f in Ω(r,φ),

(8b) u(r,φ) = 0 on ΓD,
∂u(r,φ)

∂q
= g on ΓN ,

[[∂u(r,φ)

∂ν

]]
= 0,

∂u(r,φ)

∂ν
≤ 0,

[[u(r,φ)]] ≥ 0,
∂u(r,φ)

∂ν
[[u(r,φ)]] = 0 on Γ(r,φ).

(8c)

To give an exact sense to the boundary terms in (8c), we introduce

a Lions–Magenes space H
1/2
00 (Γ(r,φ)) which is equipped with the norm:

‖u‖2

H
1/2
00 (Γ(r,φ))

= ‖u‖2
H1/2(Γ(r,φ))

+

∫

Γ(r,φ)

u2(x(s))

dist (x(s), ∂Γ(r,φ))
dx(s),

‖u‖2
H1/2(Γ(r,φ))

=

∫

Γ(r,φ)

u2(x(s)) dx(s) +

∫

Γ(r,φ)

∫

Γ(r,φ)

|u(x(t))− u(x(s))|2
|x(t)− x(s)|2 dx(s) dx(t)

(9)

for parameters s, t ∈ (−l, r) of the length along the crack Γ(r,φ). The
function dist (x(s), ∂Γ(r,φ)) of distance from x(s) to the crack end-points
∂Γ(r,φ) has the order l + s as s → −l, and r − s as s → r. With
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6 A.M. KHLUDNEV∗, V.A. KOVTUNENKO†, AND A. TANI¦

H
1/2
00 (Γ(r,φ))

? we denote the formally dual space to H
1/2
00 (Γ(r,φ)). Then

the following proposition holds, see [13] for its detailed proof.

Proposition 1. The solution of (7) possesses the properties:

u(r,φ) ∈ K(Ω(r,φ)), ∆u(r,φ) ∈ L2(Ω(r,φ)),

[[u(r,φ)]] ∈ H
1/2
00 (Γ(r,φ)),

∂u(r,φ)

∂ν
∈ H

1/2
00 (Γ(r,φ))

?,
(10)

and the solution is H2-smooth up to Γ±(r,φ) apart from the kink and end

points of the crack.

In what follows we keep the kink angle φ fixed and pass the branch
length r to zero. For r = 0, data of the crack problem do not depend
on φ, so we exclude φ from notation for simplicity:

Γ(0,φ) = Γ0, Ω(0,φ) = Ω0, u(0,φ) = u0.

The reference solution u0 ∈ K(Ω0) minimizes

(11) Π(u0; Ω0) ≤ Π(v; Ω0) for all v ∈ K(Ω0),

or, equivalently, satisfies the variational inequality∫

Ω0

∇u0 · ∇(v − u0) dx ≥
∫

Ω0

f(v − u0) dx

+

∫

ΓN

g(v − u0) dx for all v ∈ K(Ω0).

(12)

It describes a weak solution to the respective boundary-value problem:

(13a) −∆u0 = f in Ω0,

(13b) u0 = 0 on ΓD,
∂u0

∂q
= g on ΓN ,

[[∂u0

∂ν

]]
= 0,

∂u0

∂ν
≤ 0, [[u0]] ≥ 0,

∂u0

∂ν
[[u0]] = 0 on Γ0.(13c)

Firstly, we find the shape derivative at finite r > 0 defined as

(14) Π′(r, φ) = lim
s→0

Π(u(r+s,φ); Ω(r+s,φ))− Π(u(r,φ); Ω(r,φ))

s
.

With the help of (14), second we restate the topological derivative as
the following limit at r = 0 (if it exists)

(15) Π′(0, φ) = lim
r→0

(1

r

r∫

0

Π′(t, φ) dt
)
.
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TOPOLOGICAL DERIVATIVE DUE TO KINK OF A CRACK 7

It expresses the derivative of energy at the kink point in the direction
of τ(φ).

2. Derivative of the energy functional at r > 0

For fixed r ∈ (0, R) we can apply the regular perturbation arguments.
For this reason, we construct a time-independent velocity

(16) V (x) = xη(x) ∈ W 1,∞(R2)2, V = 0 on ∂Ω,

where x 7→ η : R2 → [0, 1] is a suitable cut-off function supported in Ω
such that η ≡ 1 in a ball Bδ of radius δ ∈ (r, R) and η ≡ 0 outside BR.
The usual solvability arguments provide existence of a unique solution

(17) Φ(t, x) ∈ C1([−T, T ]; W 1,∞(Ω))2, T > 0,

of the Cauchy problem for a nonlinear ODE

(18)
d

dt
Φ(t, · ) = V (Φ(t, · )) for t 6= 0, Φ(0, x) = x.

Since (18) is an autonomous system, we obtain the identities

Φ(−t, Φ(t, x)) = Φ(t, Φ(−t, x)) = x(19)

implying that Φ(−t, x) is an inverse function to Φ(t, x). In the ball Bδ

where η ≡ 1, the solution to (18) can be calculated analytically as

(20) Φ(t, x) = x et when x et ∈ Bδ.

Relations (16)–(20) argue the following proposition, see [14] for details.

Proposition 2. There exists T > 0 such that, for t ∈ [−T, T ], the
coordinate extention y = Φ(t, x) yields a bijective mapping between the
domains Ω(r,φ) and Ω(ret,φ), and between sets (5) in the following sense:

if u ∈ K(Ω(r,φ)), then u ◦ Φ(−t) ∈ K(Ω(ret,φ));

if u ∈ K(Ω(ret,φ)), then u ◦ Φ(t) ∈ K(Ω(r,φ)).
(21)

Next, we rewrite the potential energy functional (2) in the perturbed
domain Ω(ret,φ)

Π(u; Ω(ret,φ)) =
1

2

∫

Ω(ret,φ)

|∇u|2 dx−
∫

Ω(ret,φ)

fu dx−
∫

ΓN

gu dx

for u ∈ H(Ω(ret,φ))

(22)

and expand it in small t → 0. In fact, transformation y = Φ(t, x)
applied to (22) yields

Π(u; Ω(ret,φ)) = Π ◦ Φ(t)(u ◦ Φ(t); Ω(r,φ)) for u ∈ H(Ω(ret,φ))(23)
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8 A.M. KHLUDNEV∗, V.A. KOVTUNENKO†, AND A. TANI¦

with the perturbed functional

Π ◦ Φ(t)(u; Ω(r,φ))

=
1

2

∫

Ω(r,φ)

(∇u)>
∂Φ−1

∂x
(t)

(∂Φ−1

∂x
(t)

)>
∇u

∣∣∣∣det
(∂Φ

∂x
(t)

)∣∣∣∣ dx

−
∫

Ω(r,φ)

f ◦ Φ(t) u

∣∣∣∣det
(∂Φ

∂x
(t)

)∣∣∣∣ dx−
∫

ΓN

gu dx

for u ∈ H(Ω(r,φ)).

(24)

Using the asymptotic formula due to (18)

Φ(t, x) = x + t V (x) + Rest, ‖Rest‖W 1,∞(Ω)2 = o(t),(25)

differentiating (25) with respect to x, and substituting the result into
(24) we derive the asymptotic expansion

Π ◦ Φ(t)(u; Ω(r,φ)) = Π(u; Ω(r,φ)) + t Π1
V (u, u, f ; Ω(r,φ)) + Rest(u),

|Rest(u)| ≤ c(t)
(‖u‖2

H(Ω(r,φ))
+ const

)
, 0 ≤ c(t) = o(t).

(26)

With Res we denote respective residuals. The first asymptotic term is
associated to a quadratic form:

Π1
V (u, v, f ; Ω(r,φ)) =

1

2

∫

Ω(r,φ)

∇u ·
(
div(V ) I − ∂V

∂x
− ∂V

∂x

>)
∇v dx

−
∫

Ω(r,φ)

div(V f)v dx for u, v ∈ H(Ω(r,φ)).

(27)

Note, that (27) is not symmetric with respect to u and v in the latter,
linear term. For the detailed derivation of (26), see, for instance, [20].

Proposition 3. Since (21) and (26) hold true for problem (6), the
directional derivative (14) exists, and it can be expressed by formula

(28) 0 ≥ Π′(r, φ) =
1

r
Π1

V (u(r,φ), u(r,φ), f ; Ω(r,φ)).

Proof. The complete proof is given in [14], we sketch it briefly.
We consider the perturbed problem (6) for u(ret,φ) ∈ K(Ω(ret,φ)) such

that minimizes

(29) Π(u(ret,φ); Ω(ret,φ)) ≤ Π(v; Ω(ret,φ)) for all v ∈ K(Ω(ret,φ)).
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TOPOLOGICAL DERIVATIVE DUE TO KINK OF A CRACK 9

With the help of (21) and (22), it follows from (29) that u(ret,φ)◦Φ(t) ∈
K(Ω(r,φ)) is the unique solution minimizing

Π ◦ Φ(t)(u(ret,φ) ◦ Φ(t); Ω(r,φ)) ≤ Π ◦ Φ(t)(v; Ω(r,φ))

for all v ∈ K(Ω(r,φ)).
(30)

Substituting u0 as a test function into (30) results in the uniform esti-
mate due to (26):

‖u(ret,φ) ◦ Φ(t)‖2
H(Ω(r,φ))

≤ c0 + c1‖u0‖2
H(Ω(r,φ))

+ O(t).

Hence, a subsequence of u(ret,φ) ◦Φ(t) exists which converges weakly to
u(r,φ). By the usual arguments of monotone operators we arrive at

(31) u(ret,φ) ◦ Φ(t) → u(r,φ) strongly in H(Ω(r,φ)) as t → 0.

Due to (23), (26), and (30) we evaluate the increment of energy from
above:

Π(u(ret,φ); Ω(ret,φ))− Π(u(r,φ); Ω(r,φ))

= Π ◦ Φ(t)(u(ret,φ) ◦ Φ(t); Ω(r,φ))− Π(u(r,φ); Ω(r,φ))

≤ Π ◦ Φ(t)(u(r,φ); Ω(r,φ))− Π(u(r,φ); Ω(r,φ))

= t Π1
V (u(r,φ), u(r,φ), f ; Ω(r,φ)) + Rest(u

(r,φ)), Rest(u
(r,φ)) = o(t).

(32)

On the other hand, (6) implies similar estimation from below:

Π(u(ret,φ); Ω(ret,φ))− Π(u(r,φ); Ω(r,φ))

≥ Π ◦ Φ(t)(u(ret,φ) ◦ Φ(t); Ω(r,φ))− Π(u(ret,φ) ◦ Φ(t); Ω(r,φ))

= t Π1
V (u(ret,φ) ◦ Φ(t), u(ret,φ) ◦ Φ(t), f ; Ω(r,φ))

+ Rest(u
(ret,φ) ◦ Φ(t)), Rest(u

(ret,φ) ◦ Φ(t)) = o(t).

(33)

For ret = r + s, we have t = ln(1 + s/r) = s/r + o(s/r). Dividing (32)
and (33) with s, passing s → 0 due to (31) we infer (28).

The sign of the derivative follows from the general fact that r 7→
Π(r, φ) is a nonincreasing function of the crack length. ¤
Corollary 1. If f = 0 in Bδf

, δf > 0, the derivative in (28) can be
expressed equivalently by the domain integral over Ω0 \Bδ only

(34) Π′(r, φ) =
1

r
Π1

V (u(r,φ), u(r,φ), f ; Ω0 \Bδ),

or by the contour integral over ∂Bδ

(35) Π′(r, φ) =
δ

r

∫

∂Bδ

{1

2
|∇u(r,φ)|2 −

(∂u(r,φ)

∂n

)2}
dx
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10 A.M. KHLUDNEV∗, V.A. KOVTUNENKO†, AND A. TANI¦

for arbitrary δ ∈ (0, δf ). The notation uses the normal vector

(36) n :=
x

|x| on ∂Bδ.

In the general case we have

u(r,φ) ∈ H2(Bδ \ Γ(r,φ)) ⇒ Π′(r, φ) = 0.(37)

Proof. Let us rewrite (28) with the help of (27) explicitly as

Π′(r, φ) =
1

r

∫

Ω(r,φ)

{1

2
∇u(r,φ) ·

(
div(V ) I − ∂V

∂x
− ∂V

∂x

>)
∇u(r,φ)

− div(V f)u(r,φ)
}

dx.

(38)

In Bδ we can take η ≡ 1, thus V (x) = x, and the density of the integral
in (38) is −div(xf)u(r,φ) due to identity

div(x) I − ∂x

∂x
− ∂x

∂x

>
= 0.

Henceforth, f = 0 in Bδ implies (34).
In BR\Bδ the solution u(r,φ) is H2-smooth according to Proposition 1.

Therefore, we can differentiate the domain integral by parts and obtain
due to V = 0 in Ω0 \BR:

∫

Ω0\Bδ

{1

2
∇u(r,φ) ·

(
div(V ) I − ∂V

∂x
− ∂V

∂x

>)
∇u(r,φ) − div(V f)u(r,φ)

}
dx

=

∫

BR\Bδ

(∆u(r,φ) + f)(V · ∇u(r,φ)) dx

+

∫

∂Bδ

{1

2
(n · V )|∇u(r,φ)|2 − ∂u(r,φ)

∂n
(V · ∇u(r,φ))

}
dx

−
∫

Γ0∩(BR\Bδ)

[[1

2
(ν · V )|∇u(r,φ)|2 − ∂u(r,φ)

∂ν
(V · ∇u(r,φ))

]]
dx.

Using relations (8), the integrals over BR \Bδ as well as Γ0 ∩ (BR \Bδ)
are zero. At ∂Bδ it holds V = x. As the result, from (34) we arrive at
formula (35). The detailed derivation is given in [20].

If u(r,φ) ∈ H2(Bδ\Γ(r,φ)), then the integration by parts over the whole
ball BR results in Π′(r, φ) = 0. ¤
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TOPOLOGICAL DERIVATIVE DUE TO KINK OF A CRACK 11

Corollary 2. Due to the property that y = Φ(t, x) maps Ω0 and K(Ω0)
into themselves, it holds

(39) Π1
V (u0, u0, f ; Ω0) = 0.

Indeed, (39) is argued by the proof of Proposition 3 implying that

0 =
d

dt
Π(u0; Ω0) = lim

t→0

Π ◦ Φ(t)(u0 ◦ Φ(t); Ω0)− Π(u0; Ω0)

t
= Π1

V (u0, u0, f ; Ω0).

3. Convergence of the solutions as r → 0

In this section, we are aimed to evaluate with respect to r → 0 the
increment of solutions, which we will denote by

(40) w(r,φ) := u(r,φ) − u0 ∈ H(Ω(r,φ)).

For this aim, we will employ the normal derivatives at the crack.
Indeed, following Proposition 1, by the surjectivity of the trace op-

erator at a boundary, distribution ∂u(r,φ)

∂ν
∈ H

1/2
00 (Γ(r,φ))

? is defined from
the Green formula by the identity

〈∂u(r,φ)

∂ν
, [[v]]

〉
Γ(r,φ)

=

∫

Ω(r,φ)

(−∇u(r,φ) · ∇v + fv) dx +

∫

ΓN

gv dx

for v ∈ H(Ω(r,φ)),

(41)

where 〈 · , · 〉Γ(r,φ)
means the duality pairing between H

1/2
00 (Γ(r,φ)) and

its dual space H
1/2
00 (Γ(r,φ))

?. Variational inequality (7) together with
(41) imply that

〈∂u(r,φ)

∂ν
, [[v − u(r,φ)]]

〉
Γ(r,φ)

≤ 0 for all v ∈ K(Ω(r,φ)).(42)

Apart from the kink and end points of the crack, where u(r,φ) is smooth,
from (42) we can derive the boundary conditions (8c) pointwisely.

Similarly, we can extend the normal derivative of the solution u0 ∈
H(Ω0) ⊂ H(Ω(r,φ)) of problem (11) from Γ0 to the crack Γ(r,φ) as the
following distribution

〈∂u0

∂ν
, [[v]]

〉
Γ(r,φ)

=

∫

Ω(r,φ)

(−∇u0 · ∇v + fv) dx +

∫

ΓN

gv dx

for v ∈ H(Ω(r,φ)).

(43)
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It fulfills the natural boundary conditions in the following sense

〈∂u0

∂ν
, [[v − u0]]

〉
Γ(r,φ)

≤ 0 for v ∈ K(Ω(r,φ)) : [[v]] = 0 on γ(r,φ),(44)

where the test functions form K(Ω0). We recall that γ(r,φ) = Γ(r,φ) \Γ0.
Apart from the end points of crack Γ0, smooth u0 satisfies relations
(13c) pointwisely.

Subtracting (43) from (41) gets a variational formulation for the
increment w(r,φ) ∈ H(Ω(r,φ)):

∫

Ω(r,φ)

∇w(r,φ) · ∇v dx = −〈∂u(r,φ)

∂ν
− ∂u0

∂ν
, [[v]]

〉
Γ(r,φ)

for all v ∈ H(Ω(r,φ)).

(45)

It satisfies weakly the following boundary-value problem:

(46a) −∆w(r,φ) = 0 in Ω(r,φ),

(46b) w(r,φ) = 0 on ΓD,
∂w(r,φ)

∂q
= 0 on ΓN ,

∂w(r,φ)

∂ν
=

∂u(r,φ)

∂ν
− ∂u0

∂ν
on Γ(r,φ).(46c)

In what follows we evaluate the solution of (45) with respect to
r → 0.

To estimate the norm of w(r,φ) from (45), we observe the following
facts. Substituting u0 ∈ K(Ω0) ⊂ K(Ω(r,φ)) into (42) as a test function
provides the inequality

− 〈∂u(r,φ)

∂ν
, [[w(r,φ)]]

〉
Γ(r,φ)

≤ 0.(47)

In contrast, u(r,φ) can not be substituted into (44). By this reason, we
partition Γ(r,φ) with the help of a suitable cut-off function x 7→ χr(x) :
Ω → [0, 1] such that satisfies the following relations:

(48) χr(x) = 1 as x ∈ γ(r,φ), χr(x) = 0 as x ∈ Γ0 \Br.

Consequently, (1−χr)[[u
(r,φ)]] = 0 at γ(r,φ), and v = (1−χr)u

(r,φ) +χru
0

can be taken in (44), thus providing the inequality

〈∂u0

∂ν
, [[w(r,φ)]]

〉
Γ(r,φ)

≤ 〈∂u0

∂ν
, χr[[w

(r,φ)]]
〉
Γ(r,φ)

.(49)
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Substituting w(r,φ) into (45), from (47) and (49) we end with the esti-
mate

∫

Ω(r,φ)

|∇w(r,φ)|2 dx ≤ 〈∂u0

∂ν
, χr[[w

(r,φ)]]
〉
Γ(r,φ)∩Br

,(50)

where 〈 · , · 〉Γ(r,φ)∩Br means the duality pairing between H
1/2
00 (Γ(r,φ)∩Br)

and its dual space H
1/2
00 (Γ(r,φ) ∩Br)

?.
Note that the right-hand side of (50) employs the cut-off function

χr supported locally in a neighborhood of the branch γ(r,φ) only. To
use this feature in the further estimation we need to restate the usual
result on traces in a local sense.

Lemma 1. For u ∈ H(Ω(r,φ)), continuity of the trace operator yields
the following estimates holding at the crack locally in Bδ with δ ∈ (r, R):

∥∥[[u]]
∥∥2

H
1/2
00 (Γ(r,φ)∩Br)

≤ c

δ2

∫

Bδ\Γ(r,φ)

|u|2 dx + c

∫

Bδ\Γ(r,φ)

|∇u|2 dx,

if [[u]] ∈ H
1/2
00 (Γ(r,φ) ∩Br),

(51)

for the jump, and for the normal derivative

∥∥∥∂u

∂ν

∥∥∥
2

H
1/2
00 (Γ(r,φ)∩Br)?

≤ c

∫

Bδ\Γ(r,φ)

|∇u|2 dx,

if
[[∂u

∂ν

]]
= 0 and ∆u = 0 in Bδ \ Γ(r,φ).

(52)

Moreover, a Poincaré inequality implies that

(53)
1

δ2

∫

Bδ\Γ(r,φ)

|u|2 dx ≤ c

∫

Bδ\Γ(r,φ)

|∇u|2 dx, if

∫

Bδ\Γ(r,φ)

u dx = 0.

All constants c are independent of δ.

Proof. We start deriving an equivalent formulation of the H
1/2
00 -norm

from (9). In fact, for δ > r we can take a closed extention Γ̃δ of Γ(r,φ)∩
Br in Bδ and extend [[u]] with zero along Γ̃δ. Accounting identities

1

r − |s| =

∞∫

r

1

|t− s|2 dt =

−r∫

−∞

1

|t− s|2 dt
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14 A.M. KHLUDNEV∗, V.A. KOVTUNENKO†, AND A. TANI¦

and taking the distance function dist (x(s), ∂(Γ(r,φ)∩Br)) = (r−|s|)/2,
it follows from (9) that

∥∥[[u]]
∥∥2

H
1/2
00 (Γ(r,φ)∩Br)

=

∫

Γ̃δ

[[u(x(s))]]2 dx(s)

+

∫

Γ̃δ

∫

Γ̃δ

|[[u(x(t))− u(x(s))]]|2
|x(t)− x(s)|2 dx(s) dx(t) =

∥∥[[u]]
∥∥2

H1/2(Γ̃δ)
.

(54)

To derive (51)–(53), we employ homogeneity arguments. With the
uniform extension of coordinates x = δy, integrals in the right-hand

side of (54) are transformed onto the image Γ̃1 of Γ̃δ in B1 as

∥∥[[u]]
∥∥2

H1/2(Γ̃δ)
=

∫

Γ̃1

∫

Γ̃1

|[[u(δy(t))− u(δy(s))]]|2
|y(t)− y(s)|2 dy(s) dy(t)

+ δ

∫

Γ̃1

[[u(δy(s))]]2 dy(s) ≤ max(1, R)
∥∥[[u(δy)]]

∥∥2

H1/2(Γ̃1)
.

In B1, the usual trace theorem provides standard estimation
∥∥[[u(δy)]]

∥∥2

H1/2(Γ̃1)
≤ c1‖u(δy)‖2

H1(B1\Γ̃1)

= c1

{ ∫

B1\Γ̃1

|u(δy)|2 dy +

∫

B1\Γ̃1

|∇u(δy)|2 dy

}
,

with constant c1, which is independent of δ. Thus, applying the inverse

transformation y = x/δ in B1 \ Γ̃1 we obtain

∥∥[[u]]
∥∥2

H1/2(Γ̃δ)
≤ c2

δ2

∫

Bδ\Γ̃δ

|u(x)|2 dx + c2

∫

Bδ\Γ̃δ

|∇u(x)|2 dx,

and together with (54) we infer (51).
Conversely, an extension operator exists such that

‖u(δy)‖2
H1(B1\Γ̃1)

≤ c3

∥∥[[u(δy)]]
∥∥2

H1/2(Γ̃1)
,

with constant c3 independent of δ. This implies the inequality∫

B1\Γ̃1

|∇u(δy)|2 dy(s) ≤ c3

{∫

Γ̃1

[[u(δy(s))]]2 dy(s)

+

∫

Γ̃1

∫

Γ̃1

|[[u(δy(t))− u(δy(s))]]|2
|y(t)− y(s)|2 dy(s) dy(t)

}
.
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After transformation y = x/δ it reads
∫

Bδ\Γ̃δ

|∇u(x)|2 dx ≤ c3

{
1

δ

∫

Γ̃δ

[[u(x(s))]]2 dx(s)

+

∫

Γ̃δ

∫

Γ̃δ

|[[u(x(t))− u(x(s))]]|2
|x(t)− x(s)|2 dx(s) dx(t)

}
.

Since [[u(x(s))]] = 0 for |s| > r, we can evaluate

1

δ

∫

Γ̃δ

[[u(x(s))]]2 dx(s) =

∫

Γ̃δ

r − |s|
δ

[[u(x(s))]]2

r − |s| dx(s)

≤
∫

Γ̃δ

[[u(x(s))]]2

r − |s| dx(s) =

∞∫

r

∫

Γ̃δ

|0− [[u(x(s))]]|2
|t− s|2 dx(s) dt

≤
∫

Γ̃δ

∫

Γ̃δ

|[[u(x(t))− u(x(s))]]|2
|x(t)− x(s)|2 dx(s) dx(t).

As a consequence, the following uniform estimate holds with c4 = 2c3:∫

Bδ\Γ̃δ

|∇u|2 dx ≤ c4

∥∥[[u]]
∥∥2

H1/2(Γ̃δ)
for u ∈ H1(Bδ \ Γ(r,φ)).(55)

The distribution ∂u/∂ν ∈ H
1/2
00 (Γ(r,φ) ∩ Br)

? is defined well from a
generic Green formula by the relation

〈∂u

∂ν
, [[v]]

〉
Γ(r,φ)∩Br

=

∫

Bδ\Γ(r,φ)

(−∇u · ∇v − v ∆u) dx

for v ∈ H1(Bδ \ (Γ(r,φ) ∩Br)), u = 0 on ∂Bδ,

provided that ∆u ∈ L2(Bδ \ Γ(r,φ)) and [[∂u/∂ν]] = 0 at Γ̃δ. If ∆u = 0,
we evaluate the norm as

∥∥∥∂u

∂ν

∥∥∥
H

1/2
00 (Γ(r,φ)∩Br)?

:= sup
‖[[v]]‖

H
1/2
00 (Γ(r,φ)∩Br)

=1

∣∣∣
〈∂u

∂ν
, [[v]]

〉
Γ(r,φ)∩Br

∣∣∣

= sup
‖[[v]]‖

H1/2(Γ̃δ)
=1

∣∣∣∣
∫

Bδ\Γ(r,φ)

∇u · ∇v dx

∣∣∣∣ ≤ c4

( ∫

Bδ\Γ(r,φ)

|∇u|2 dx
)1/2

due to (55), thus providing (52).
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If the integral of u over Bδ \ Γ(r,φ) is zero, a Poincaré inequality in
B1 reads:∫

B1\Γ̃1

|u(δy)|2 dy ≤ c

∫

B1\Γ̃1

|∇u(δy)|2 dy for

∫

B1\Γ̃1

u(δy) dy = 0.

Consequently, with the help of y = x/δ we obtain (53). ¤
For the following use we decompose in BR \ Γ(r,φ):

(56) w(r,φ) = w̄(r,φ) + W (r,φ), w̄(r,φ) :=
1

2π

( φ∫

−π

+

π∫

φ

)
w(r,φ) dθ,

using polar coordinates x = ρ(cos θ, sin θ). The polar angle θ ∈ (−π, φ)∪
(φ, π) starts from the x1-axis counter-clockwisely around the origin O.

The polar radius ρ = |x| =
√

x2
1 + x2

2. Firstly, integrating (56) with
respect to θ gets

(57)
( φ∫

−π

+

π∫

φ

)
W (r,φ) dθ = 0.

Second, we evaluate w̄(r,φ).

Lemma 2. The function x 7→ w̄(r,φ) is constant for x ∈ BR \ Γ(r,φ).

Proof. We take a smooth cut-off function ξ(ρ) supported in BR and
substitute v = ξ into (45). In view of [[ξ]] = 0 at the crack, the right-
hand side turns to be zero. Due to ∆w(r,φ) ∈ L2(BR \ Γ(r,φ)) we can
integrate by parts in BR \ Γ(r,φ). Thus, accounting ξ = 0 at ∂BR,

[[ξ]] = 0 and [[∂w(r,φ)/∂ν]] = 0 at Γ(R,φ) we obtain that

0 =

∫

Ω(r,φ)

∇w(r,φ) · ∇ξ dx = −
∫

BR\Γ(r,φ)

∆w(r,φ)ξ dx

= −
( φ∫

−π

+

π∫

φ

) R∫

0

{ ∂

∂ρ

(
ρ
∂w(r,φ)

∂ρ

)
+

1

ρ

∂2w(r,φ)

∂θ2

}
ξ(ρ) dρ dθ

= −2π

R∫

0

∂

∂ρ

(
ρ
∂w̄(r,φ)

∂ρ

)
ξ dρ−

R∫

0

[[1

ρ

∂w(r,φ)

∂θ

]]∣∣∣
θ=±π,θ=φ

ξ dρ

= −2π

R∫

0

∂

∂ρ

(
ρ
∂w̄(r,φ)

∂ρ

)
ξ dρ.

KSTS/RR-09/001 
May 25, 2009



TOPOLOGICAL DERIVATIVE DUE TO KINK OF A CRACK 17

Since ξ is arbitrary we conclude with the identity

∂

∂ρ

(
ρ
∂w̄(r,φ)

∂ρ

)
= 0 for all ρ ∈ (0, R).

A general solution to this differential equation gets w̄(r,φ) = c1 + c2 ln ρ.
But the logarithmic term would contradict to the inclusion w(r,φ) ∈
H1(BR \ Γ(r,φ)). Indeed, if c2 6= 0, we can derive from (56) that

∫

BR\Γ(r,φ)

|∇w(r,φ)|2 dx ≥
π∫

−π

R∫

0

(∂w(r,φ)

∂ρ

)2

ρ dρ dθ

≥ 2πc2
2

R∫

0

1

ρ
dρ + 2c2

R∫

0

∂

∂ρ

( π∫

−π

W (r,φ) dθ
)

dρ = +∞

due to (57). Henceforth, c2 = 0 implies the assertion of lemma. ¤

Corollary 3. If f = 0 in Bδf
with δf ∈ (0, R) and

u0 = ū0 + U0 in Bδf
\ Γ0, ū0 :=

1

2π

π∫

−π

u0 dθ,

then U0 satisfies
π∫
−π

U0 dθ = 0, and ū0(x) is constant for x ∈ Bδf
\ Γ0.

Proof. We take a suitable cut-off function ξ(ρ) supported in Bδf
and

substitute v = u0 ± ξ into (12). In view of f = 0 in Bδf
and ξ = 0 on

ΓN we obtain the identity∫

Bδf
\Γ0

∇u0 · ∇ξ dx = 0.

Henceforth, repeating the arguments used in the proof of Lemma 2
implies that ū0 is constant in Bδf

\ Γ0. ¤

The next two results restate a Saint–Venant principle for the crack
problem.

Lemma 3. Apart from the kink point, the following estimate holds for
r < δ0 ≤ δ < R:∫

Ω0\Bδ

|∇w(r,φ)|2 dx ≤ δ0

δ

∫

Ω0\Bδ0

|∇w(r,φ)|2 dx.
(58)
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Proof. We have w(r,φ) ∈ H1(Ω0 \ Bδ), and ∆w(r,φ) = 0 due to (46a).

Therefore, with the help of a regular extension Γ̃0 of Γ0 from its left
end-point A up to the external boundary ∂Ω, a generic Green formula

can be written in D := (Ω \ Γ̃0) \Bδ. This gets

∫

D

∇w(r,φ) · ∇v dx =
〈∂w(r,φ)

∂q
, v

〉
∂D

for v ∈ H1(D),(59)

where the normal derivative ∂w(r,φ)/∂q is defined in a distributional
sense at ∂D. The boundary ∂D is a closed curve consisted of ∂Ω, ∂Bδ,

and two faces of Γ̃0 \Bδ.
For R < l, the crack end-point A is not contained in BR \Bδ. Then

w(r,φ) is smooth in (BR \ Bδ) \ Γ0 up to the boundary ∂Bδ and Γ0 ∩
(BR \Bδ) due to Proposition 1. Let ξ : Ω → [0, 1] be a suitable cut-off
function supported in BR such that ξ(x) = 1 for x ∈ Bδ. With the
partition v = ξv + (1 − ξ)v, using the local smoothness of w(r,φ) and
accounting the boundary conditions in (46), from (59) we infer that

∫

Ω0\Bδ

∇w(r,φ) · ∇v dx = −
∫

∂Bδ

∂w(r,φ)

∂n
v dx

−
∫

Γ0∩(BR\Bδ)

∂w(r,φ)

∂ν
ξ[[v]] dx− 〈∂w(r,φ)

∂ν
, (1− ξ)[[v]]

〉
Γ0\Bδ

for v ∈ H(Ω0 \Bδ).

(60)

Substituting v = ξu(r,φ) +(1− ξ)u0 into (42) and v = (1− ξ)u(r,φ) + ξu0

into (44) gets

− 〈∂w(r,φ)

∂ν
, (1− ξ)[[w(r,φ)]]

〉
Γ(r,φ)

≤ 0.

The next pointwise relations are derived from conditions (8c) and (13c)

∂w(r,φ)

∂ν
[[w(r,φ)]] ≥ 0 on Γ0 ∩ (BR \Br).(61)

After substitution of w(r,φ) into (60), the lines between (60) and (61)
result in local estimation of the norm as

∫

Ω0\Bδ

|∇w(r,φ)|2 dx ≤ −
∫

∂Bδ

∂w(r,φ)

∂n
w(r,φ) dx.(62)
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To evaluate the right-hand side of (62) we observe that

∫

∂Bδ

∂w(r,φ)

∂n
w(r,φ) dx =

π∫

−π

∂(w̄(r,φ) + W (r,φ))

∂ρ
(w̄(r,φ) + W (r,φ))δ dθ

=

π∫

−π

∂W (r,φ)

∂ρ
W (r,φ)δ dθ +

( ∂

∂ρ

π∫

−π

W (r,φ)δ dθ
)
w̄(r,φ) =

∫

∂Bδ

∂w(r,φ)

∂n
W (r,φ) dx

due to Lemma 2 and (57). Therefore, we can apply to W (r,φ) the
Poincaré inequality along the circle

π∫

−π

u2 dθ ≤ 4

π∫

−π

(∂u

∂θ

)2
dθ for u such that

π∫

−π

u dθ = 0(63)

and estimate

∣∣∣
∫

∂Bδ

∂w(r,φ)

∂n
w(r,φ) dx

∣∣∣ ≤
π∫

−π

∣∣∣∂w(r,φ)

∂ρ
W (r,φ)

∣∣∣δ dθ

≤ δ

π∫

−π

{
δ
(∂w(r,φ)

∂ρ

)2

+
1

4δ
(W (r,φ))2

}
dθ

≤ δ

π∫

−π

{
δ
(∂w(r,φ)

∂ρ

)2

+
1

δ

(∂W (r,φ)

∂θ

)2}
dθ = δ

∫

∂Bδ

|∇w(r,φ)|2 dx.

(64)

On the other hand, differentiating with respect to δ we find that

d

dδ

∫

Ω0\Bδ

|∇w(r,φ)|2 dx = − lim
ε→0

∫

(Bδ+ε\Bδ)∩Ω0

1

ε
|∇w(r,φ)|2 dx

= −
∫

∂Bδ

|∇w(r,φ)|2 dx.

(65)

Combining estimates (62)–(65) implies the differential inequality
∫

Ω0\Bδ

|∇w(r,φ)|2 dx ≤ −δ
d

dδ

∫

Ω0\Bδ

|∇w(r,φ)|2 dx.

Applying a Grönwall inequality we arrive at the desired relation (58).
¤
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Lemma 4. Around the kink point, if f = 0 in Bδf
, the following esti-

mate holds for 0 < δ0 ≤ δ < min(R, δf ):∫

Bδ0
\Γ0

|∇u0|2 dx ≤ δ0

δ

∫

Bδ\Γ0

|∇u0|2 dx.
(66)

Proof. The statement for a general inhomogeneous load is proven in
[15]. As f = 0, we simplify the proof with the arguments used in
Lemma 3.

The extended crack Γ(R,φ) splits a ball Bδ into two subdomains which
we denote by B+

δ and B−
δ . Since u0 ∈ H1(B±

δ ) and −∆u0 = f ∈
L2(B±

δ ), the normal derivative ∂u0/∂q is well defined at the boundaries
∂B±

δ in a distributional sense. From Green formulas holding in B±
δ , due

to f = 0 in Bδ we have
∫

B±δ

∇u0 · ∇v dx =
〈∂u0

∂q
, v

〉
∂B±δ

for v ∈ H1(B±
δ ).

(67)

For v ∈ H1(Bδ \Γ0), we apply to [[v]] the partition 1 = χr + (1−χr) at
∂B+

δ ∩∂B−
δ with a non-negative cut-off function χr suitably supported

in Bδ and satisfying (48). Accounting the local smoothness of u0 in
BR \Br, using [[∂u0/∂ν]] = 0 at Γ(R,φ) and [[v]] = 0 at Γ(R,φ) \ Γ0 result
(67) in the identity

∫

Bδ\Γ0

∇u0 · ∇v dx =

∫

∂Bδ

∂u0

∂n
v dx

−
∫

Γ0∩Bδ

∂u0

∂ν
(1− χr)[[v]] dx− 〈∂u0

∂ν
, χr[[v]]

〉
Γ0∩Br

.

(68)

Substituting v = (1± χr)u
0 into (44) gets

〈∂u0

∂ν
, χr[[u

0]]
〉

Γ0∩Br
= 0.

With the help of boundary conditions (13c) holding pointwisely at the
crack apart from its end-points, we obtain

(1− χr)
∂u0

∂ν
[[u0]] = 0 on Γ0 ∩Bδ.

Thus, from (68) with v = u0 we infer equality (compare with (62)):
∫

Bδ\Γ0

|∇u0|2 dx =

∫

∂Bδ

∂u0

∂n
u0 dx.(69)
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Differentiating the left-hand side of (69) with respect to δ similarly
to (65) implies the relation

d

dδ

∫

Bδ\Γ0

|∇u0|2 dx =

∫

∂Bδ

|∇u0|2 dx.(70)

In view of Corollary 3 we can repeat for u0 the arguments used in (64)
and evaluate the right-hand side of (69) as

∣∣∣
∫

∂Bδ

∂u0

∂n
u0 dx

∣∣∣ ≤ δ

∫

∂Bδ

|∇u0|2 dx.(71)

¿From (69)–(71) we conclude with the differential inequality
∫

Bδ\Γ0

|∇u0|2 dx ≤ δ
d

dδ

∫

Bδ\Γ0

|∇u0|2 dx.

Applying the Grönwall inequality results in (66). ¤

Finally, we state the main result of this section.

Theorem 1. If f = 0 in Bδf
with δf ∈ (0, R), the increment of solu-

tions w(r,φ) = u(r,φ)−u0 converges to zero as r → 0 strongly in H(Ω(δ,φ))
for arbitrary fixed δ ∈ (0, δf ) with the following uniform estimates:

(72) ‖w(r,φ)‖H(Ω(r,φ)) ≤ c
√

r,

(73) ‖w(r,φ)‖H(Ω0\Bδ) ≤ c r.

Proof. The proof is based on evaluation of (50) due to Lemma 1–
Lemma 4. Indeed, the right-hand side of (50) admits the Cauchy
inequality

‖w(r,φ)‖2
H(Ω(r,φ))

=

∫

Ω(r,φ)

|∇w(r,φ)|2 dx ≤
∣∣∣
〈∂u0

∂ν
, χr[[w

(r,φ)]]
〉
Γ(r,φ)∩Br

∣∣∣

≤
∥∥∥∂u0

∂ν

∥∥∥
H

1/2
00 (Γ(r,φ)∩Br)?

∥∥χr[[w
(r,φ)]]

∥∥
H

1/2
00 (Γ(r,φ)∩Br)

.

Applying estimate (52) with δ = 2r to u0, which obeys −∆u0 = f = 0
in B2r, gets further

‖w(r,φ)‖2
H(Ω(r,φ))

≤ c1‖u0‖H(Ω0\B2r)

∥∥χr[[w
(r,φ)]]

∥∥
H

1/2
00 (Γ(r,φ)∩Br)(74)

with constant c1 which does not depend on r.
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We assume that the cut-off function χr in (74), which satisfies rela-
tions (48) in Br, can be extended appropriately to B2r such that

(75) 0 ≤ χr(x) ≤ 1, |∇χr(x)| ≤ c

r
for x ∈ B2r.

In view of Lemma 2, constant w̄(r,φ) can be avoided from the right-hand
side of (74) since [[w̄(r,φ)]] = 0. Henceforth, applying estimate (51) as
δ = 2r to χrW

(r,φ) we infer that
∥∥χr[[w

(r,φ)]]
∥∥2

H
1/2
00 (Γ(r,φ)∩Br)

=
∥∥χr[[W

(r,φ)]]
∥∥2

H
1/2
00 (Γ(r,φ)∩Br)

≤ c2

∫

B2r\Γ(r,φ)

|∇(χrW
(r,φ))|2 dx +

c2

r2

∫

B2r\Γ(r,φ)

|χrW
(r,φ)|2 dx.

Using (75) and Poincaré inequality (53) as δ = 2r due to (57) proceeds

∥∥χr[[w
(r,φ)]]

∥∥2

H
1/2
00 (Γ(r,φ)∩Br)

≤ c2

∫

B2r\Γ(r,φ)

|∇W (r,φ)|2 dx

+
c3

r2

∫

B2r\Γ(r,φ)

|W (r,φ)|2 dx ≤ c4

∫

B2r\Γ(r,φ)

|∇W (r,φ)|2 dx.

Adding∇w̄(r,φ) = 0 to the right-hand side of the above inequality yields

(76)
∥∥χr[[w

(r,φ)]]
∥∥2

H
1/2
00 (Γ(r,φ)∩Br)

≤ c4

∫

B2r\Γ(r,φ)

|∇w(r,φ)|2 dx.

¿From (74) and (76) we have the estimate
∫

Ω(r,φ)

|∇w(r,φ)|2 dx ≤ c5

( ∫

B2r\Γ(r,φ)

|∇u0|2 dx

∫

B2r\Γ(r,φ)

|∇w(r,φ)|2 dx
)1/2

.

Now, with the help of Lemma 4 as δ0 = 2r, for fixed δ ∈ (2r, δf ) we
infer that∫

Ω(r,φ)

|∇w(r,φ)|2 dx ≤ c5

(2r

δ

∫

Bδ\Γ(r,φ)

|∇u0|2 dx

∫

B2r\Γ(r,φ)

|∇w(r,φ)|2 dx
)1/2

≤ c6

√
r
( ∫

Ω(r,φ)

|∇w(r,φ)|2 dx
)1/2

,

thus (72). It implies also the strong convergence w(r,φ) → 0 in the
H(Ω(δ,φ))-norm as r → 0.
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To derive (73), we represent (72) as

(77)

∫

Ω0\B2r

|∇w(r,φ)|2 dx +

∫

B2r\Γ(r,φ)

|∇w(r,φ)|2 dx ≤ c7r

and apply Lemma 3 for δ0 = 2r:

(78)
1

r

∫

Ω0\Bδ

|∇w(r,φ)|2 dx ≤ c8

∫

Ω0\B2r

|∇w(r,φ)|2 dx.

Evidently, (77) and (78) imply the estimate

1

r

∫

Ω0\Bδ

|∇w(r,φ)|2 dx +

∫

B2r\Γ(r,φ)

|∇w(r,φ)|2 dx ≤ c r,

thus (73). ¤
Corollary 4. A weak limit ẇφ ∈ H(Ω0 \Bδ) exists such that

(79)
1

rn

w(rn,φ) → ẇφ weakly in H(Ω0 \Bδ) as rn → 0.

Indeed, this is a direct consequence of the uniform estimate (73).

4. Expansion of the energy functional at r = 0

The unifrom estimation of solutions from Theorem 1 provides state-
ments for the energy functional formulated below. During the rest of
the paper we assume always that f = 0 in Bδf

with fixed δf ∈ (0, R).

Proposition 4. The sequence of derivatives Π′(r, φ) is bounded uni-
formly with respect to r → 0.

Proof. Due to f = 0 in Bδf
we can apply Corollary 1 and rewrite

Π′(r, φ) with the help of decomposition u(r,φ) = u0 + w(r,φ) as

Π′(r, φ) =
1

r
Π1

V (u0, u0, f ; Ω0 \Bδ)

+ Π1
V

(
2u0,

w(r,φ)

r
, f ; Ω0 \Bδ

)
+ Π1

V

(
w(r,φ),

w(r,φ)

r
, 0; Ω0 \Bδ

)
.

(80)

Using Corollary 2 and estimate (73) yields the assertion. ¤
For fixed s > 0, definition (14) and Proposition 3 imply expansion

of Π(s + r, · ) with respect to r > 0 in the form

Π(u(s+r,φ); Ω(s+r,φ)) = Π(u(s,φ); Ω(s,φ)) +

r∫

0

Π′(s + t, φ) dt.
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Passing here to the limit as s → 0 due to the strong convergence (31)
and Proposition 4, the Lebesgue dominated convergence theorem gets

Π(u(r,φ); Ω(r,φ)) = Π(u0; Ω0) +

r∫

0

Π′(t, φ) dt.(81)

Details arguing passage to the limit can be found in [14]. Moreover,
we employ decomposition (80) to Π′(t, φ) in (81) for t ∈ (0, r) and
conclude with the following result.

Theorem 2. The expansion of the potential energy holds as r → 0:

Π(r, φ) = Π(0) +

r∫

0

Π1
V

(
2u0,

w(t,φ)

t
, f ; Ω0 \Bδ

)
dt + O(r2),(82)

and

0 ≥
r∫

0

Π1
V

(
2u0,

w(t,φ)

t
, f ; Ω0 \Bδ

)
dt = O(r),(83)

for arbitrary fixed δ ∈ (0, δf ).

Corollary 5. If the limit function ẇφ ∈ H(Ω0 \ Bδ) from Corollary 4
is unique and it satisfies in Ω0 \Bδ the relation

w(r,φ) = rẇφ + Resr, ‖Resr‖H1(Ω0\Bδ) = o(r),

then the topological derivative in (15) exists uniquely given by

Π′(0, φ) = Π1
V (2u0, ẇφ, f ; Ω0 \Bδ).

In the general case, Theorem 2 guarantees existence only of the limit
superior and the limit inferior of the quotient in (15). For particular
cases, formulas in Theorem 2 can be specified in more details. For this
reason, we rely on a linearized setting of the crack problem (8) in the
next section.

5. Specification of expansions for a linear problem

Avoiding the non-penetration constraint (1) will result in linear for-
mulation of the crack problem. For this particular case, we express the
integral Π1

V in expansion (82) in the terms of stress intensity factors.
We restate problems (6)–(8): Find u(r,φ) ∈ H(Ω(r,φ)) such that

(84) Π(u(r,φ); Ω(r,φ)) ≤ Π(v; Ω(r,φ)) for all v ∈ H(Ω(r,φ)),
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which is equivalent to the variational equation∫

Ω(r,φ)

∇u(r,φ) · ∇v dx =

∫

Ω(r,φ)

fv dx +

∫

ΓN

gv dx for v ∈ H(Ω(r,φ)),(85)

and it describes a weak solution to the linear boundary-value problem:

(86a) −∆u(r,φ) = f in Ω(r,φ),

(86b) u(r,φ) = 0 on ΓD,
∂u(r,φ)

∂q
= g on ΓN ,

∂u(r,φ)

∂ν
= 0 on Γ(r,φ).(86c)

At r = 0, the reference solution u0 ∈ H(Ω0) satisfies (compare with
(11)–(13)):

(87) Π(u0; Ω0) ≤ Π(v; Ω0) for all v ∈ H(Ω0),

variational equation∫

Ω0

∇u0 · ∇v dx =

∫

Ω0

fv dx +

∫

ΓN

gv dx for all v ∈ H(Ω0),(88)

and the respective boundary-value problem:

(89a) −∆u0 = f in Ω0,

(89b) u0 = 0 on ΓD,
∂u0

∂q
= g on ΓN ,

∂u0

∂ν
= 0 on Γ0.(89c)

All the previous results remain true for the linear problems (84)–
(89). In what follows we will refine expansions of the solutions (56)
with the first-order asymptotic terms in a Fourier series with respect
to the polar angle θ at the point of kink.

Proposition 5. Around the kink point, the following expansion holds

(90) u0 = ū0 + K
√

ρ sin
θ

2
+ U0

1 in Bδf
\ Γ0

with the constant stress intensity factor K ∈ R given by

(91) K =
1

π
√

ρ

π∫

−π

u0(ρ, θ) sin
θ

2
dθ for arbitrary ρ ∈ (0, δf ),
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and the reminder term U0
1 ∈ H1(Bδf

\ Γ0) satisfying

(92a)

π∫

−π

U0
1 (ρ, θ) dθ =

π∫

−π

U0
1 (ρ, θ) sin

θ

2
dθ = 0 for any ρ ∈ (0, δf ),

∫

Bδ0
\Γ0

|∇U0
1 |2 dx ≤

(δ0

δ

)2
∫

Bδ\Γ0

|∇U0
1 |2 dx, 0 < δ0 ≤ δ < δf .(92b)

Proof. Indeed, consider the zero-order decomposition from Corollary 3:

u0 = ū0 + U0 in Bδf
\ Γ0,

ū0 :=
1

2π

π∫

−π

u0 dθ = const,

π∫

−π

U0 dθ = 0.
(93)

Let us define in Bδf
\ Γ0

(94) a(ρ) :=
1

π

π∫

−π

U0 sin
θ

2
dθ, U0

1 := U0 − a(ρ) sin
θ

2
.

Property (92a) follows immediately from (93) and (94).
Repeating the arguments of Lemma 2 we take a smooth cut-off func-

tion ξ(ρ) supported in Bδf
and substitute v = ξ sin θ/2 into equation

(88). Accounting f = 0 in Bδf
, decomposition (94) and (92a) get

0 =

∫

Bδf
\Γ0

∇u0 · ∇(
ξ sin

θ

2

)
dx =

∫

Bδf
\Γ0

∇(
a sin

θ

2

) · ∇(
ξ sin

θ

2

)
dx

=

π∫

−π

δf∫

0

{
ρ
∂(a sin θ

2
)

∂ρ

∂(ξ sin θ
2
)

∂ρ
+

1

ρ

∂(a sin θ
2
)

∂θ

∂(ξ sin θ
2
)

∂θ

}
dρ dθ

= π

δf∫

0

{
− ∂

∂ρ

(
ρ
∂a

∂ρ

)
+

a

4ρ

}
ξ dρ + π

(
ρ
∂a

∂ρ
ξ
)ρ=δf

ρ=0
.

Since ξ is arbitrary we derive the ordinary differential equation

− ∂

∂ρ

(
ρ
∂a

∂ρ

)
+

a

4ρ
= 0, ρ ∈ (0, δf ).

Its general solution implies

(95) a(ρ) = K
√

ρ +
c√
ρ
, K, c ∈ R.
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Using (95) we can evaluate from below the norm

∫

Bδf
\Γ0

|∇u0|2 dx = π

δf∫

0

{
ρ
(∂a

∂ρ

)2

+
a2

4ρ

}
dρ +

∫

Bδf
\Γ0

|∇U0
1 |2 dx

≥ π

2

δf∫

0

(
K2 +

c2

ρ2

)
dρ = +∞.

This fact contradicts to u0 ∈ H1(Bδf
\ Γ0) and concludes necessarily

that c = 0. From (95) with c = 0, (93) and (94) we infer (90) and (91).
To derive (92b) we repeat the arguments of Lemma 4 modified for

U0
1 . Substituting expansion of the solution (90) into equality (69) and

using (92a) gets for δ ∈ (0, δf ):∫

Bδ\Γ0

|∇u0|2 dx =
π

2
K2δ +

∫

Bδ\Γ0

|∇U0
1 |2 dx

=

∫

∂Bδ

∂u0

∂n
u0 dx =

π

2
K2δ +

∫

∂Bδ

∂U0
1

∂n
U0

1 dx,

which implies the equality

(96)

∫

Bδ\Γ0

|∇U0
1 |2 dx =

∫

∂Bδ

∂U0
1

∂n
U0

1 dx.

Moreover, (92a) guarantees for U0
1 the following Poincaré inequality

π∫

−π

(U0
1 )2 dθ ≤

π∫

−π

(∂U0
1

∂θ

)2
dθ

in comparison with (63). Henceforth, from (96) we can estimate

∫

Bδ\Γ0

|∇U0
1 |2 dx ≤ δ

2

π∫

−π

{
δ
(∂U0

1

∂ρ

)2

+
1

δ
(U0

1 )2
}

(δ) dθ

≤ δ

2

∫

∂Bδ

|∇U0
1 |2 dx =

δ

2

d

dδ

∫

Bδ\Γ0

|∇U0
1 |2 dx.

Applying the Grönwall inequality ends with the desired property (92b).
Note that U0

1 obeys the H2-smoothness property, see [10]. A gener-
alization of this result for the nonlinear crack problem (12) is given in
[15]. ¤
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Next we consider the increment of solutions w(r,φ) := u(r,φ) − u0,
which describes the boundary-value problem (compare with (46)):

(97a) −∆w(r,φ) = 0 in Ω(r,φ),

(97b) w(r,φ) = 0 on ΓD,
∂w(r,φ)

∂q
= 0 on ΓN ,

∂w(r,φ)

∂ν
= 0 on Γ0,

∂w(r,φ)

∂ν
= −∂u0

∂ν
on γ(r,φ).(97c)

Its weak solution w(r,φ) ∈ H(Ω(r,φ)) satisfies the variational equation
∫

Ω(r,φ)

∇w(r,φ) · ∇v dx =
〈∂u0

∂ν
, [[v]]

〉
Γ(r,φ)

for all v ∈ H(Ω(r,φ)).(98)

Accounting represention (90), we state the following auxiliary result.

Lemma 5. The solution of equation (98) admits the decomposition

w(r,φ) =
K

2
cos

φ

2
h(r,φ) + Q1,

‖Q1‖H(Ω(r,φ)) = O(r), ‖Q1‖H(Ω0\Bδ) = O(r3/2) for δ ∈ (0, δf ),
(99)

where h(r,φ) ∈ H(Ω(r,φ)) solves the problem
∫

Ω(r,φ)

∇h(r,φ) · ∇v dx = −
〈 1√

ρ
Hγ(r,φ)

, [[v]]
〉

Γ(r,φ)

for v ∈ H(Ω(r,φ)),

Hγ(r,φ)
= 1 on γ(r,φ), Hγ(r,φ)

= 0 on Γ0.

(100)

Proof. ¿From (90), (98) and (100) we derive that Q1 ∈ H(Ω(r,φ)) fulfills
the equation

∫

Ω(r,φ)

∇Q1 · ∇v dx =
〈∂U0

1

∂ν
, [[v]]

〉
Γ(r,φ)

for all v ∈ H(Ω(r,φ)).(101)

Substituting v = χrQ1 +(1−χr)Q1 into (100) with the cut-off function
χr from (48) gets estimation due to ∂U0

1 /∂ν = ∂u0/∂ν = 0 at Γ0

∫

Ω(r,φ)

|∇Q1|2 dx ≤
∥∥∥∂U0

1

∂ν

∥∥∥
H

1/2
00 (Γ(r,φ)∩Br)?

‖χr[[Q1]]‖H
1/2
00 (Γ(r,φ)∩Br)

.

Since ∆(
√

ρ sin θ/2) = 0, then ∆U0
1 = 0 in Bδf

, hence we can apply
estimate (52) in Lemma 1 to U0

1 . Repeating arguments used in the
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proof of Theorem 1 we continue the estimation∫

Ω(r,φ)

|∇Q1|2 dx ≤ c1

( ∫

B2r\Γ(r,φ)

|∇U0
1 |2 dx

∫

B2r\Γ(r,φ)

|∇Q1|2 dx
)1/2

≤ c2r
( ∫

Bδ\Γ(r,φ)

|∇U0
1 |2 dx

∫

B2r\Γ(r,φ)

|∇Q1|2 dx
)1/2

≤ c3r
( ∫

Ω(r,φ)

|∇Q1|2 dx
)1/2

due to (92b), thus ‖Q1‖H(Ω(r,φ)) = O(r).

In Ω0 \ Bδ the Green formula provides the following identity for Q1

(similarly to (62)) ∫

Ω0\Bδ

|∇Q1|2 dx = −
∫

∂Bδ

∂Q1

∂n
Q1 dx.

Henceforth, we can apply Lemma 3 to Q1 and obtain∫

Ω0\Bδ

|∇Q1|2 dx ≤ δ0

δ

∫

Ω0\Bδ0

|∇Q1|2 dx, r < δ0 ≤ δ < δf .

Taking δ0 = 2r, the estimation finishes with ‖Q1‖H(Ω0\Bδ) = O(r3/2).
¤

¿From (100) it is interesting to observe that h(r,φ) in decomposition
(99) is independent of the particular choice of the forces f and g, but it
depends on the geometry of Ω(r,φ) only. We proceed with an expansion

of h(r,φ) in the Fourier series.

Lemma 6. The following expansion holds

(102) h(r,φ)(ρ, θ) =
(
h̄(r,φ) + b(r,φ)(ρ) sin

θ

2

)
χ(ρ) + Q2(ρ, θ) in Ω(r,φ),

where h̄(r,φ) = const, χ is a cut-off function supported in BR,

(103) b(r,φ)(ρ) = C
(r,φ)
1/2

√
ρ− C

(r,φ)
−1/2

1√
ρ

for ρ > r,

stress intensity factors C
(r,φ)
±1/2 ∈ R are given by:

C
(r,φ)
1/2 =

1

π

π∫

−π

∂

∂ρ

(√
ρh(r,φ)

)
sin

θ

2
dθ,

C
(r,φ)
−1/2 =

1

π

π∫

−π

ρ2 ∂

∂ρ

(h(r,φ)

√
ρ

)
sin

θ

2
dθ for ρ ∈ (r, R),

(104)
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and the residual term yields

(105) ‖Q2‖H(Ω0\Bδ) = O(r3/2) for fixed δ ∈ (r, R).

Proof. Since (100) is a particular case of the variational equation (98),
all the results of w(r,φ) remain valid for h(r,φ), too. By this reason, we
can apply Lemma 3 and conclude with

h(r,φ) = h̄(r,φ) + B(r,φ) in BR \ Γ(r,φ),

h̄(r,φ) :=
1

2π

( φ∫

−π

+

π∫

φ

)
h(r,φ) dθ = const,

( φ∫

−π

+

π∫

φ

)
B(r,φ) dθ = 0.

We expand further in BR \ Γ(r,φ):

b(r,φ) :=
1

π

( φ∫

−π

+

π∫

φ

)
h(r,φ) sin

θ

2
dθ,

B
(r,φ)
1 := B(r,φ) − b(r,φ) sin

θ

2
,

(106)

which implies that

(107)

π∫

−π

B
(r,φ)
1 dθ =

π∫

−π

B
(r,φ)
1 sin

θ

2
dθ = 0 for ρ ∈ (0, R).

For arbitrary cut-off function ξ(ρ) supported in [r,R], the substitution
of v = ξ sin θ/2 as a test function into (100) gets

0 =

∫

BR\Br

∇h(r,φ) · ∇(
ξ sin

θ

2

)
dx = π

R∫

r

{
− ∂

∂ρ

(
ρ
∂b(r,φ)

∂ρ

)
+

b(r,φ)

4ρ

}
ξ dρ.

This proves the representation of b(r,φ) in the form of (103), similarly
to (95). Then (103) and (106) result in the equality

C
(r,φ)
1/2

√
ρ− C

(r,φ)
−1/2

1√
ρ

=
1

π

π∫

−π

h(r,φ) sin
θ

2
dθ for ρ ∈ (r, R).

Differentiating it with respect to ρ yields (104).
With the help of a cut-off function χ supported in BR and such that

χ ≡ 1 in Bδ, δ ∈ (r, R), we can define a function Q2 ∈ H(Ω(r,φ)) by

Q2 := h(r,φ) −
(
h̄(r,φ) + b(r,φ) sin

θ

2

)
χ, Q2 = B

(r,φ)
1 in Bδ \ Γ(r,φ).
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The Green formula written in Ω0 \Bδ gets for v ∈ H(Ω0 \Bδ):
∫

Ω0\Bδ

∇h(r,φ) · ∇v dx =

∫

Ω0\Bδ

∇
(
Q2 + b(r,φ)χ sin

θ

2

)
· ∇v dx

= −
∫

∂Bδ

∂h(r,φ)

∂n
v dx = −

∫

∂Bδ

{ ∂

∂n
∇

(
B

(r,φ)
1 + b(r,φ) sin

θ

2

)}
v dx.

Substituting v = Q2 as a test function here we obtain the equality,
which is similar to (96), and estimate it in the same way

∫

Ω0\Bδ

|∇Q2|2 dx = −
∫

∂Bδ

∂B
(r,φ)
1

∂n
B

(r,φ)
1 dx

≤ δ

2

∫

∂Bδ

|∇B
(r,φ)
1 |2 dx = −δ

2

d

dδ

∫

Ω0\Bδ

|∇Q2|2 dx

due to property (107). The Grönwall inequality provides
∫

Ω0\Bδ

|∇Q2|2 dx ≤
(δ0

δ

)2
∫

Ω0\Bδ0

|∇Q2|2 dx, 0 < δ0 ≤ δ < R.
(108)

Taking δ0 = 2r we proceed (108):
∫

Ω0\Bδ

|∇Q2|2 dx ≤ c1r
2

∫

Ω0\B2r

|∇Q2|2 dx ≤ c2r
2

∫

Ω(r,φ)

|∇h(r,φ)|2 dx

≤ c3r
2

∫

Ω(r,φ)

|∇w(r,φ)|2 dx + O(r4) = O(r3)

in view of Lemma 5 and Theorem 1. The latter estimate implies (105),
and this ends the proof. ¤

¿From Lemma 5 and Lemma 6 we derive the following.

Proposition 6. Apart from the kink point, the representation holds

w(r,φ)(ρ, θ) = w̄(r,φ) +
K

2
cos

φ

2

(
C

(r,φ)
1/2

√
ρ− C

(r,φ)
−1/2

1√
ρ

)
sin

θ

2

+ Q(ρ, θ), ‖Q‖H(BR\Bδ) = O(r3/2) for fixed δ ∈ (r, δf ).

(109)

Finally, we state the main result of this section.
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Theorem 3. For the linear crack problems (84)–(89), expansion of the
potential energy at the point of kink as r → 0 reads

Π(r, φ) = Π(0)− π

4
K2 cos

φ

2

r∫

0

1

t
C

(t,φ)
−1/2 dt + O(r3/2),(110)

with the stress intensity factors K and C
(t,φ)
−1/2 defined in (91) and (104),

0 ≤
r∫

0

1

t
C

(t,φ)
−1/2 dt = O(r).(111)

Proof. Let us calculate the integral Π1
V (2u0, w(r,φ), f ; Ω0\Bδ) from The-

orem 2 explicitely by substituting here the representation of solutions
(90) and (109). In this way we will specify the decomposition of energy
(82)–(83) for the linear problem in the form of (110)–(111).

We choose the cut-off function η(ρ) for the velocity V in (16) and
the cut-off function χ(ρ) in representation (102) such that:

η ≡ 1 in Bδ, supp(η) ⊂ Bδf
,

χ ≡ 1 in Bδf
, supp(χ) ⊂ BR for δ < δf < R.

Using (99) and (102) due to Corollary 1 and Proposition 6 gets

1

r
Π1

V (2u0, w(r,φ), f ; Ω0 \Bδ)

=
K

2r
cos

φ

2
Π1

V

(
2u0, χ

(
h̄(r,φ) + b(r,φ) sin

θ

2

)
, f ; Ω0 \Bδ

)
+ O(

√
r),

with b(r,φ)(ρ) given in (103). Integrating the following integral by parts
in Bδf

\Bδ, where the solutions are smooth and χ ≡ 1,

Π1
V

(
2u0, χ

(
h̄(r,φ) + b(r,φ) sin

θ

2

)
, f ; Ω0 \Bδ

)

=

∫

Bδf
\Bδ

{
∇u0 ·

(
div(V ) I − 2

∂V

∂x

)
∇(

b(r,φ) sin
θ

2

)

− div(V f)
(
h̄(r,φ) + b(r,φ) sin

θ

2

)}
dx,
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similarly to the proof of Corollary 1 we obtain

Π1
V

(
2u0, χ

(
h̄(r,φ) + b(r,φ) sin

θ

2

)
, f ; Ω0 \Bδ

)

=

∫

Bδf
\Bδ

{
(∆u0 + f)

(
V · ∇(

b(r,φ) sin
θ

2

))
+ ∆

(
b(r,φ) sin

θ

2

)
(V · ∇u0)

}
dx

+ δ

∫

∂Bδ

{
∇u0 · ∇(

b(r,φ) sin
θ

2

)− 2
∂u0

∂n

∂

∂n

(
b(r,φ) sin

θ

2

)}
dx

+

∫

Γ0∩(Bδf
\Bδ)

{∂u0

∂ν

[[(
b(r,φ) sin

θ

2

)
,1

]]
+

∂

∂ν

(
b(r,φ) sin

θ

2

)
[[u0

,1]]
}

dx

= δ

∫

∂Bδ

{
∇u0 · ∇(

b(r,φ) sin
θ

2

)− 2
∂u0

∂n

∂

∂n

(
b(r,φ) sin

θ

2

)}
dx

in view of (89a), (89c), and relations

∆
(
b(r,φ) sin

θ

2

)
= 0 in Ω0,

∂

∂ν

(
b(r,φ) sin

θ

2

)
= 0 on Γ0

due to (103). Applying decomposition (90), from Proposition 5 to-
gether with the orthogonality conditions (92a) it proceeds further

δ

∫

∂Bδ

{
∇u0 · ∇(

b(r,φ) sin
θ

2

)− 2
∂u0

∂n

∂

∂n

(
b(r,φ) sin

θ

2

)}
dx

= K

π∫

−π

{∂
(√

ρ sin θ
2

)

∂θ

∂
(
b(r,φ) sin θ

2

)

∂θ
− δ2∂

(√
ρ sin ρ

2

)

∂ρ

∂
(
b(r,φ) sin θ

2

)

∂ρ

}
ρ=δ

dθ

= πK
{√δ

4

(√
δC

(r,φ)
1/2 −

C
(r,φ)
−1/2√
δ

)
− δ2

2
√

δ

(C
(r,φ)
1/2

2
√

δ
+

C
(r,φ)
−1/2

2δ
√

δ

)}
= −π

2
KC

(r,φ)
−1/2.

Thus, we arrive at the equality for the linear crack problem

Π′(r, φ) =
1

r
Π1

V (2u0, w(r,φ), f ; Ω0 \Bδ)

= − π

4r
K2 cos

φ

2
C

(r,φ)
−1/2 + O(

√
r).

(112)

Henceforth, Theorem 2 argues (110) and (111). ¤

We finish with few remarks on Theorem 3.
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Corollary 6. If K = 0 in (91), i.e., the solution u0 is H2-smooth
around the kink point, then (110) implies that

K = 0 ⇒ Π′(0, φ) = 0, Π(r, φ) = Π(0) + O(r3/2).

Corollary 7. If φ = 0, i.e., there is no kink, then it is known that
the derivative exists and Π′(0, 0) = −π/4 K2, for example, see [20].
Therefore, from (110) and (111) we infer that

C
(r,0)
−1/2 = r + o(r).

Conclusion

The asymptotic representations resulting formal analysis are also
of practical meaning for engineers. In fact, the expansion of potential

energy (110) is expressed via stress intensity factors K and C
(r,φ)
−1/2. They

can be calculated as a path-independent integrals by explicit formulas
(91) and (104). The former constant K depends on the specific choice
of data of the reference crack problem before kinking, while the latter

(r, φ) 7→ C
(r,φ)
−1/2 are universal functions depending on the geometry of

the kinked domain Ω(r,φ) only. These implicit quantities are to be
determined from a generic problem of the crack kinking (100).
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