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Abstract
We interpret the element 1

2i~ (u∗v+v∗u) in the generators u, v of the
Weyl algebra W2 as an indeterminate in N+ 1

2 or −(N+ 1
2 ), using methods

of the transcendental calculus outlined in the announcement [14]. The
main purpose of this paper is to give a rigorous proof for the part of [14]
which introduces this indeterminate phenomenon. Namely, we discuss
how to obtain associativity in the transcendental calculus and show how
the Hadamard finite part procedure can be implemented in our context.
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1 Introduction

Deformation quantization, first proposed in [3], is a fruitful approach to developing quantum
theory in a purely algebraic framework, and was a prototype for noncommutative calculus
on noncommutative spaces. It was first treated as a formal noncommutative calculus, with
the Planck constant ~ regarded as a formal parameter, but has been extended to nonformal
cases, as in the studies of noncommutative tori [18] and quantum groups [20]. In fact, the
formal and nonformal noncommutative calculus have quite different features.

In [11], we analyzed star exponential functions of quadratic forms in the Weyl algebra
and uncovered several mysterious phenomena unanticipated from the formal case. These
mysterious phenomena reflect the fact that star exponential functions of quadratic forms
(see [6] and [15]) lie outside of the Weyl algebra. These new features suggest a new approach
to noncommutative nonformal calculus. In this paper, we show that this new calculus is
necessary to treat transcendental elements of the Weyl algebra.

From the papers [11]-[14], we know that the Moyal product, the most typical product
on the Weyl algebra, is not sufficient to treat transcendental elements such as star expo-
nential functions. For this reason, we introduced a family of ∗K-products on the Weyl
algebra depending on a complex symmetric matrix K and developed a transcendental non-
formal noncommutative calculus specifically formulated to treat star exponential functions
of quadratic forms. The transcendental elements of the Weyl algebra have a realization
depending on the ∗K-product, which we called the K-ordered expression. Thus, properties
of (transcendental) elements of the Weyl algebra depend on the choice of product ∗K ,

We now propose as a principle, called the Independence of Ordering Principle (IOP),
that the relevant properties of transcendental elements of the Weyl algebra do not depend
on the choice of ordered expression, just as properties and objects in differential geometry
do not depend on the choice of coordinate expression. Following this principle, in [11] we
proposed the notion of a group-like object of star exponential functions of quadratic forms
on the Weyl algebra. The IOP seems to be a new outlook on interpreting physical phe-
nomena/mathematical phenomena, especially for treating quantum objects and phenomena
from an algebraic point of view.

As a test case, we examine this principle on the nonformal noncommutative calculus
for transcendental elements of the Weyl algebra. As part of this approach, we interpret
an element as an indeterminate in a discrete set in the case of the Weyl algebra with two
generators.

Let W2 be the Weyl algebra with generators u, v obeying the commutation relation

(1) [u, v] = −i~.

We consider the element 1
i~u◦v= 1

2i~ (u∗v+v∗u) of W2. We show that 1
i~u◦v can be in-

terpreted as an indeterminate in N+ 1
2 or −(N+ 1

2 ), not from a more standard operator
theoretic point of view but from a purely algebraic approach, using the IOP that a physi-
cal/mathematical object should be independent of its various ordered expressions.

In our approach, we interpret 1
i~u◦v in two ways: 1) via the analytic continuation of

inverses of z+ 1
i~u◦v and 2) via the ∗-product of the ∗-sin function and the ∗-gamma function

using ordered expressions. These results have been already announced in [14] with outlines
of proofs. The main purpose of this paper is to give a rigorous description of method 1)
and therefore to realize 1

i~u◦v as an indeterminate in the discrete set. The main ingredients
of the proof are dealing with associativity in the framework of the transcendental calculus
of [14] and applying the Hadamard finite part procedure in this context. For a family of
∗K-products on the Weyl algebra W2, we provide rules for the associativity of the extended
products ∗K , and in preparation for the definition of the inverse of z+ 1

i~u◦v, we investigate

star exponentials ez+
1
i~u◦v

∗ and their ordered versions.
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We leave the the finite part regularization method for Fréchet algebra valued functions
in the subsection 6.1. For a holomorphic function f(z) with a pole at z=z0, we define the
finite part of f(z) as

FP(f(z))=
{

f(z) z 6=z0

Resw=0
1
w (f(z0+w)) z=z0.

We first construct the inverses of z+ 1
i~u◦v by using the star exponential function ez+

1
i~u◦v

∗
and a K-ordered expression. We can construct two inverses of z+ 1

i~u◦v as follows:

(z +
1
i~
u◦v)−1

∗+ =
∫ 0

−∞
e
t(z+ 1

i~u◦v)
∗ dt

and
(z +

1
i~
u◦v)−1

∗− = −
∫ ∞

0

e
t(z+ 1

i~u◦v)
∗ dt

(see [7] and [9] for more details). Both inverses have analytic continuations for generic
ordered expression. In §6, we mainly study the inverse (z + 1

i~u◦v)−1
∗+, as the other inverse

has similar properties.
In §6, we show the following:

Theorem 1.1 For generic ordered expressions, the inverses (z+ 1
i~u◦v)−1

∗+, (z− 1
i~u◦v)−1

∗− ex-
tend to E2+(C2)-valued holomorphic functions of z on C−{−(N+ 1

2 )}.

Here, we refer the class E2+(C2) in the subsection 2.2.
Employing the Hadamard technique of extracting finite parts of divergent integrals, we

now extend the definition of the ∗-product using finite part regularization. We define the
new product of (z+ 1

i~u◦v)−1
∗± with either the polynomial q(u, v) or q(u, v)=es

1
i~u◦v
∗ by

(2) (z+
1
i~
u◦v)−1

∗±∗̃q(u, v)=(FP(z+
1
i~
u◦v)−1

∗±)∗q(u, v).

Note that the result may not be continuous in z.
The following is an description of the discrete phenomena for 1

i~u◦v via method 1):

Theorem 1.2 Using definition (2) for the ∗̃-product, we have

(3) (z+
1
i~
u◦v)∗̃(z+ 1

i~
u◦v)−1

∗+=
{

1 z 6∈−(N+ 1
2 )

1− 1
n! (

1
i~u)n∗$00∗vn z=−(n+ 1

2 ) ,

(4) (z− 1
i~
u◦v)∗̃(z− 1

i~
u◦v)−1

∗−=
{

1 z 6∈−(N+ 1
2 )

1− 1
n! (

1
i~v)n∗$00∗un z=−(n+ 1

2 ) .

for generic ordered expressions.

We will interpret this discrete phenomena for 1
i~u◦v via method 2) in a forthcoming

paper.

We would like to thank Steven Rosenberg and Sylvie Paycha for their suggestions about
regularization methods.

Finally, we are honored to contribute our paper to the Proceedings for the 60th birthday
celebration of Jean-Pierre Bourguignon, whose friendship with us for over 20 years we warmly
acknowledge.
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2 General ordered expressions and IOP

We introduce a method to realize the Weyl algebra via a family of ordered expressions. This
leads to a transcendental calculus for the Weyl algebra.

2.1 Fundamental product formulas and intertwiners

Let S(n) and A(n) be the spaces of complex symmetric matrices and skew-symmetric ma-
trices respectively, and set M(n) = S(n)⊕A(n). We denote by uuu the set of generators
uuu = (u1, . . . , u2m). For an arbitrary fixed n×n-complex matrix Λ∈M(n), we define a prod-
uct ∗Λ on the space of polynomials C[uuu] by the formula

(5) f ∗Λ g = fe
i~
2 (

∑←−
∂uiΛ

ij−−→∂uj )g =
∑
k

(i~)k

k!2k
Λi1j1· · ·Λikjk∂ui1· · ·∂uik f ∂uj1· · ·∂ujk g.

It is known and not hard to prove that (C[uuu], ∗Λ) is an associative algebra.
The algebraic structure of (C[uuu], ∗Λ) is determined by the skew-symmetric part of Λ, if

the generators are fixed. In particular, if Λ is a symmetric matrix, (C[uuu], ∗Λ) is isomorphic
to the usual polynomial algebra.

For every symmetric matrix K∈S(n), the operator

(6) I
K

0 (f) = exp
( i~

4

∑
i,j

Kij∂ui∂uj

)
f

gives an isomorphism I
K

0 : (C[uuu], ∗Λ)→ (C[uuu], ∗Λ+K ). Namely, for any f, g ∈ C[uuu] :

(7) I
K

0 (f ∗Λ g) = I
K

0 (f) ∗Λ+K I
K

0 (g).

Let Λ = K+J be the symmetric/skew symmetric parts of Λ, K∈S(n), J∈A(n). Chang-
ing K while leaving J fixed will be called a deformation of the expression of elements, as
the algebra remains in the same isomorphism class.

We view these expressions of algebra elements as analogous to the “local coordinate
expression” of functions on a manifold. Changing K corresponds to a local coordinate
transformation on a manifold. In this context, we call the product formula (5) the K-
ordered expression, i.e. ignoring the fixed skew part J , and ∗

K
stands sometimes for ∗Λ with

J understood.
The big difference from local coordinate expressions for functions on a manifold is pre-

cisely that in our context there is no “underlying topological space”.

In the following we set n = 2m and J =
[

0 −Im
Im 0

]
. (C[uuu], ∗Λ) is called the Weyl

algebra, with isomorphism class denoted by W2m.

According to the choice of K = 0,
[

0 Im
Im 0

]
,

[
0 −Im
−Im 0

]
, the K-ordered expression

is called the Weyl ordered, the normal ordered and the anti-normal ordered expressions,
respectively. The intertwiner between a K-ordered expression and a K ′-ordered expression
is given by

(8) I
K′

K
(f) = exp

( i~
4

∑
i,j

(K
′ij−Kij)∂ui∂uj

)
f (= I

K′

0 (I
K

0 )−1(f)),

giving an isomorphism I
K′

K
: (C[uuu]; ∗

K+J )→ (C[uuu]; ∗
K′+J ) between algebras.
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2.2 Extension of products and intertwiners

In what follows we write ∗K for ∗K+J for simplicity. Let C[uuu][[~]] be the space of all
formal power series in ~ with polynomials in uuu as coefficients. Obviously, the ∗

K
-product

and the intertwiners extend naturally to C[uuu][[~]] by the same formulas. (C[uuu][[~]], ∗
K

) is an
associative algebra and I

K′

K
is an algebra isomorphism from (C[uuu][[~]], ∗

K
) to (C[uuu][[~]], ∗

K′ ).
Let Hol(Cn) be the space of all holomorphic functions on Cn with the topology of uniform

convergence topology on compact domains. The following fundamental lemma follows easily
from the product formula (5) together with Taylor’s formula:

Lemma 2.1 Let p(uuu) be either a polynomial of uuu or an exponential function of a linear com-
bination of generators p(uuu) = e

∑
aiui . Then the left multiplication p(uuu)∗

K
(resp. the right

multiplication ∗
K
p(uuu) ) is a continuous linear mapping from Hol(Cn) to itself. Associativity

(f∗
K
g)∗

K
h = f∗

K
(g∗

K
h) holds if two of f, g, h are polynomials.

For every positive real number p, we set

(9) Ep(Cn) = {f ∈ Hol(Cn) | ‖f‖p,s = sup |f | e−s|ξ|
p

<∞, ∀s > 0}

where |ξ| = (
∑
i |ui|2)1/2. The family of seminorms {|| · ||p,s}s>0 induces a topology on

Ep(Cn) and (Ep(Cn), ·) is an associative commutative Fréchet algebra, where the dot · is the
ordinary product for functions in Ep(Cn).

Let H be a polynomial of order p. Then, eH∈Ep′(Cn) for every p′ > p, but eH 6∈Ep(Cn).
Note also that exp q

√
H∈Ep′/q for every p′ > p on a suitable Riemann surface.

It is easily seen that for 0 < p < p′, there is a continuous embedding

(10) Ep(Cn) ⊂ Ep′(Cn)

as commutative Fréchet algebras (cf. [4],[15]), and that Ep(Cn) is Sp(m,C)-invariant.
It is obvious that every polynomial is contained in Ep(Cn) and that C[uuu] is dense in Ep(Cn)

for any p > 0 in the Fréchet topology defined by the family of seminorms {|| ||p,s}s>0.

Theorem 2.1 Assume 0 < p ≤ 2. The product formula (5) extends in the following way:
(a) The space (Ep(Cn), ∗

K
) forms a complete noncommutative topological associative algebra

over C (cf. [6]).
(b) The intertwiner I

K′

K
extends to an isomorphism of (Ep(Cn), ∗

K
) onto itself (cf.[11]).

See also [15] for the general case with precise proofs and several comments.
It is easily seen that the following identities hold on Ep(Cn), p ≤ 2:

(11) I
K

K′
I
K′

K
= 1, I

K′′

K′
I
K′

K
= I

K′′

K
.

For every f ∈ Ep(Cn) such that p ≤ 2, f(K) = I
K

0 (f) is globally defined on S(n).
Thus, we naturally extend our object f to the space of all mutually intertwined sections

{f(K);K ∈ S(n)} of the trivial bundle
∐
K∈S(n)(Ep(Cn), ∗

K
), 0<p≤2. However, several

anomalous phenomena occur in the space (E2+(Cn), ∗
K

) =
⋂
p>2(Ep(Cn), ∗

K
). See [7]-[9],

[11]-[13].

Theorem 2.2 For every pair (p, p′) such that 1
p + 1

p′ ≥ 1 the product (5) extends to a
continuous bilinear mapping Ep(Cn)× Ep′(Cn)→ Ep∨p′(Cn).
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By Theorems 2.1 and 2.2, associativity f∗(g∗h) = (f∗g)∗h holds for f, g, h∈E2(Cn).
Moreover if one of f, g, h is in Ep(Cn), p > 2, then by using the polynomial approximation
theorem, we have that associativity holds if the two others are in Ep′(Cn) such that 1

p+ 1
p′ ≥ 1.

Since Ep(Cn) is a Fréchet space, we have

Lemma 2.2 Let M be a compact domain in Rm, and let x 7→ fx∈Ep(Cn) be a continuous
mapping of M into Ep(Cn). Then the integral

∫
M
fxdVx of fx on M is an element of Ep(Cn).

3 Star exponential functions

In differential geometry, it is widely accepted that geometrical notions should have coordinate
free expressions. Obviously, the algebraic structure of (C[uuu], ∗Λ) depends only on the skew
part of Λ. This analogy with geometry makes it plausible to introduce the Independence of
Ordering Principle (IOP), namely that the algebraic interpretation of physical phenomena
should be independent of the choice of ordered expression (cf. [1]).

In fact, this principle for the class E2(Cn) is reflected in Theorem 2.1. However, as will be
seen below, we have to think carefully about the true meaning of IOP, since there are many
delicate anomalous phenomena in the transcendental calculus of star-exponential functions.
In spite of these difficulties, we believe that properties which appear in generic (i.e. almost
all/open dense) ordered expressions are fundamental features of this theory. In the end, IOP
provides deeper insight into the extended Weyl algebra.

For an element H∗ of the Weyl algebra, we define the ∗-exponential function etH∗∗ as the
family {ft(K)} of real analytic solutions of the evolution equation

(12)
d

dt
ft(K) = :H∗:K∗Kft(K),

with the initial condition f0(K) = 1. We think of ft(K) as the K-ordered expression of
etH∗∗ , and denote it by :etH∗∗ :

K
= ft(K).

Provided :esH∗∗ :
K

exists for every s∈C, they form a complex one parameter subgroup,
for the exponential law holds by the uniqueness of real analytic solutions. If :esH∗∗ :

K
exists

for every s∈R, it is a real one parameter subgroup.
If we have the real analytic solution of (12) with initial condition f0(K) = g, then it is

natural to denote the solution by :etH∗∗ :
K
∗
K
g. This definition works for g ∈ Ep(C2m), p > 2.

Warning In general, (12) is a misleading definition, as we can expect neither the existence
of a solution of (12), nor any continuity in the initial data. For H∗ = 1

i~u◦v, there are
branching singular points in etH∗∗ . If H∗ is an exponential function such as eauv, then (12)
is not a partial differential equation, but rather a difference-differential equation (cf.[7]).

If H∗ is a quadratic form, :esH∗∗ :
K

is defined with a certain discrete set of singularities, as
we shall see in §3.1. In general, there is no reflection symmetry for the domain of existence
of the solution of (12).

3.1 General properties of ∗-exponential functions

For a given K, suppose that (12) has real analytic solutions in t on some domain D(K)
including 0 for the initial functions 1 and g. We denote the solution of (12) with initial
function g by

(13) :etH∗∗ :
K
∗
K
g, t∈D(K).

Proposition 3.1 If H∗ is a polynomial and :etH∗∗ :
K

is defined on a domain D(K), then
:etH∗∗ :

K
∗
K
p(uuu) is defined for every polynomial p(uuu) on the same domain D(K).

6
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If p(uuu) =
∑
Aα(s)uuuα is a polynomial whose coefficients depend smoothly on s, then the

formula
∂`s:e

tH∗
∗ :

K
∗
K
p(uuu) = :etH∗∗ :

K
∗
K
∂`sp(uuu)

holds for every `.

Proof Multiplying the defining equation (12) by ∗p(uuu) and applying the associativity in
Lemma 2.1, we have

(14)
d

dt
ft(K)∗p(uuu) = :H∗:K∗K (ft(K)∗p(uuu)), f0(K) = 1.

Since ft(K)∗p(uuu) is a real analytic solution, this is written in our notation as etH∗∗ ∗p(uuu).
Applying ∂`s to (14) gives the second assertion by a similar argument. �

Let Pn be the space of polynomials of degree at most n. Then there are natural inclusions
Pn ⊂ Pn+1. We view C[uuu] as the inductive limit lim→Pn with the inductive limit topology.
The second assertion of Proposition 3.1 then yields continuity with respect to the initial
condition in the inductive limit topology. We use this topology in calculations with inverse
elements. However, we should remark that C[uuu] is not a Fréchet space in this topology, as
the first axiom of countability fails.

Remark Although :etH∗∗ :
K
∗
K

0 = 0, since (12) is linear, it does not necessary follow that
limk :etH∗∗ :

K
∗
K
pk(uuu) = 0, when limk pk(uuu) = 0 in the uniform convergence topology. Suppose

etH∗∗ is singular at t = t0. Since :etH∗∗ :
K
∗
K

0 = 0 on an open dense domain, the zero
function is the real analytic solution of (12), but for a series cn∈C such that limn→∞ cn = 0,
limn→∞ :etH∗∗ :

K
∗
K
cn does not converge to 0 in this topology.

In the following, we often omit the subscript K, and so denote ∗
K

, :g∗:K simply by ∗, g∗
when the context is clear.

Suppose H∗ is a polynomial and G(t;K) = :etH∗∗ :
K
∗
K

:g∗:K is defined. Then for every
polynomial p(uuu), G(t;K) satisfies

d

dt
G(t,K)∗

K
p(uuu) = (:H∗:K∗KG(t,K))∗

K
p(uuu) = :H∗:K∗K (G(t,K)∗

K
p(uuu)),

G(0,K)∗
K
p(uuu) = :g∗:K∗Kp(uuu).

Since G(t,K)∗
K
p(uuu) is real analytic in t, we have the following associativity:

Proposition 3.2 If etH∗∗ ∗g∗ is defined for some K, then etH∗∗ ∗(g∗∗p(uuu)) is defined for K
and

etH∗∗ ∗(g∗∗p(uuu)) = (etH∗∗ ∗g∗)∗p(uuu) for every p(uuu)∈C[uuu].

Let H∗ be a polynomial. Since :etH∗∗ ∗H∗:K and :H∗∗etH∗∗ :
K

satisfy the same differ-
ential equation with the same initial data, the uniqueness of real analytic solutions gives
:etH∗∗ ∗H∗:K = :H∗∗etH∗∗ :

K
.

Using this, we also have

Proposition 3.3 If H∗ is a polynomial such that etH∗∗ is defined, then :etH∗∗ :
K

is the real
analytic solution ht(K) of the equation

(15)
d

dt
ht(K) = ht(K)∗

K
:H∗:K

with the initial condition h0(K) = 1.
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From this fact, we see that p(uuu)∗etH∗∗ is the solution of (15) with the initial condition
h0=p(uuu). Hence the exponential law and the uniqueness of solutions give

(16) esH∗∗ ∗(etH∗∗ ∗p(uuu))=e(s+t)H∗
∗ ∗p(uuu), (p(uuu)∗esH∗∗ )∗etH∗∗ =p(uuu)∗e(s+t)H∗

∗ .

Let ad(H∗)(h)=[H∗, h]=H∗∗h−h∗H. If H∗ is a quadratic form, then ad(H∗) defines a
linear transformation on the linear hull of the generators. By exponentiation, exp sad(H∗)
is a degree preserving linear transformation on the space C[uuu] of polynomials such that

[(exp sad(H∗))f, (exp sad(H∗))g]=(exp sad(H∗))[f, g].

Note also that (exp tad(H∗))(p(uuu)) is the solution ft of

d

dt
ft=[H∗, ft], f0 = p(uuu).

Since ps(uuu)=(exp sad(H∗))(p(uuu)) is a polynomial, we see by Proposition 3.1

d

ds
e−sH∗∗ ∗ps(uuu)=e−sH∗∗ (−H∗∗ps(uuu)+[H∗, ps(uuu)])=e−sH∗∗ ∗ps(uuu)∗(−H∗).

Since esH∗∗ ∗ps(uuu)|s=0=p(uuu), we have

(17) e−sH∗∗ps(uuu)=p(uuu)∗e−sH∗∗ .

Combining (17) with (16), we get the following associativity:

(18) esH∗∗ ∗(p(uuu)∗etH∗∗ )=(esH∗∗ ∗p(uuu))∗etH∗∗ .

It also follows that

(19) esH∗∗ ∗(p(uuu)∗e−sH∗∗ )=(esH∗∗ ∗p(uuu))∗e−sH∗∗ =(exp sad(H∗))(p(uuu)).

3.2 Star-exponentials of quadratic forms in the normal ordered ex-
pression

In this section, we set n=2m and u=(u1, · · · , um), v=(v1, · · · , vm)=(um+1, · · · , u2m). For
every C = (Cij) ∈M(m), we consider C(u, v) =

∑
Cijuivj . The star exponential function

of this special quadratic form is easily obtained in the normal ordered expression, since no

anomalous phenomena occur. By setting Λ=K0+J , K0=
[
0 I
I 0

]
in the product formula

(5), a direct calculation gives

(20) ge
2
i~

∑
Aklukvl∗

K0
g′e

2
i~

∑
Bstusvt = gg′e

2
i~

∑
Cijuivj ,

where C = A+B + 2AB. For (g;A) = ge
2
i~

∑
Aklukvl , this product formula becomes

(21) (g;A)∗
K0

(g′;B) = (gg′;A+B + 2AB), (g;A), (g′;B) ∈ C×M(m).

Note that
(I + 2A)(I + 2B) = I + 2(A+B + 2AB).

Under the correspondence A ↔ I + 2A, the structure of the usual matrix algebra M(m) is
carried over to the space {e 2

i~C(u,v);C ∈M(m)}. However, note here that 0 corresponds to
I. In (21) we see that (−I)+(−I)+2(−I)(−I)=0, and − 1

2I+C+2(− 1
2I)C=− 1

2I for every
C.
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Although these elements are in E2+(Cn), associativity still holds for the products

(22) (g;A)∗
K0

((g′;B)∗
K0

(g′′;C))=((g;A)∗
K0

(g′;B))∗
K0

(g′′;C),

and
e

2
i~C(u,v)∗

K0
e
i
~ I(u,v) = e

i
~ I(u,v)∗

K0
e

2
i~C(u,v) = e

i
~ I(u,v).

By (21), we see that

(23) e
1
i~ (eisC−I)(u,v)∗

K0
e

1
i~ (eitC−I)(u,v) = e

1
i~ (ei(s+t)C−I)(u,v).

Differentiating the exponential law (23) to obtain the K0-expression (the normal ordered
expression) of the ∗-exponential function, we have

(24) :e
it
i~

∑
Ckluk∗vl

∗ :
K0

= e
1
i~

∑
(eitC−I)klukvl .

This is holomorphic in t∈C and the r.h.s of (24) is contained in E2+(C2).
Set

a◦b=
1
2

(a∗b+b∗a).

By the exponential law for scalar exponential functions, (24) becomes

(25) :e
it
i~

∑
Ckluk◦vl

∗ :
K0

= e
it
2 Tr(C)e

1
i~

∑
(eitC−I)klukvl .

This is also a holomorphic one parameter group contained in (E2+(C2); ∗
K0

). However, this

property of e
it
i~

∑
Ckluk◦vl

∗ is not generic, as we see in §3.3. Indeed, a generic element has
branching singular points periodically distributed in C. On the other hand, for the special
case C=I, we see that :e

2πi
i~

∑
uk◦vk

∗ :
K0

= (−1)m. Intertwiners map scalars to scalars, but may

change the sign of the scalar (−1)m in this equation. The property that :e
2πi
i~

∑
uk◦vk

∗ :
K

= ±1
is generic.

We note that limt→−∞ :et
1
i~

∑
uk◦vk

∗ :
K0

= 0 but limt→∞ :et
1
i~

∑
uk◦vk

∗ :
K0

=∞. It is rather
surprising that the finiteness of the integral

:
∫ ∞
−∞

e
it 1
i~u◦v
∗ dt:

K
∈ E2+(C2)

is a generic property, as we will see in §3.4.

3.3 Intertwiners for exponential functions of quadratic forms

In this section we extend intertwiners to the space CeS(2m) of exponential functions of
quadratic forms ge〈uuuQ,uuu〉, where g ∈ C, Q ∈ S(2m). This will be used to obtain K-ordered
expressions of star-exponential functions of quadratic forms.

The exact formula for intertwiners is obtained by solving the evolution equation

d

dt
g(t)e

1
i~ 〈uuuQ(t),uuu〉 =

∑
ij

Kij∂ui∂uj
(
g(t)e

1
i~ 〈uuuQ(t),uuu〉), Q(0) = A, g(0) = g

by setting

(26) et
∑
ij K

ij∂ui∂uj (ge
1
i~ 〈uuuA,uuu〉) = g(t)e

1
i~ 〈uuuQ(t),uuu〉.
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A direct calculation gives∑
i

Kij∂ui∂uj
(
g(t)e

1
i~ 〈uuuQ(t),uuu〉) = g(t)

(
2TrK

1
i~
Q(t) + 4

1
(i~)2

(QKQ)ijuiuj
)
e

1
i~ 〈uuuQ(t),uuu〉.

To find the intertwiner, we solve the ODE system:
d

dt
Q(t) =

4
i~
Q(t)KQ(t)

d

dt
g(t) = g(t)(

2
i~

TrKQ(t))
Q(0) = A, g(0) = g.

Then Q(t) = 1
I− 4t

i~AK
A, g(t) = g(det(I − 4t

i~AK))−1/2 is the solution of the ODE system by
the uniqueness of real analytic solutions.

Here the inverse matrix of X is denoted by 1
X . Note also that 1

X
1
Y = 1

Y X . It is easy to
check that 1

I−AKA is a symmetric matrix by the identity:

(27)
1

I−AK
A = A

1
I−KA

.

Setting t = ~i
4 , we can build the intertwiner I

K

0 from

(28) Q(
~i
4

) =
1

I −AK
A, g(

~i
4

) = g(det(I −AK))−
1
2 .

as follows. For ge
1
i~ 〈uuuA,uuu〉 = (g;A) as before, we call g and A the amplitude and phase part

of (g;A), respectively. In this notation, we see that

I
K

0 (g;A) =
(
g det(I −AK)−

1
2 ;TK(A)

)
,

where TK : S(2m)→ S(2m), TK(A) = 1
I−AKA is the phase part of the intertwiner I

K

0 .

Computing the inverse I0
K

= (I
K

0 )−1 and taking the composition I
K′

0 I0
K

, we easily obtain

(29) I
K′

K
(g;A) =

(
g det(I−A(K ′−K))−

1
2 ;

1
I−A(K ′−K)

A
)
.

The mapping (29) is singular at those A where either det(I−A(K ′−K))=0 or the sign
ambiguity in the square root cannot be removed. We denote the phase part of the intertwiner
I
K′

K
by T

K′

K
(A)= 1

I−A(K′−K)A.
Note that the identities

T
K′

K
∼TK′(TK)−1, I

K′

K
∼I

K′

0 I0
K

hold in the same sense as the algebraic identities x/x=1,
√

1+x/
√

1+x=1, i.e. whenever
the denominator is nonzero. Here we use the notation ∼ to distinguish such an algebraic
calculation. Singularities are moving by this algebraic trick.

By setting B= 1
I−A(K′−K)A, the r.h.s of (29) is

(
g det(I+B(K ′−K))

1
2 ;B

)
. Moving

branching singularities are a remarkable feature of this calculus.

For every A, ge
1
i~ 〈uuuA,uuu〉 is an element of E2+(Cn). If (g(·), A(·)) is a a continuous mapping

from a compact manifold M into C×S(n), then Lemma 2.2 shows that∫
M

g(x)e
1
i~ 〈uuuA(x),uuu〉dVx ∈ E2+(Cn).

Suppose further that M is simply connected. Since the intertwiner I
K′

K
is given in a concrete

form, we see the following:
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Lemma 3.1 For every K,K ′∈S(n),

I
K′

K

(∫
M

g(x)e
1
i~ 〈uuuA(x),uuu〉dVx

)
=
∫
M

g(x)I
K′

K

(
e

1
i~ 〈uuuA(x),uuu〉

)
dVx

is also an element of E2+(Cn) whenever det(I−A(x)(K ′−K)) is nowhere zero on M .

3.4 The general ordered expression of e
t(z+ 1

i~ u◦v)
∗

From here on, we set n=2m=2, and (u1, u2)=(u, v). We are mainly concerned with functions

of u◦v = 1
2 (u∗v+v∗u) alone. The general ordered expression :et(z+

1
i~u◦v)

∗ :
K

will be given by
applying intertwiners to the normal ordered expression.

For this purpose, we set 2u◦v=〈uuuA,uuu〉, where uuu=(u, v), A=
[
0 1
1 0

]
. The intertwiner I

K′

K

is given by (29).

We determine the formula of a general ordering expression :et
1
i~ 2u◦v
∗ :

K
, K=

[
δ′ λ
λ δ

]
,

λ, δ, δ′∈C.

Setting B=
[

0 β
β 0

]
, we note that

(I−B(K −K0))−1B=
1

(1−β(λ−1))2−β2δδ′

[
β2δ (1−β(λ−1))β

(1−β(λ−1)β β2δ′

]
Recalling the formulas (24) and (29), we have

:et
1
i~ 2u◦v
∗ :

K
=

2√
∆2−(et−e−t)2δδ′

× exp
1
i~

et−e−t

∆2−(et−e−t)2δδ′

(
(et−e−t)δu2+∆2uv+(et−e−t)δ′v2

)
where ∆=(et+e−t)−λ(et−e−t). Here we note that the sign ambiguity of the square root is
removed by choosing a path from the t = 0 to t on which no singular point appears, and by
choosing the initial condition e

0 1
i~ 2u◦v
∗ =1 at t=0.

Replacing t by it, we see that

(30) :e
it
i~ 2u◦v
∗ :

K
=

1√
∆(K)(t)

exp
1
~

sin t
∆(K)(t)

〈uuu
[

iδ sin t cos t−iλ sin t
cos t−iλ sin t iδ′ sin t

]
, uuu〉,

where

(31) ∆(K)(t)=
(

cos t−i(λ+
√
δδ′) sin t

)(
cos t−i(λ−

√
δδ′) sin t

)
Note that λ+

√
δδ′ and λ−

√
δδ′ can be arbitrary complex numbers. Both (30) and (31)

are π-periodic. Here we note that the sign of
√

∆(K)(t) depends on the ordered expression

parameter K. It follows that :eπi
1
i~ 2u◦v

∗ :
K

= 2√
(−2)2

, which is ±1 depending on K and the

path from 0 to πi.

In the remainder of this section, we comment on the appearance of these singular points.
The sign ambiguity of √ cannot be removed on the whole complex plane. Thus these ∗-
exponentials are double valued functions of t∈C in general (cf. [11], [12]). The sign ambiguity

is removed only when δδ′=0 by choosing the initial condition e
0 1
i~ 2u◦v
∗ =1 at t=0. In this

11

KSTS/RR-08/001
April 3, 2008



case, cusp singular points appear π (and not 2π)-periodically along a line parallel to the real
axis. However, singular points are not stable under general intertwiners, as intertwiners are
double valued in general (cf. [11]).

From these observations we see that in generic ordered expressions the singular points
of :eit

1
i~ 2u◦v
∗ :

K
appear π-periodically on two lines parallel to the real axis and the ordered

expression has e−|t|-decay on any line parallel to the imaginary axis. Moreover, the generic
ordered expression does not have singular points, and the existence of

∫
R e

t 1
i~u◦v
∗ dt is a

generic property. However, we see there are several categories for the behavior of expression
parameters.

To fix the notation, we denote by D the open dense domain of expression parameters
K such that :e

it
i~ 2u◦v
∗ :

K
has no singular point on either the real or imaginary axis. Generic

patterns of the properties for :e
it
i~ 2u◦v
∗ :

K
are as follows:

(1) On a domain D+ (resp. D−) for the parameter K, the singular set of :e
it
i~ 2u◦v
∗ :

K
appears

only in the open lower (resp. upper) half plane, and the ∗-exponential functions form a
complex semi-group over the upper (resp. lower) half plane without sign ambiguity by

demanding the value 1 at t=0. :e±
it
i~ 2u◦v
∗ :

K
, is alternating π-periodic on the real axis (we

call f(z) alternating π periodic if f(z + nπ) = (−1)nf(z) for any integer n).

(2) On a domain D0 for the parameter K, the singular set occurs in both the upper and

lower half-planes, but not on the real axis. In this domain, :e±
it
i~ 2u◦v
∗ :

K
, is π-periodic on the

real axis by demanding the value 1 at t=0.

Note Some delicate arguments about the winding number are required to determine the
periodicity of :e±

it
i~ 2u◦v
∗ :

K
, as will be discussed in a forthcoming paper.

3.5 Star exponential functions of general quadratic forms

In this section we give without proof formulas for K-ordered expressions of star exponential
functions of general quadratic form, with details in [12].

As in [17], star exponential functions e
1
i~ 〈ξξξ,uuu〉
∗ for a linear form 〈ξξξ,uuu〉 are well defined as the

family {e 1
4i~ 〈ξξξK,ξξξ〉e

1
i~ 〈ξξξ,uuu〉,K∈S(n)}. However, for a quadratic form 〈uuuA,uuu〉∗ =

∑
Akluk◦ul,

the star exponential function e
t
i~ 〈uuuA,uuu〉∗
∗ will be defined only on a dense domain of K-ordered

expressions, and is in general a double valued function of t∈C (cf. [12]).
For every α∈sp(m,C), we first consider the one parameter subgroup e−2tα of Sp(m,C),

and consider the inverse image of the twisted Cayley transform C−1
κ (e−2tα): For κ∈sp(m,C),

we set

(32) C−1
κ (e−2tα) =

1
(I−κ)+e−2tα(I+κ)

(I−e−2tα) =
1

cosh tα−(sinh tα)κ
sinh tα.

The exponential function must lie in a certain submanifold D̃κ through (1; 0), and points
of this manifold are determined by their phases. Setting κ = JK, we have

(33) :es
1
i~ 〈uuu(αJ),uuu〉∗
∗ :

K
=
(

det(I+C−1
κ (e−2sα)(I+κ))

) 1
2 e

1
i~ 〈uuu(C−1

κ (e−2sα)J),uuu〉.

More precisely, for every α∈sp(m,C), the K-ordered expression of the ∗-exponential function
is given as follows (see [11]-[14] for special cases):

(34) :e
t
i~ 〈uuu(αJ),uuu〉∗
∗ :

K
=

2m√
det(I−κ+e−2tα(I+κ))

e
t
i~ 〈uuu

1
I−κ+e−2tα(I+κ)

(I−e−2tα)J,uuu〉
.

12

KSTS/RR-08/001
April 3, 2008



It is not hard to see that (34) is the real analytic solution of (12). Note that det etαI=1 for
every α∈sp(m,C). Thus (34) can be rewritten as

(35) :e
t
i~ 〈uuu(αJ),uuu〉∗
∗ :

K
=

2m√
det(etα(I−κ)+e−tα(I+κ))

e
t
i~ 〈uuu

1
etα(I−κ)+e−tα(I+κ)

(etα−e−tα)J,uuu〉

In spite of the sign ambiguity of the square root, the exponential law

(36) :es
1
i~ 〈uuu(αJ),uuu〉∗
∗ :

K
∗
K

:et
1
i~ 〈uuu(αJ),uuu〉∗
∗ :

K
=:e(s+t) 1

i~ 〈uuu(αJ),uuu〉∗
∗ :

K

holds using
√
a
√
b=
√
ab without regard to sign ambiguities, as the exponential law and

associativity hold on the group Sp(m,C). Note however that we allow
√

1=± 1.
To treat these formulas without sign ambiguity, we always have to specify a path with

no singular points from t = 0 to the considered point.

From (34) we derive the following:

Proposition 3.4 If e2πα=I (e.g. α=J), then :eπ
1
i~ 〈uuuαJ,uuu〉∗
∗ :

K
=
√

1 independent of K.

The sign of
√

1 depends on the K-ordered expression and also on a path from 0 to π as
above.

Hence, even though (
√

1)2=1 is trivial, the strict exponential law may fail, that is,

:e2π 1
i~ 〈uuuαJ,uuu〉∗

∗ :
K

= 1 or :eπ
1
i~ 〈uuuαJ,uuu〉∗
∗ :

K
∗
K

:eπ
1
i~ 〈uuuαJ,uuu〉∗
∗ :

K
= 1 may not hold automatically. If

:et
1
i~ 〈uuuαJ,uuu〉∗
∗ :

K
has a singular point on the interval [0, 2π], then it may happen that

(eπ
1
i~ 〈uuuαJ,uuu〉∗
∗ )2 6= e

2π 1
i~ 〈uuuαJ,uuu〉∗

∗ ,

although equality holds up to sign. In spite of this, we have

Proposition 3.5 If e2πα=I, then (eπ
1
i~ 〈uuuαJ,uuu〉∗
∗ )2=1 for every K-ordered expression such

that :et
1
i~ 〈uuuαJ,uuu〉∗
∗ :

K
has no singular point on the interval [0, π].

Proof Note first that this is by no means trivial, because :et
1
i~ 〈uuuαJ,uuu〉∗
∗ :

K
may have a singular

point on the interval [π, 2π]. Since :eπ
1
i~ 〈uuuαJ,uuu〉∗
∗ :

K
= ±1, one can define

:et
1
i~ 〈uuuαJ,uuu〉∗
∗ :

K
∗
K

:1:
K
, or :et

1
i~ 〈uuuαJ,uuu〉∗
∗ :

K
∗
K

:(−1):
K

by the solution of the evolution equation (12). By Proposition 3.2,

:et
1
i~ 〈uuuαJ,uuu〉∗
∗ :

K
∗
K

:eπ
1
i~ 〈uuuαJ,uuu〉∗
∗ :

K

is the solution of (12). This gives the result. �

By (34), we also see that :es
1
i~ 〈uuu(αJ),uuu〉∗
∗ :

K
has in general discrete branching singularities

in C with some periodicity depending on the parameter κ=JK.

4 Criteria for associativity

In this section, we give several criteria which imply associativity for the extended product
∗
K
. However, we note that there is no generally applicable lemma guaranteeing associativity.

For simplifying notation, we often omit the subscript K of the product ∗
K

and the expression
: :
K

if it contains no confusion.
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4.1 Remarks on star exponential functions

We first note how to define rigorously the product of star exponential functions and a general
function e

z 1
i~u◦v
∗ ∗f(u, v). There are essentially two approaches. The first is, as mentioned

in §3.1, to use the real analytic solution ft of

d

dt
ft=

1
i~
u◦v∗ft,

with the initial condition f0=f(u, v) provided such a solution exists. The second approach
is to define

e
z 1
i~u◦v
∗ ∗f(u, v)= lim

n→∞
e
z 1
i~u◦v
∗ ∗fn(u, v), if f(u, v)= lim

n→∞
fn(u, v),

where fn are polynomials. These two definitions do not coincide in general, since multiplica-
tion by ez

1
i~u◦v
∗ ∗ is not a continuous linear mapping of Hol(C2) to itself (cf. (42), (43)). Note

that ez
1
i~u◦v
∗ ∈E2+(C2). If f(u, v)∈E2−(C2)=

⋃
p<2 Ep(C2) with the inductive limit topology,

then the two definitions coincide.

Since star exponential functions of quadratic forms are elements of E2+(Cn), their product
may not be defined, and even if the product is defined associativity may not hold.

We show that
∫∞
−∞ e

t 1
i~u◦v
∗ dt∈E2+(C2) in the Weyl ordered expression. In the Weyl

ordered expression, we have :et
1
i~u◦v
∗ :0= 1

cosh t
2
e(tanh t

2 ) 1
i~ 2uv. Thus,

:
∫

R
e
t 1
i~u◦v
∗ dt:0 =

∫ ∞
−∞

1
cosh t

2

e(tanh t
2 ) 1
i~ 2uvdt.

For cos s= tanh t
2 , −2 sin sds= sin2 sdt, the integral on the r.h.s. of the last equation becomes

2
∫ 0

−π
e(cos s) 1

i~ 2uvds=
∫ π

−π
e(cos s) 1

i~ 2uvds.

Since g(s) = e(cos s) 1
i~uv is a continuous curve in E2+(C2), Lemma 2.2 implies that the last

integral belongs to E2+(C2). Hence, by Lemma 3.1 this property is generic.

Using the intertwiner I
K

0 , we see that :
∫

R e
t 1
i~u◦v
∗ dt:

K
=
∫ π
−π :e(cos s) 1

i~ 2u◦v:
K
ds ∈ E2+(C2).

Then we have

Proposition 4.1 In generic ordered expressions, the integral :
∫∞
−∞ e

t 1
i~u◦v
∗ dt:

K
is in E2+(C2).

Furthermore, integration by parts gives d
dθ

∫∞
−∞ e

eiθt 1
i~u◦v

∗ eiθdt=0 whenever the integral is
defined.

We have seen that in generic ordered expressions, 1
i~u◦v has two different inverses,

( 1
i~
u◦v
)−1

∗+=
∫ 0

−∞
e
t 1
i~u◦v
∗ dt,

( 1
i~
u◦v
)−1

∗−=−
∫ ∞

0

e
t 1
i~u◦v
∗ dt

in the space E2+(Cn), which implies the failure of associativity in general:

(37)
(

(
1
i~
u◦v)−1

∗+∗(
1
i~
u◦v)

)
∗( 1
i~
u◦v)−1

∗− 6= (
1
i~
u◦v)−1

∗+∗
(

(
1
i~
u◦v)∗( 1

i~
u◦v)−1

∗−

)
.

Indeed ( 1
i~u◦v)−1

∗+∗( 1
i~u◦v)−1

∗− diverges in any ordered expression. This gives an example
where (f∗g)∗h=f∗(g∗h) does not hold even if g is a polynomial.
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4.2 Basic criteria for associativity for the extended product

Suppose f, g∈Hol(Cn) are given by f= lim fk, g= lim g` in the topology of Hol(Cn) for se-
quences {fk}, {g`} ⊂ Hol(Cn). Even if f∗g and lim` f∗g` exist, f∗g may not equal lim` f∗g`,
since f∗ is not continuous in general. Moreover, it may happen that even though lim g` di-
verges, lim` f∗g` exists.

If f= lim fk, g= lim g`, we have

lim
k
fk∗p(uuu)=f∗p(uuu), lim

`
p(uuu)∗g`=p(uuu)∗g

for every polynomial. However, as we saw in (37), we may have

lim
k

(lim
`
fk∗(p(uuu)∗g`)6= lim

`
(lim
k
fk∗p(uuu))∗g`),

even if both sides exist. In this case, lim(k,`) fk∗p(uuu)∗g` does not converge.
Suppose fk∗g` converges to an element h in Hol(Cn). Then we define f∗g=h, i.e.

(38) f∗g = lim
(k,`)→∞

fk∗g`=h.

where in the limit k2 + `2 →∞. The same definition is also employed for the product

(39)
∫ 0

−∞
f(s)es(z+

1
i~u◦v)

∗ ds∗
∫ 0

−∞
g(t)et(z+

1
i~u◦v)

∗ dt= lim
(S,T )

∫∫ (0,0)

−(S,T )

f(s)g(t)e(s+t)(z+ 1
i~u◦v)

∗ dsdt

although these integrals are not in E2(Cn).

Suppose f, g∈Hol(Cn) are given as f= lim fk, g= lim g` in the topology of Hol(Cn) as
above. For polynomials p(uuu), q(uuu), Lemma 2.1 gives that limk p(uuu)∗fk=p(uuu)∗f , limk q(uuu)∗gk=q(uuu)∗g.

Lemma 4.1 Suppose that associativity holds for the approximating series:

(p(uuu)∗fk)∗(q(uuu)∗g`)=((p(uuu)∗fk)∗q(uuu))∗g`),

and lim(k,`)(p(uuu)∗fk)∗(q(uuu)∗g`) converges to an element h in Hol(Cn). Then (p(uuu)∗f)∗(q(uuu)∗g)
equals h, and the following associativity holds:

(p(uuu)∗f)∗(q(uuu)∗g)=(p(uuu)∗f∗q(uuu))∗g.

Proof By definition, we have (p(uuu)∗f)∗(q(uuu)∗g)= lim(k,`)(p(uuu)∗fk)∗(q(uuu)∗g`). Using the
associativity of the inside of the r.h.s. of the last equation in Lemma 4.1, we have

lim
(k,`)

(p(uuu)∗fk)∗(q(uuu)∗g`)= lim
(k,`)

(p(uuu)∗fk∗q(uuu))∗g`.

From Lemma 2.1, we see that limk p(uuu)∗(fk∗q(uuu)) = p(uuu)∗f∗q(uuu). It follows that

(p(uuu)∗f)∗(q(uuu)∗g)= lim
(k,`)

(p(uuu)∗(fk∗q(uuu)))∗g`=(p(uuu)∗f∗q(uuu))∗g.

�
Note that if the approximating series are in E2(Cn), then associativity holds before the

limiting procedure.

Lemma 4.2 Suppose f, g, f∗g are given as in (38). Then, for any polynomials p(uuu), q(uuu),
the product (p(uuu)∗f)∗(g∗q(uuu)) is defined and associativity holds:

(p(uuu)∗f)∗(g∗q(uuu))=p(uuu)∗(f∗g)∗q(uuu).
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Proof By Lemma 2.1, we see that p(uuu)∗f= limk p(uuu)∗fk, g∗q(uuu)= lim`(g`∗q(uuu)), and the
product is defined by

(p(uuu)∗f)∗(g∗q(uuu))= lim
(k,`)

(p(uuu)∗fk)∗(g`∗q(uuu))= lim
(k,`)

p(uuu)∗(fk∗g`)∗q(uuu).

Hence Lemma 2.1 gives (p(uuu)∗f)∗(g∗q(uuu))=p(uuu)∗(f∗g)∗q(uuu). �

It does not seem that the existence of lim(k,`) fk∗g` yields that of lim(k,`) fk∗(p(uuu)∗g`)
or lim(k,`)(fk∗p(uuu))∗g` for every polynomial p(uuu). In spite of this, we have the following for
the special element u◦v:

Lemma 4.3 If (39) is defined, then∫ 0

−∞
f(s)es(z+

1
i~u◦v)

∗ ds∗p(uuu)∗
∫ 0

−∞
g(t)et(z+

1
i~u◦v)

∗ dt

is defined for every polynomial p(uuu).

Proof Using the “bumping identity” :

v∗f(u∗v)=f(v∗u)∗v

several times, we find a polynomial p̃(uuu) such that

p(uuu)∗
∫ 0

−∞
g(t)et(z+

1
i~u◦v)

∗ dt=
∫ 0

−∞
g(t)p(uuu)∗et(z+

1
i~u◦v)

∗ dt=
∫ 0

−∞
g(t)et(z+

1
i~u◦v)

∗ dt∗p̃(uuu).

Hence Lemma 4.2 gives the result. �

In the general setting, suppose the limits f∗g= lim(k,`) fk∗g` in (38) and lim(k,`) ∂
αfk∗∂βg`

exist for every α, β. Then it is not hard to show the existence of lim(k,`) fk∗(p(uuu)∗g`) and
lim(k,`)(fk∗p(uuu))∗g` for every polynomial p(uuu).

The following is useful in concrete computations. Note that for (C[uuu][[~]], ∗
K

), the space
of formal power series in ~, the ∗

K
-product is always defined by the product formula (5) and

associativity holds. The elements of E2+(Cn) are often given as a real analytic function of ~
defined on a certain interval containing ~ = 0.

The following is easy to see:

Lemma 4.4 Suppose f(~,uuu), g(~,uuu) and h(~,uuu) are given as real analytic functions of ~
in some interval [0, H].

If f(~,uuu)∗g(~,uuu), (f(~,uuu)∗g(~,uuu))∗h(~,uuu), g(~,uuu)∗h(~,uuu) and f(~,uuu)∗(g(~,uuu)∗h(~,uuu))
are defined as real analytic functions on [0, H], then the following associativity holds:(

f(~,uuu)∗g(~,uuu)
)
∗h(~,uuu) = f(~,uuu)∗

(
g(~,uuu)∗h(~,uuu)

)
Remark In the following, elements are often given in the form f( 1

i~ϕ(t),uuu) for a real
analytic function f(t,uuu) in t∈[0, T ], where ϕ(t) is a real analytic function such that ϕ(0)=0
(cf. (24)). In such a case, replacing t by s~ gives a real analytic function of ~, and such an
element lies in (C[uuu][[~]], ∗

K
). Thus, we can apply Lemma 4.4.

However, there are many elements in E2+(Cn) of the form f( 1
i~ϕ(t),uuu) such that ϕ(0)6=0.

For these elements we have to use Lemmas 4.1 and 4.2 carefully.
As mentioned before, we know that :et

1
i~u◦v
∗ :

K
∈Hol(C2) for every fixed t whenever de-

fined. We also see that :et
1
i~u◦v
∗ :

K
is rapidly decreasing with respect to t in a generic ordered

expression.
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5 Vacuums and their matrix element expressions

In this section, we give properties of vacuums which we can compare to similar properties
in operator theory.

Noting that v∗u=u◦v+ 1
2 i~, we begin with the following:

Proposition 5.1 In generic ordered expressions with no singular points on the real axis,
we have

lim
t→−∞

e
t 1
i~ 2v∗u
∗ =0, lim

t→∞
e
t 1
i~ 2u∗v
∗ =0,

and the following limits exist:

lim
t→∞

e
t 1
i~ 2v∗u
∗ =$00, lim

t→−∞
e
t 1
i~ 2u∗v
∗ =$00.

We call $00 and $00 the vacuum and bar-vacuum respectively. Strictly speaking, such
vacuums should be defined together with the one parameter semigroups et

1
i~ 2v∗u
∗ , e−t

1
i~ 2v∗u

∗ ,
t≥0, for they depend on the K-ordered expression and may change sign if there are singular
points on t≥0. When the ordered expressions K(s), s∈I, move along a curve, we require that

:et
1
i~ 2u∗v
∗ :

K(s) has no singular point on [0,∞)×I. Since the ∗-exponential function e
t 1
i~ 2u∗v
∗

can be defined as a single valued element by requiring it equal 1 at t=0, the sign ambiguity
does not occur in the K-ordered expression. Thus, we have

(40)

lim
t→∞

:et
1
i~ 2v∗u
∗ :

K
=

2√
(1−λ)2+δδ′

e
1
i~

1
(1−λ)2−δδ′

(δu2+(1−λ)2uv+δ′v2)
,

lim
t→−∞

:et
1
i~ 2u∗v
∗ :

K
=

2√
(1+λ)2+δδ′

e
− 1
i~

1
(1+λ)2−δδ′

(δu2+(1+λ)2uv+δ′v2)
,

lim
t→−∞

:et
1
i~ 2v∗u
∗ :

K
=0, lim

t→∞
:et

1
i~ 2u∗v
∗ :

K
=0.

The exponential law gives

$00∗0$00=$00, $00∗0$00=$00.

However, we easily see

Theorem 5.1 The product $00∗0$00 diverges in any ordered expression.

The existence of the limits (40) also gives

u∗v∗$00 = 0 = $00∗u∗v,

but the bumping identity v∗f(u∗v)=f(v∗u)∗v gives the following:

Lemma 5.1 v∗$00=0=$00∗u in generic ordered expressions.

Proof Using the continuity of v∗, we see that v∗ limt→−∞ e
t 1
i~ 2u∗v
∗ = limt→−∞ v∗et

1
i~ 2u∗v
∗ .

Hence, the bumping identity proved by the uniqueness of the real analytic solution for linear
ODE and (40) give limt→−∞ e

t 1
i~ 2v∗u
∗ ∗v=0. �.

The following identities ensure associativity:

Lemma 5.2 $00∗(up∗$00)=0, and ($00∗vp)∗$00=0.
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Proof By the formal power series expansion in i~ for esu∗v∗ , associativity for the equations
in Lemma 5.2 holds, and the following computation is justified by the bumping identity:

esu∗v∗ ∗(up∗etu∗v∗ )=(esu∗v∗ ∗up)∗etu∗v∗ =up∗e(s+t)u∗v+i~ps
∗ .

The r.h.s of this equation is continuous in s, t. In particular,

lim
t→a

esu∗v∗ ∗(up∗etu∗v∗ )=esu∗v∗ ∗ lim
t→a

(up∗etu∗v∗ ).

Using the bumping identity, we have

esu∗v∗ ∗(up∗ lim
t→−∞

etu∗v∗ )=esu∗v∗ ∗ lim
t→−∞

up∗etu∗v∗ = lim
t→−∞

up∗e(s+t)u∗v+i~ps
∗

=up∗ lim
t→−∞

e
(s+t)u∗v+i~ps
∗ =upei~ps∗$00.

It follows that

$00∗(up∗$00)= lim
s→−∞

e
s 1
i~u∗v
∗ ∗( lim

t→−∞
up∗et

1
i~u∗v
∗ )= lim

s→−∞
upeps∗$00=0.

Similarly, we also have ($00∗vp)∗$00=0. �

Lemma 5.3 For every polynomial f(u, v)=
∑
apqu

p∗vq,

$00∗(f(u, v)∗$00)=f(0, 0)$00=($00∗f(u, v))∗$00.

Consequently, associativity holds for $00∗f(u, v)∗$00 for all polynomials f(u, v) .

Reasoning as above, we see that

(esu∗v∗ ∗vq)∗(up∗etu∗v∗ )=esu∗v∗ ∗(vq∗up∗etu∗v∗ )=e(q−p)ti~e
(s+t)u∗v
∗ ∗vq∗up for q ≥ p,

(esu∗v∗ ∗vq)∗(up∗etu∗v∗ )=esu∗v∗ ∗(vq∗up∗etu∗v∗ )=vq∗up∗e(s+t)u∗v
∗ ∗e(p−q)si~ for q ≤ p.

Replacing s, t by 1
i~s,

1
i~ t and taking the limits t→ −∞ and s→∞ for the case p ≥ q and

q ≥ p respectively, we have

(41) ($00∗vq)∗(up∗$00)=δp,qp!(i~)p=$00∗(vq∗up∗$00)=($00∗vq∗up)∗$00.

Since $00∗vq∗up∗$00=δp,qp!(i~)p$00, we have the following:

Proposition 5.2 1√
p!q!(i~)p+q

up∗$00∗vq is the (p, q)-matrix element.

As mentioned in the Remark in §3.4, we have two definitions of ez
1
i~u◦v
∗ ∗f(u, v). However,

both definitions satisfy

(42) e
z 1
i~u◦v
∗ ∗$00=e−

1
2 z∗$00.

Remark In contrast, since 1
i~u◦v∗δ∗(

1
~u◦v)=0, where δ∗( 1

~u◦v) =
∫∞
∞ es

1
i~u◦v, we must

set et
1
i~u◦v
∗ ∗δ∗( 1

~u◦v)=δ∗( 1
~u◦v) as the real analytic solution of d

dtft=
1
i~u◦v∗ft. However,

computing

lim
N→∞

e
t 1
i~u◦v
∗ ∗

∫ N

−N
e
s 1
i~u◦v
∗ ds = lim

N→∞

∫ N

−N
e

(t+s) 1
i~u◦v

∗ ds

gives the following:

(43) e
(x+iy) 1

i~u◦v
∗ ∗δ∗(

1
i~
u◦v)=eiy

1
i~u◦v

∗ ∗δ∗(
1
~
u◦v).

Note that eiπ
1
i~u◦v

∗ =−1 in the Weyl ordered expression. Thus, (42) is holomorphic with
respect to z, while (43) is only continuous and not real analytic with respect to z = x+iy.
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6 Inverses and their analytic continuation

6.1 The Hadamard finite part procedure

We first recall the Hadamard finite part procedure, a well known technique in distribution
theory to extract a finite quantity from a divergent expression. (cf. [19]). We reformulate
this procedure on abstract Fréchet algebra in order to extract information on the eigenspaces
of a given matrix via its inverse. We conclude that the element 1

i~u◦v is an indeterminate
lying in a discrete set. Let (A; ∗) be a complex, complete, topological associative Fréchet
algebra with 1 and Ã a Fréchet space with a (A; ∗)-bimodule structure (i.e. a continuous
bilinear product ∗ is defined for A×Ã, Ã×A into Ã with the natural associativity). We call
λ∈C a resolvent of X∈A if λ−X has inverse (λ−X)−1 in Ã.

Suppose the resolvent set ρ(X) of X∈A is open and dense in C, and (ζ−X)−1 is holomor-
phic in ζ∈ρ(X). Since (ζ−X)∗(ζ−X)−1=1 on the open dense domain ρ(X), the singularities
of this equation are all removable in the usual complex analysis sense.

An isolated singular point z0 of (ζ−X)−1 is a pole, if (ζ−X)−1 can be expressed in the
form

(ζ−X)−1=
A−d

(ζ−z0)d
+ · · ·+ A−1

ζ−z0
+A0+ · · ·

on a neighborhood of z0. We call A0 the finite part of (ζ−X)−1 and denote the finite part
by FP((ζ−X)−1).

In general, for an Ã-valued holomorphic function f(z) with a pole at z=z0 the finite part
FP(f(z)) is defined as follows:

FP(f(z))=
{

f(z) z 6=z0

Resw=0
1
w (f(z0+w)) z=z0.

This definition is valid for z in a neighborhood of z0 containing no other pole. Although
(ζ−X)∗(ζ−X)−1=1 for ζ 6=z0, we have

(ζ−X)∗FP(ζ−X)−1=
{

1 ζ 6=z0

1−A−1 ζ=z0

where we use (z0−X)A0+A−1=1, which follows easily from the identity (ζ−X)∗(ζ−X)−1=1.
We will employ this trick to analyze singularities of (ζ−X)−1 in calculations in extensions
of star algebras. In particular, we use this procedure to define a new product by

(ζ−X)∗̃(ζ−X)−1=(ζ−X)∗FP(ζ−X)−1.

Note that this trick applied to the usual matrix algebra naturally relates to generalized
eigenspaces. For a matrix X of finite rank with the eigenvalues λ1, . . . , λn, we have

(zI−X)∗̃(zI−X)−1=
{

I z 6=λ1, . . . , λn
I−Pi z=λi

where Pi is the projection to the generalized eigenspace corresponding to the eigenvalue λi.

Since the inverse (ζ−X)−1 is given very often via the Laplace transform
∫ 0

−∞ e
t(ζ−X)
∗ dt,

we have the following theorem:

Theorem 6.1 Let A and Ã be as above. Suppose X∈A is an element such that the equation

(44)
d

dz
f(z)=X∗f(z), f(0)=1

has a complex analytic solution in the Fréchet space Ã defined on a connected open domain
D. If λ+X has an inverse in the Fréchet algebra A for some λ∈C, then D is simply
connected and f(z)=

∑
zn

n!X
n
∗ .
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Proof The proof is elementary. Denote the solution by ezX∗ . Let Σ(X) be the set of
singular points of ezX∗ in C. If C \ Σ(X) is not simply connected, there is a closed curve C
in D surrounding a singular point z0. �

By the uniqueness of real analytic solutions, the exponential law ezX∗ ∗ewX∗ =e(z+w)X
∗

holds, provided all three terms exist. Suppose there is a λ∈C such that (λ+X)−1∈A. Since
ezλezX∗ is the solution of the equation d

dz fz=(λ+X)∗fz, we derive a second exponential law
ezλezX∗ =ez(λ+X)

∗ . It follows that Σ(λ+X)=Σ(X).
Obviously, for every integer k ≥ 0 the contour integral

∫
C

(z−z0)kez(λ+X)
∗ dz gives an

element of Ã. It follows that

(λ+X)k+1∗
∫
C

(z−z0)kez(λ+X)
∗ dz=

∫
C

(z−z0)k(λ+X)k+1∗ez(λ+X)
∗ dz

=
∫
C

(z−z0)k
dk+1

dzk+1
e
z(λ+X)
∗ dz=(−1)k

∫
C

d

dz
e
z(λ+X)
∗ dz=0.

The existence of (λ+X)−1 gives
∫
C

(z−z0)kez(λ+X)
∗ dz=0 for every integer k, which implies

that z0 is not a singular point. Thus, D is an open simply connected neighborhood of the
origin. Standard Taylor series methods yield f(z)=ezX∗ =

∑
1
n! (zX)n. �

This theorem suggests that we have to go beyond the category of Fréchet algebra valued
meromorphic functions to treat the inverse of z+ 1

i~u◦v, as et
1
i~u◦v
∗ has discrete singular

points in general ordered expressions. The regularized product (ζ−X)∗̃(ζ−X)−1 seems to
be a good method to treat singularities.

6.2 Basic properties of the inverse of z+ 1
i~u◦v

We first study basic properties of the inverse of z+ 1
i~u◦v.

By the results of §4, the integrals

(45) :
∫ 0

−∞
etze

t 1
i~u◦v
∗ dt:0 =

∫ 0

−∞

etz

cosh 1
2 t
e

1
i~ 2uv tanh 1

2 tdt, Re z > −1
2
,

(46) :−
∫ ∞

0

etze
t 1
i~u◦v
∗ dt:0 = −

∫ ∞
0

etz

cosh 1
2 t
e

1
i~ 2uv tanh 1

2 tdt, Re z <
1
2

converge in the Weyl ordered expression.
One can analyze the r.h.s. of (45) and (46) more closely via a change of variables as in

Proposition 4.1. For − 1
2 < Re z ≤ 0, the change of variables tanh 1

2 t= cos s transforms the
r.h.s of (45) into

2
∫ 0

−π
(
1+ cos s
1− cos s

)ze(cos s) 1
i~ 2uvds.

For 0 ≤ Re z< 1
2 and for − cos s= tanh t

2 , 2 sin sds= sin2 sdt, the r.h.s. of (46) transforms
into

2
∫ π

0

(
1+ cos s
1− cos s

)−ze(cos s) 1
i~ 2uvds.

Hence, Lemmas 2.2, 3.1 give that
∫∞
−∞ e

t(z+ 1
i~u◦v)

∗ dt is an element of Hol(C2) in generic
ordered expressions. Thus, both (45) and (46) give inverses of z+ 1

i~u◦v for generic ordered
expressions, which will be denoted by (z+ 1

i~u◦v)−1
∗+, (z+ 1

i~u◦v)−1
∗−, respectively.

The following may be viewed as a Sato hyperfunction:
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Proposition 6.1 If − 1
2 < Re z < 1

2 , then the difference of the two inverses is given by

(47) (z+
1
i~
u◦v)−1

∗+−(z+
1
i~
u◦v)−1

∗−=
∫ ∞
−∞

e
t(z+ 1

i~u◦v)
∗ dt.

The difference is holomorphic in this strip for generic ordered expressions.

An elementary change of variables gives

((−z)+ 1
i~
u◦v)−1

∗−=−
∫ ∞

0

e
−t(z− 1

i~u◦v)
∗ dt=−

∫ 0

−∞
e

(z− 1
i~u◦v)

∗ dt.

Thus, for generic ordered expressions, we see that

(48) (z− 1
i~
u◦v)−1

∗−=−((−z)+ 1
i~
u◦v)−1

∗−.

This is holomorphic on the domain Re z>− 1
2 , on which (z+ 1

i~u◦v)−1
∗+ is also holomorphic.

All of these results are easily proved for the Weyl ordered expression. However, for generic
K-ordered expression, :et

1
i~u◦v
∗ :

K
is rapidly decreasing in t, and the same computation gives

the following:

Proposition 6.2 For generic ordered expressions, (z+ 1
i~u◦v)−1

∗+ and (z− 1
i~u◦v)−1

∗− are de-
fined for Re z>− 1

2 .

The product (z+ 1
i~u◦v)−1

∗+∗(w+ 1
i~u◦v)−1

∗+ is naturally defined for z, w 6∈−(N+ 1
2 ) by the

usual resolvent identity. {(z+ 1
i~u◦v)−1

∗+; z 6∈−(N+ 1
2 )} forms an associative algebra. in E2+(C2m).

Note that (z+ 1
i~u◦v)−1

∗+∗(−z− 1
i~u◦v)−1

∗− diverges for any ordered expression. However,
the standard resolvent formula gives the following:

Proposition 6.3 If z+w 6=0, then

1
z+w

(
(z+

1
i~
u◦v)−1

∗++(w− 1
i~
u◦v)−1

∗−

)
is an inverse of (z+ 1

i~u◦v)∗(w− 1
i~u◦v). In particular, for every positive integer n, and for

every complex number z such that Re z>− (n+ 1
2 ),

1
2n
(
(1+

1
n

(z+
1
i~
u◦v))−1

∗++(1− 1
n

(z+
1
i~
u◦v))−1

∗−
)

is an inverse of 1− 1
n2 (z+ 1

i~u◦v)2
∗ for generic ordered expressions.

6.3 Analytic continuation of inverses

Recall that (z± 1
i~u◦v)−1

±∗ is holomorphic on the domain Re z > − 1
2 for generic ordered

expressions. It is natural to expect that (z± 1
i~u◦v)−1

±∗=C(C(z± 1
i~u◦v))−1

±∗ for any non-zero
constant C. To confirm this, we set C=eiθ and consider the θ-derivative of

eiθ
∫ 0

−∞
e
eiθt(z± 1

i~u◦v)
∗ dt.
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In generic K-ordered expressions, the phase part of the integrand is bounded in t and the
amplitude is given by

2eiθtz
(1−κ)eeiθt/2 + (1+κ)e−eiθt/2

, κ6=1.

The integral converges whenever Re eiθ(z± 1
2 ) > 0, and by integration by parts this con-

vergence is independent of θ. It follows that (z± 1
i~u◦v)−1

±∗ is holomorphic on the domain
C−{z;−∞<z<− 1

2}.
Next, it is natural to expect that the bumping identity (u◦v)∗v=v∗(u◦v−i~) gives the

following “sliding identities”

v−1
∗+∗(z+

1
i~
u◦v)−1

∗+∗v=(z−1+
1
i~
u◦v)−1

+∗, v−1
∗+∗(z−

1
i~
u◦v)−1

∗−∗v=(z+1− 1
i~
u◦v)−1

∗−

whenever the inverse of v exists in a particular ordered expression. In this section, analytic
continuation will be produced via these sliding identities.

However, the existence of v−1
∗+ is not a generic property. As a result, instead of using v−1

∗+
we will apply the sliding identity to the left inverse v◦ of v given below.

Remark There is a K-ordered expression such that :
∫ 0

−∞ etv∗ dt:K converges to give an
inverse of :v−1

∗+ :
K

of v (cf. [17]), but it is easy to see that :v−1
∗+∗$00:

K
diverges.

First, we remark that the formula in Proposition 6.1 gives

(u∗v)−1
∗−=− 1

i~

∫ ∞
0

e
t 1
i~u∗v
∗ dt, (v∗u)−1

∗+=
1
i~

∫ 0

−∞
e
t 1
i~ v∗u
∗ dt

for generic ordered expressions. Then

v◦=u∗(v∗u)−1
∗+, u•=v∗(u∗v)−1

∗−,

are left and right inverses of v and u respectively. That is,

v∗v◦=1, v◦∗v=1−$00, u∗u•=1, u•∗u=1−$00.

The bumping identity gives

v∗(z+ 1
i~
u◦v)∗v◦=z+1+

1
i~
u◦v, v◦∗(z+ 1

i~
u◦v)∗v=(1−$00)∗(z−1+

1
i~
u◦v).

Successive applications of the bumping identity give the following useful formula:

(49) (u∗(v∗u)−1
∗+)n∗$00=

1
n!

(
1
i~
u)n∗$00.

Using v◦ instead of v−1
∗+ , we can produce the analytic continuation of inverses. However,

we have to be careful about the continuity of the ∗-product. We compute

v◦∗(z+ 1
i~
u◦v)−1

∗+=
(
u ∗
∫ 0

−∞
e
t( 1
i~u◦v+ 1

2 )
∗ dt

)
∗
∫ 0

−∞
e
s(z+ 1

i~u◦v)
∗ ds

=u ∗
∫ 0

−∞

∫ 0

−∞
e
t( 1
i~u◦v+ 1

2 )
∗ ∗es(z+

1
i~u◦v)

∗ dtds (cf. (39))

=
∫ 0

−∞

∫ 0

−∞
et

1
2 +szu∗e(t+s) 1

i~u◦v
∗ dtds (cf.Lemma 2.1)

=
∫ 0

−∞

∫ 0

−∞
et

1
2 +sz−(t+s)e

(t+s) 1
i~u◦v

∗ ∗udtds.
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Hence, whenever both sides are defined, we obtain

(v◦∗(z+ 1
i~
u◦v)−1

∗+)∗v=
∫ 0

−∞

∫ 0

−∞
e−t

1
2 +s(z−1)e

(t+s) 1
i~u◦v

∗ ∗(u∗v)dtds

=
∫ 0

−∞
(u∗v)∗et

1
i~u∗v
∗ dt ∗

∫ 0

−∞
e
s(z−1+ 1

i~u◦v)
∗ ds

=(1−$00)∗(z−1+
1
i~
u◦v)−1

∗+.

Noting that

$00∗(z−1+
1
i~
u◦v)−1

∗+=(z−1+
1
i~
u◦v)−1

∗+∗$00=(z−1
2

)−1$00,

whenever (z−1+ 1
i~u◦v)−1

∗+ is defined, we have

(50)
(
v◦∗(z+ 1

i~
u◦v)−1

∗+
)
∗v+(z−1

2
)−1$00 =

(
z−1+

1
i~
u◦v
)−1

∗+.

Since (z− 1
2 )−1$00 is always defined, we see that the functional equation (50) gives an

analytic continuation for (z + 1
i~u◦v)−1

∗+. Namely, we have the following (see [7] and [9] for
more details):

Theorem 6.2 For generic ordered expressions, the inverses (z+ 1
i~u◦v)−1

∗+, (z− 1
i~u◦v)−1

∗− ex-
tend to E2+(C2)-valued holomorphic functions of z on C−{−(N+ 1

2 )}.
In particular, (z2−( 1

i~u◦v)2)−1
±∗ extends to a holomorphic function of z on this domain.

The residue at a singular point z0 is defined as usual by 1
2πi

∫
Cz0

(z+ 1
i~u◦v)−1

∗±dz. The
analytic continuation formula gives the following:

Theorem 6.3 Res((z+ 1
i~u◦v)−1

∗+,−(n+ 1
2 )) = 1

(i~)nn!u
n∗$00∗vn for generic ordered expres-

sions.

For the proof, we remark that (z+n+ 1
i~u◦v)−1

∗± is holomorphic for sufficiently large n,
and the contour integral is an integral on a compact set. Note that (z+ 1

i~u◦v)−1
∗+ is singular

at z=n+ 1
2 , but (z+ 1

i~u◦v)∗(z+ 1
i~u◦v)−1

∗+=1 for z 6∈−(N+ 1
2 ) for generic ordered expressions.

Note also that if we exchange (z+ 1
i~u◦v)∗ and the integration, then∫ 0

−∞
(z+

1
i~
u◦v)∗et(z+

1
i~u◦v)

∗ dt=
{

1 Re z > − 1
2

1−$00 z=− 1
2

,

∫ 0

−∞
(z− 1

i~
u◦v)∗et(z−

1
i~u◦v)

∗ dt=
{

1 Re z > − 1
2

1−$00 z=− 1
2

.

As suggested by these formulas and Hadamard’s technique of extracting finite parts of
divergent integrals, we now extend the definition of the ∗-product using the finite part
regularization mentioned in the introduction.

We consider the inductive limit topology on the space C[uuu]. We define the new product

of (z+ 1
i~u◦v)−1

∗± with either polynomials q(u, v) or q(u, v)=es
1
i~u◦v
∗ by

(51) (z+
1
i~
u◦v)−1

∗±∗̃q(u, v)=(FP(z+
1
i~
u◦v)−1

∗±)∗q(u, v),

where FPf(z) denotes its finite part of f at z. The result may not be continuous in z.
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For Re z > − 1
2 we easily see that

(z+
1
i~
u◦v)−1

∗+∗̃q(u, v)= lim
N→∞

∫ 0

−N
e
t(z+ 1

i~u◦v)
∗ ∗q(u, v)dt

Hence we have the formula

(52) (z+
1
i~
u◦v)∗̃(z+ 1

i~
u◦v)−1

∗+=
{

1 Re z > − 1
2

1−$00 z=− 1
2

.

Using (v◦)n∗(z+ 1
i~u◦v)∗(z+ 1

i~u◦v)−1
∗+∗vn=(v◦)n∗(z+ 1

i~u◦v)∗vn∗(v◦)n∗(z+ 1
i~u◦v)−1

∗+∗vn and
(50), we have the following:

Theorem 6.4 Using definition (51) for the ∗̃-product, we have

(53) (z+
1
i~
u◦v)∗̃(z+ 1

i~
u◦v)−1

∗+=
{

1 z 6∈−(N+ 1
2 )

1− 1
n! (

1
i~u)n∗$00∗vn z=−(n+ 1

2 ) ,

(54) (z− 1
i~
u◦v)∗̃(z− 1

i~
u◦v)−1

∗−=
{

1 z 6∈−(N+ 1
2 )

1− 1
n! (

1
i~v)n∗$00∗un z=−(n+ 1

2 ) .

for generic ordered expressions.

Although z=−(n+ 1
2 ), n = 0, 1, 2, · · · are all removable singularities for (53) and (54) as

a function of z, it is better to retain these singular points.
In these computations, elements are often given via a limiting procedure. As usual, ∗-

products of such elements depend delicately on the limiting procedure. There is no general
rule guaranteeing associativity.

Via the identity (1+ 1
m (z+ 1

i~u◦v))−1
∗+=m(m+z+ 1

i~u◦v)−1
∗+, we have, in particular

(55) (1+
1
m

(z+
1
i~
u◦v))∗̃(1+

1
m

(z+
1
i~
u◦v))−1

∗+=
{

1 z 6∈−(N+m+ 1
2 )

1− 1
k! (

1
i~u)k∗$00∗vk z=−(k+m+ 1

2 )

for every fixed positive integer m and for arbitrary k ∈ N for generic ordered expressions.
By the associativity stated in Lemma 2.1, we see the following:

Theorem 6.5
(−n−1

2
+

1
i~
u◦v)∗un∗$00=un∗( 1

i~
u∗v)$00=0.

Thus, we have

(1−1
`

(z+
1
i~
u◦v))∗

(
(1+

1
m

(z+
1
i~
u◦v))∗̃((1+

1
m

(z+
1
i~
u◦v))−1

∗+

)
=

 1− 1
` (z+ 1

i~u◦v) z 6∈−(N+m+ 1
2 )

1− 1
` (z+ 1

i~u◦v) z=−(`+ 1
2 )

(1− 1
` (z+ 1

i~u◦v))∗(1− 1
k! (

1
i~u)k∗$00∗vk) z=−(k+ 1

2 ), z 6=−(`+ 1
2 ).

,

for generic ordered expressions.

We note here that singularities such as 1
`! (

1
i~u)`∗$00∗v` disappear from the r.h.s. of the

above equality because of the term 1− 1
` (z+ 1

i~u◦v).
We also define a ∗̃-product for a certain class of elements by

f(uuu)∗̃(z+ 1
i~
u◦v)−1

∗+=f(uuu)∗
(
FP(z+

1
i~
u◦v)−1

∗+
)
.

These formulas will be applied to the computation of

sin∗(z+
1
i~
u◦v)∗̃(1+

1
m

(z+
1
i~
u◦v))−1

∗+

along with an infinite product formula for sin∗(z+ 1
i~u◦v) in a forthcoming paper.
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