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A new formulation of measurement theory

Shiro Ishikawa ∗

[abstract] As a kind of generalization of dynamical system theory, we recently proposed mea-

surement theory, which has two formulations, i.e., C∗-algebraic formulation and W ∗-algebraic

formulation. However, we now think that this assertion should be reconsidered, that is, the two

formulations should be combined. Here we propose the new compromise formulation, which

has both merits of C∗-algebraic formulation and W ∗-algebraic formulation.
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1. Introduction

In [2,3,4], as a kind of generalization of dynamical system theory, we proposed

measurement theory, which is formulated in a certain operator algebra (i.e., C∗-algebra

and W ∗-algebra, cf.[7]) as follows.

“(pure) measurement theory” =[measurement]
(Axiom 1)

+ [the relation among systems].
(Axiom 2)

(1)

This can be regarded as a kind of mathematical generalization of quantum mechanics:

“quantum mechanics” =[quantum measurement]
(Born’s measurement)

+ [unitary time evolution]
(Heisenberg kinetic equation)

(2)

such as it includes dynamical system theory (=DST) in engineering:

“DST” =

 y(t) = g(x(t), u1(t), t) · · · (measurement equation),

dx(t)
dt

= f(x(t), u2(t), t), x(0) = x0 · · · (state equation)
(3)

where u1 and u2 are external forces (or noises).
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Therefore, we can say (2)+(3)⊂(1). And thus, measurement theory (1) may be

also called “generalized quantum theory” or “generalized dynamical system theory

(=GDST)”. Although it is certain that DST(3) is a good mathematical theory to

analyze usual phenomena in our usual life (or, economics, psychology, engineering and

so on), it should be noted that it is difficult to say that DST(3) is axiomatic. Further,

we have the following classification:

“(pure) measurement theory (1)” =

 quantum measurement theory (4)

classical measurement theory, (5)

where the algebra is either non-commutative or commutative. Thus we consider that

(2)=(4), and the (5) is the axiomatic form of DST(3). Therefore, we believe that the

(5) is the fundamental theory to describe usual phenomena in our usual life, that is,

it is the axiomatic theory of the epistemology called “the mechanical world view”.

For completeness,, again note that measurement theory is quite fundamental and

wide, as symbolized in the following picture:

The “MT (measurement theory) tree” (extracted from [ref.4: page 323])

®


©
ªstatistics

(R.A.Fisher,...)®


©
ªcircuit theory

(Lord Rayleigh, O.Heaviside,...)

²
±

¯
°

quantum system theory
(W.Heisenberg,E.Schrödinger,

M.Born,von Neumann,...)
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©
ªpractical logic

(Aristotles, A.N.Whitehead,L.A.Zadeh,...)

®


©
ªautomata theory

(A.M.Turing, A.N.Chomsky,...)

®


©
ªinformation theory

(C.E.Shannon, H.Akaike,...)

¨
§

¥
¦etc.

®


©
ªcontrol theory

(J.C.Maxwell, N.Wiener,...)

®


©
ªchaotic system theory

(E.Lorentz,...)

®


©
ªdynamical system theory

(I.Newton, A.Kolmogorov, R.E.Kalman,...)®


©
ªmultivariate analysis

(K.Pearson,...)

MT
measurement

theory( )

As seen in [4] (or, our papers in the references of the book [4]), the above measure-

ment theory (1) has two formulations, i.e., C∗-algebraic formulation and W ∗-algebraic

formulation. However, we now think that this assertion should be reconsidered, that

is, the two formulations should be combined. The purpose of this paper is to propose

the new compromise formulation, which has both merits of C∗-algebraic formulation
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and W ∗-algebraic formulation.

2. Measurement theory (mathematical preparations)

Let V be a complex Hilbert space with the norm || · ||V . Put

B(V ) ≡ {T | T is a bounded linear operator from a Hilbert space V into itself }.

Define ∥T∥B(V ) = sup{∥Tv∥V : ∥v∥V = 1}, and (T1T2)(v) = T1(T2v) (∀v ∈ V ).

And T ∗ is defined by the adjoint operator of T . Note that it holds that ∥T ∗T∥B(V ) =

∥T∥2
B(V ) (∀T ∈ B(V )). And thus, B(V ) is a C∗-algebra (cf. [7]).

An element F in B(V ) is called self-adjoint if it holds that F = F ∗. A self-adjoint

element F in B(V ) is called positive (and denoted by F ≥ 0) if there exists an element

F0 in B(V ) such that F = F ∗
0 F0. Also, a positive element F is called a projection if

F = F 2 holds.

A triplet [A,N(≡ A
w∗

), B(V )] is called an operator algebraic structure, if A(⊆
B(V )) is the norm closed sub-∗algebra of B(V ), and if N(≡ A

w∗

(⊆ B(V ))) is the

weak∗-closure of A in B(V ). Thus note that A and A
w∗

are C∗-algebras. Let A∗ be the

dual Banach space of A. That is, A∗ ≡ {ρ | ρ : A → C is a complex-valued continuous

linear function }, and the norm ∥ρ∥A∗ is defined by sup{|ρ(F )| | ∥F∥A ≤ 1}. Define

the mixed state space Sm(A∗) such that:

Sm(A∗) ≡ {ρ ∈ A∗ | ∥ρ∥A∗ = 1 and ρ(F ) ≥ 0 for all F ≥ 0}.

A mixed state ρ ( ∈ Sm(A∗)) is called a pure state if it satisfies that “ρ = θρ1+(1−θ)ρ2

for some ρ1, ρ2 ∈ Sm(A∗) and 0 < θ < 1” implies “ρ = ρ1 = ρ2”. Define

Sp(A∗) ≡ {ρp ∈ Sm(A∗) | ρp is a pure state},

which is called a state space (or pure state space, phase space). Note that Sp(A∗) is

locally compact in the sense of the weak∗ topology σ(A∗; A).

It is well known that N(≡ A
w∗

) is not only a C∗-algebra but also a W ∗-algebra,

that is, it is a C∗-algebra with the unique pre-dual Banach space N∗ (i.e., N = (N∗)
∗).

Also, note that the identity I belongs to N (⊆ B(V )). Now we can define the normal

state-class Sn(N∗) such as

Sn(N∗) ≡ {ρn ∈ N∗ | ∥ρn∥N∗ = 1 and ρn ≥ 0 (i.e., ρn(T ∗T ) ≥ 0 for all T ∈ N)}.
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The element ρn ( ∈ Sn(N∗)) is called a normal state (or, density state). Although we

are not concerned with the normal state in this paper, it plays an important role in

statistical measurement theory (9), cf. [4].

Example 1 (i). Let Ω be a locally compact topological space, and let (Ω,FΩ, µ) be a

measure space such that 0 < µ(U) ≤ ∞ for any open set U(⊆ Ω), and 0 ≤ µ({ω}) <

∞ (∀ω ∈ Ω). Define the Banach space Lr(Ω, µ), (r = 1, 2,∞), by the set of all

complex valued measurable functions on Ω such that the norm ∥f∥Lr(Ω,µ) is finite, where

∥f∥Lr(Ω,µ) = [
∫
Ω
|f(ω)|rµ(dω)]1/r ( if r = 1, 2), = ess.supω∈Ω|f(ω)| ( if r = ∞). The

operator algebraic structure [C0(Ω), L∞(Ω, µ), B(L2(Ω, µ))] is essential to the classical

measurement theory (5). Here, note that

C0(Ω)
w∗

= L∞(Ω, µ) ⊆ B(L2(Ω, µ))

where C0(Ω) is the algebra composed of all continuous complex-valued functions van-

ishing at infinity on Ω, and the norm ∥f∥C0(Ω) is defined by ∥f∥C0(Ω) = max{|f(ω)| | ω ∈
Ω} (∀f ∈ C0(Ω)). Also, it is well known that

Sp(C0(Ω)∗) = {δω | ω ∈ Ω} = Ω,

Sn(L∞(Ω, µ)∗) = L1
+1(Ω, µ) ≡ {f | f ∈ L1(Ω, µ), 0 ≤ f, ||f ||L1(Ω,µ) = 1}

where δω(∈ C0(Ω)∗) is the point measure at ω(∈ Ω).

(ii). Also, the operator algebraic structure [C(V ), B(V ), B(V )] is essential to the quan-

tum measurement theory (4). Here, note that

C(V )
w∗

= B(V )

where C(V ) ≡ {T ∈ B(V ) | T is a compact operator }. Also, note that

Sp(C(V )∗) = {|u⟩⟨u| | u ∈ V }, (where |u⟩⟨u| is the Dirac notation)

Sn(B(V )∗) = Tr+1(V ) ≡ {T ∈ Tr(V ) | T is a positive such that||T ||Tr(V ) = 1}

where Tr(V ) is the trace class (with the trace norm || · ||Tr(V )) in B(V ).

Definition 2 [Observable]. Let [A, N(≡ A
w∗

), B(V )] be an operator algebraic struc-

ture. An observable O ≡ (X, FX , F ) in N is defined such that it satisfies that
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(i) [ σ-field ]. (X, FX) is a measurable space, that is, FX ( ⊆ 2X) is a σ-field on X,

i.e., it satisfies that

∅ ∈ FX , Ξk ∈ FX (k = 1, 2, ...) =⇒ ∪∞
k=1Ξk ∈ FX , Ξ ∈ FX =⇒ Ξc ∈ FX ,

(ii) for every Ξ ∈ FX , F (Ξ) is a positive element in N (i.e., 0 ≤ F (Ξ) ∈ N) such that

F (∅) = 0 and F (X) = I,

(iii) [ countably additivity ]. For any countable decomposition {Ξ1, Ξ2, ..., Ξj, ...} of

Ξ,
(
i.e., Ξ, Ξj ∈ FX ,∪∞

j=1Ξj = Ξ, Ξj ∩ Ξi = ∅( if j ̸= i)
)
, it holds that

F (Ξ) =
∞∑

j=1

F (Ξj)

where the series is convergent in the sense of the weak∗-topology σ(N; N∗) in N.

For each k = 1, 2, ..., n, consider an observable Ok ≡ (Xk,FXk
, Fk) in a W ∗-algebra

N(≡ A
w∗

). Define the product σ-field FP
×n

k=1Xk
( ⊆ 2×

n
k=1Xk) such as the small-

est σ-field (on ×n
k=1 Xk) that contains ×n

k=1 Ξk, Ξk ∈ FXk
. An observable Ô ≡

(×n
k=1 Xk,F

P
×n

k=1Xk
, F̂ ) in N(≡ A

w∗

) is called the quasi-product observable of {Ok :

k = 1, 2, ..., n} if it holds that

F̂ (X1 × · · · × Xk−1 × Ξk × Xk+1 × · · · × Xn) = Fk(Ξk) (∀Ξk ∈ FXk
, ∀k = 1, ..., n).

Here, the Ô is denoted by
qp

×××××××××k∈{1,2,..,n}Ok.

Let [A, N(≡ A
w∗

), B(V )] be an operator algebraic structure. Let W be any element

in A
w∗

such that 0 ≤ W ≤ I. Define the function f
(l)
W : Sp(A∗) → [0, 1] [resp. f

(u)
W :

Sp(A∗) → [0, 1] ] such that, for any ρp ∈ Sp(A∗),

f
(l)
W (ρp) = sup{ρp(U) | U ∈ A, 0 ≤ U ≤ W}

[resp. f
(u)
W (ρp) = inf{1 − ρp(U) | U ∈ A, 0 ≤ U ≤ I − W}].

Note that ρp(W ) = f
(l)
W (ρp) = f

(u)
W (ρp) (∀ρp ∈ Sp(A∗) ) if W ∈ A. Also, if it holds that

f
(l)
W (ρp

0) = f
(u)
W (ρp

0) for some ρp
0(∈ Sp(A∗)), then we say that W is essentially continuous

at ρp
0, and define that ρp

0(W ) := f
(l)
W (ρp

0) ( = f
(u)
W (ρp

0) ).
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3. Measurement (Axiom 1)

Under the mathematical preparations in the previous sections, now we can propose

a new formulation of measurement theory.

With any system S, an operator algebraic structure [A, N(≡ A
w∗

), B(V )] can be

associated in which measurement theory of that system can be formulated. A state

of the system S is represented by a pure state ρp
0 ( ∈ Sp(A∗) ). Also, an observable

is represented by an observable O ≡ (X, FX , F ) in the W ∗-algebra N. The measure-

ment of an observable O for the system S with (or, in) the state ρp
0 is represented

by MA

(
O, S[ρp

0]

) (
or precisely, M

[A,A
w∗

,B(V )]

(
O, S[ρp

0]

) )
. Also, we can take only one

measurement MA

(
O, S[ρp

0]

)
, and obtain a measured value x ( ∈ X).

The axiom presented below is analogous to (or, a kind of generalizations of) Born’s

probabilistic interpretation of quantum mechanics [1,6,8]. We of course assert that the

axiom is a principle for all measurements, i.e., classical and quantum measurements.

AXIOM 1 [New measurement axiom]. Consider a measurement MA

(
O ≡ (X, FX , F ),

S[ρp
0]

)
formulated in an operator algebraic structure [A,N(≡ A

w∗

), B(V )]. Assume that

the measured value x ( ∈ X) is obtained by the measurement MA

(
O, S[ρp

0]

)
. Then,

the probability that the x ( ∈ X) belongs to a set Ξ ( ∈ FX) is given by ρp
0(F (Ξ)) if

F (Ξ) is essentially continuous at ρp
0.

4. The relation among systems (Axiom 2)

Let [A1,N1(≡ A
w∗

1 ), B(V1)] and [A2,N2(≡ A
w∗

2 ), B(V2)] be operator algebraic struc-

tures. Assume that N1 and N2 have weak∗-topologies σ(N1, (N1)∗) and σ(N2, (N2)∗)

respectively. A continuous linear operator Ψ1,2 : N2 → N1 is called a Markov operator,

if it satisfies that

(i) Ψ1,2(F2) ≥ 0 for any positive element F2 in N2,

(ii) Ψ1,2(I2) = I1, where Ik is the identity in Nk (k = 1, 2).

Here note that, for any observable (X, FX , F2) in N2, the (X, FX , Ψ1,2F2) is an observ-

able in N1, which is denoted by Ψ12O2.

Let (T,≤) be a tree-like partial ordered set, i.e., a partial ordered set such that

“t1 ≤ t3 and t2 ≤ t3” implies “t1 ≤ t2 or t2 ≤ t1”. Put T 2
≤ = {(t1, t2) ∈ T 2 | t1 ≤ t2}.
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An element t0 ∈ T is called a root if t0 ≤ t (∀t ∈ T ) holds. Note that the sub-tree

Tt0 ≡ {t ∈ T | t ≥ t0} has the root t0. Thus we always assume that the tree-like

ordered set (T,≤) has the root.

Definition 3 [Sequential observable]. The family {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2
≤

is called

a Markov relation among systems if it satisfies the following conditions (i) and (ii).

(i) With each t(∈ T ), an operator algebraic structure [At,Nt(≡ At
w∗

), B(Vt)] is

associated.

(ii) For every (t1, t2) ∈ T 2
≤, Markov operator Φt1,t2 : Nt2 → Nt1 is defined such that

Φt1,t2Φt2,t3 = Φt1,t3 holds for all (t1, t2), (t2, t3) ∈ T 2
≤.

Let an observable Ot ≡ (Xt,FXt , Ft) in a W ∗-algebra Nt be given for each t ∈ T .

Then, the pair [{Ot}t∈T , {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2
≤

] is called a sequential observable

which is denoted by [OT ], i.e., [OT ] ≡ [{Ot}t∈T , {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2
≤

].

Before we explain Axiom 2, we prepare some notations. For simplicity, assume that

T is finite. Let T ( ≡ {0, 1, ..., N}) be a tree with the root 0. Define the parent map

π : T \ {0} → T such that π(t) = max{s ∈ T | s < t}. It is clear that the tree (T ≡
{0, 1, ..., N},≤ ) can be identified with the pair (T ≡ {0, 1, ..., N}, π : T \ {0} → T ).

Let [OT ] ≡ [{Ot}t∈T , {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2
≤

] be a sequential observable. For

each s ( ∈ T ), define iteratively the observable Õs ≡ (×t∈Ts Xt, FP
×t∈TsXt

, F̃s) in Ns

(where Ts = {t ∈ T |s ≤ t}) such that:

Õs =

 Os (if s ∈ T \ π(T ))

Os

qp

×××××××××(
qp

×××××××××t∈π−1({s}) Φπ(t),tÕt) (if s ∈ π(T )).
(6)

Thus, if the procedure (6) is possible, we can get the observable Õ0 ≡ (×t∈T Xt,

FP
×t∈T Xt

, F̃0) in N0. The Õ0 is called the Heisenberg picture representation of the

sequential observable [OT ].

Summing up the essential part of the above argument, we can propose the following

axiom, which corresponds to “the rule of the relation among systems”. Also, it should

be noted that it is essentially the same as ProclaimW ∗
2 in [4].
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AXIOM 2 (= ProclaimW ∗
2 in [4]) [The relation among systems]. For each t(∈ T ),

consider an operator algebraic structure [At, Nt(≡ At
w∗

), B(Vt)]. Then the relation

among systems is represented by a Markov relation among systems {Φt1,t2 : Nt2 →
Nt1}(t1,t2)∈T 2

≤
. Let [OT ] ≡ [{Ot( ≡ (Xt,FXt , F ))}t∈T , {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2

≤
] be

a sequential observable. If the procedure (6) is possible, the sequential observable [OT ]

can be realized as the observable Õ0 ≡ (×t∈T Xt, FP
×t∈T Xt

, F̃0) in N0.

Thus, we can conclude that:

• Let [OT ] ≡ [{Ot( ≡ (Xt,FXt , F ))}t∈T , {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2
≤

] be a sequen-

tial observable, which is assumed to be realized by Õ0 ≡ (×t∈T Xt, FP
×t∈T Xt

,

F̃0) (due to Axiom 2). Let ρp
0 ( ∈ Sp(A∗

0)) be a pure state. Then, we have the

measurement MA0(Õ0, S[ρp
0)]). And thus, Axiom 1 is applicable.

We know many fundamental theories that start from axioms (or, laws, principles),

e.g., Newtonian mechanics, electromagnetic theory, the theory of relativity, quantum

mechanics, and so on. However, we have no axiomatic theory to describe usual phenom-

ena in our usual life. This seems strange. However, we now have classical measurement

theory (5), i.e., the axiomatic theory of “the mechanical world view”.

The following remark will promote the better understanding of the difference be-

tween physics and measurement theory.

Remark 4. (a). Although both measurement theory and physical theory (e.g., the

theory of relativity, etc.) start from principles (i.e., axioms), measurement theory is

not physics but a kind of philosophy, i.e., the axiomatic theory of “the mechanical

world view”. In physics, theory must be always tested by experiments. On the other

hand, experiments are not necessarily essential for measurement theory, and thus it

is somewhat subjective. Thus, there is a reason to consider that we have two math-

ematical scientific theories (i.e., (i) theoretical physics, (ii) measurement theory) as

indicated in the following table ( extracted from [ref.4: page 5] ):
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(i) Theor. Physics

‘Theory of Everything’
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>
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:

Newtonian mechanics
quantum mechanics
Maxwell’s electromagnetic theory
Einstein’s relativity theory
Weinberg-Salam theory
quantum chromodynamics
etc.

(ii) Theor. Informatics

‘Measurement Theory’
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:

dynamical system theory
quantum system theory
practical logic
statistics, circuit theory
control theory
multivariate analysis
information theory
chaotic system theory
automata theory
OR, game theory, etc.

(iii) The third mathematical scientific theory

Here we have no answer to the question: “What is the third mathematical scientific

theory (iii) in the above table?”. We believe that it is one of the most important

problems in mathematical science. For the further arguments, see Chap. 1 in [4].

(b). In measurement theory, space ( i.e., state space Ω) and time (e.g., T in Axiom

2) are not objective. For example, in measurement theory we consider that time is a

mathematical handy tool when we want to understand some occurrences in “causal

relationship”. In other words, time and space are regarded as merely kinds of parame-

ters. Thus, it should be noted that the measurement theoretical “time and space” is

different from that of physics.

(c). We can also see such a subjectivity mentioned in the above (a) and (b) in Kant’s

philosophy [5]. Compared with physics (i.e., Newtonian mechanics), he himself called

this kind of property of his philosophy “Copernican revolution” or “transcendental

idealism”. The non-measurability of “thing-in-itself (= ding an sich)” in his philosophy

may corresponds to the spirit (mentioned in the above (a)) of measurement theory

such that experiments are not necessarily the highest priority in measurement theory.

We can assure that it is interesting to reconsider epistemologies (in the following table)
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in light of measurement theory.

measurement (T) Which is essential?

theory ⇒ observable state space Markov relation (T)heo.or (E)xperiment

Zeno Achilles and tortoise (T,E)

(BC490-BC430) What is motion?

Sokrates What is ”brave”? (T)

(BC469-BC399) What is ”beauty”?

Plato idea theory (T)

(BC427-BC347)

Aristotle form material the efficient cause (E)

(BC384-BC322) syllogism unmoved mover

Augustinus What is time? (T)

(354-430)

Thomas Aquinas problem of universals (T)

(1225-1274) realism

Ockham problem of universals (T) Ockham’s razor

(1285-1349) nominalism

Rocke primary quality (T,E)

(1632-1704) secondary quality

Newton kinetic equation (E)

(1643-1727)

Berkeley To be is to be perceived (T) solipsism

(1685‐1753)

Kant subjective time-space (T) thing in itself

(1724-1804) 　 ranscendental idealism

Huserl intuition of essences 　 (T) Reduction,epoche

(1859-1938) 　　

Einestein physical time-space (E)

(1880-1950)

Schrödinger kinetic equation (T,E)

(1887-1961) (of state) Schrödinger’s cat

Heisenberg uncertainty relation kinetic equation (T,E)

(1901-1976) (of observable)

Born quantum measurement (T,E)

(1882-1970)

Fisher maximum likelihood method regression analysis (T)

(1890-1962) design of experiments

Wittgenstein The world is (T) solipsism

(1889-1951) everything that

is the case

5. Conclusions

As shown in [4], we have the following classification:

“measurement theory” =

 (pure) measurement theory

statistical measurement theory.
(7)
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In this paper we devoted ourselves to (pure) measurement theory, and proposed

“(pure) measurement theory” = [measurement]
(Axiom 1)

+ [the relation among systems],
(Axiom 2 (= ProclaimW∗

2 in [4]) )

(8)

which has both merits of C∗-algebraic formulation and W ∗-algebraic formulation. Also,

note that statistical measurement theory proposed in [4] need not be changed. That

is, we have

“statistical measurement theory”

=[statistical measurement]
(ProclaimW∗

1 in [4])

+ [the relation among systems]
(Axiom 2 (= ProclaimW∗

2 in [4]) )

(9)

Therefore we consider that the measurement theory (7) should be based on (8) and (9).

And we believe that the measurement theory (7) is the most useful in all epistemologies

(i.e., philosophies).

We hope that our proposal will be examined from various view-points.
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