
Research Report

KSTS/RR-07/008
November 13, 2007

Orederings and non-formal deformation quantization
　
　

by

Hideki Omori, Yoshiaki Maeda,
Naoya Miyazaki, Akira Yoshioka

Hideki Omori
Science University of Tokyo

Yoshiaki Maeda
Keio University

Naoya Miyazaki
Keio University

Akira Yoshioka
Science University of Tokyo

Department of Mathematics
Faculty of Science and Technology
Keio University

c©2007 KSTS
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan



Orderings and non-formal deformation quantization

Hideki Omori
Department of Mathematics,

Faculty of Science and Technology,
Science University of Tokyo,

Noda, Chiba, 278-8510, Japan,
omori@ma.noda.sut.ac.jp;

Yoshiaki Maeda ∗

Department of Mathematics,
Faculty of Science and Technology,

Keio University, Hiyoshi, Yokohama,
223-8522, Japan

maeda@math.keio.ac.jp;

Naoya Miyazaki †

Department of Mathematics,
Faculty of Economics,

Keio University, Hiyoshi, Yokohama,
223-8521, Japan

miyazaki@hc.cc.keio.ac.jp;

Akira Yoshioka ‡

Department of Mathematics,
Faculty of Science,

Science University of Tokyo,
Kagurazaka,Tokyo,102-8601, Japan
yoshioka@rs.kagu.sut.ac.jp;

∗Partially supported by Grant-in-Aid for Scientific Research (#18204006.), Ministry of
Education , Science and Culture, Japan.
†Partially supported by Grant-in-Aid for Scientific Research (#18540093.), Ministry of

Education , Science and Culture, Japan.
‡Partially supported by Grant-in-Aid for Scientific Research (#19540103.), Ministry of

Education , Science and Culture, Japan.

1

KSTS-RR-07/008
Nov., 13, 2007



Abstract. We propose suitable ideas for non-formal deforma-
tion quantization of Fréchet Poisson algebras. To deal with
the convergence problem of deformation quantization, we em-
ploy Fréchet algebras originally given by Gel’fand-Shilov. Ideas
from deformation quantization are applied to expressions of
elements of abstract algebras, which leads to a notion of “In-
dependence of ordering principle”. This principle is useful for
the understanding of the star exponential functions and for
the transcendental calculus in non-formal deformation quanti-
zation.

Keywords: Non-formal deformation quantization, Star exponential func-
tions, Ordered expressions, Independence of ordering principle

Mathematics Subject Classifications (2000): 53D55, 53D10; 46L65

1 Introduction

This paper summarizes various works, some still in progress, on non-formal
deformation quantization (cf. [26]-[33]).

Bayen-Flato-Fronsdal-Lichnerowicz-Sternheimer [3] originally proposed a
notion of deformation quantization as a formal deformation of a Poisson alge-
bra, and this definition has been greatly developed to deepen our understand-
ing of quantum mechanics from an algebraic point of view.

Initial interest typically focused on the existence and equivalence of defor-
mation quantizations of a given Poisson algebra. This problem has now been
solved, first by De Wilde-Lecomte [8], Fedosov [9] and Omori-Maeda-Yoshioka
[25] for symplectic manifolds, and then by Kontsevich [14] for general Poisson
manifolds. The settling of the existence and uniqueness problem for deforma-
tion quantization has produced many fruitful ideas for further investigation.

In analogy to asymptotic expansions for quantum observables, deformation
quantization originally meant only a formal deformation, the construction of a
star product as a formal power series with coefficients in the Poisson algebra.
The natural next step is the study of the convergence of deformation quan-
tization, which [3] has suggested implicitly. In the framework of C∗-algebras
this subject is called strict deformation quantization. It has been studied by
Rieffel [34], and e.g. Natsume [18] and Natsume-Nest-Ingo [19]. Among re-
lated works we can quote Weinstein [35] in the symplectic area and [5] around
quantum groups and universal deformation formulas.

In this paper, we focus on non-formal deformation quantization of Poisson
algebras, and in particular on suitable settings for non-formal deformation
quantization. In [26] we proposed a notion of deformation quantization of
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a Fréchet Poisson algebra involving a convergent star product for Poisson
algebras in the Fréchet category, as originally given by Gel’fand-Shilov [13]
and applied to infinite dimensional Lie groups in e.g. [21]. In this paper
we show that this class of Fréchet algebras successfully handles non-formal
deformation quantization in the Fréchet category.

We then discuss ordering problems in this context and propose a naive
concept we label the “independence of ordering principle” (the principle of in-
dependence of which order we choose). This concept seems to play an impor-
tant role in non-formal deformation quantization. We show that this principle
implies that star exponential functions of quadratic forms should be viewed
as double valued functions. Finally, as an example of the strength of the “in-
dependence of ordering principle,” we show that it leads to the appearance of
transcendental calculus in non-formal deformation quantization.

2 Deformation quantization of Fréchet Poisson al-
gebra

To deal with non-formal deformation quantization, we have introduced a no-
tion of deformation quantization of Poisson algebras in the Fréchet categories
in [26]. We first recall it.

Let F be a commutative, associative Fréchet algebra over C, i.e., F has a
metrizable complete topology defined by a family of semi-norms, and a smooth
product operation denoted by dot ·. F is called a Fréchet Poisson algebra if
F has a continuous bilinear operation { , } : F × F → F (called a Poisson
bracket on F) such that for any f, g, h ∈ F ,

P1 {f, g} = −{g, f} (skew-symmetry)

P2
∑

cyclic sum{f, {g, h}} = 0 (Jacobi identity)

P3 {f, gh} = {f, g}h+ g{f, h} (bi-derivation)

More generally, if F is a Fréchet space with an associative product ∗ such
that the operation ∗ : F ×F → F is continuous, we call (F , ∗) a Fréchet alge-
bra. We now give a notion of deformation quantization of a Fréchet Poisson
algebra as a family of associative products ∗~ on F parametrized by ~ ∈ R.

For a Fréchet Poisson algebra F , we define a notion of non-formal deforma-
tion quantization (cf. [26]). This is similar to the notion of strict deformation
quantization defined by Rieffel [34], which was considered in the C∗-algebra
categories.
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Definition 2.1 Let ~ ∈ R. Let F be a Fréchet Poisson algebra. (F , ∗~)
is called a deformation quantization of the Fréchet Poisson algebra F if the
following conditions hold:

(FD1) For any ~, there exists an associative product ∗~ on F so that (F , ∗~)
is a Fréchet algebra.

(FD2) f ∗~ g → f · g as ~→ 0 for every f, g ∈ F .

(FD3) 1
~i({f ∗~ g − f · g})→

1
2{f, g} as ~→ 0 for every f, g ∈ F .

As convenient spaces to set up non-formal deformation quantization, we in-
troduce a Fréchet algebra of entire functions on the complex n-space Cn with
the coordinates z= (z1, · · · , zn). Let E(Cn) be the set of entire functions on
Cn. We consider the following subspace of E(Cn): For every positive p > 0,
set

Ep(Cn) = {f ∈ E(Cn) | ‖f‖p,s = sup |f | e−s|z|p <∞, ∀s > 0} (2.1)

where |z|=(
∑n

i=1 |zi|2)1/2. This class of functions has been introduced by
Gel’fand-Shilov [13]. The family of semi-norms {|| ||p,s}s>0 induces a topology
on Ep(Cn) and (Ep(Cn), ·) is an associative commutative Fréchet algebra, where
the dot · is the ordinary multiplication for functions in Ep(Cn). It is easily seen
that for 0 < p < p′, we have a continuous embedding

Ep(Cn) ⊂ Ep′(Cn) (2.2)

of commutative Fréchet algebras. It is obvious that every polynomial is con-
tained in Ep(Cn) and that P(Cn) is dense in Ep(Cn) for any p > 0.

3 Non-formal deformation quantizations

We now give examples of non-formal deformation quantizations of Fréchet
Poisson algebras based on the class Ep(Cn). We note that the examples in
this section have invariance or covariance properties, which will be preferable
examples to treat non-formal deformation quantizations.(see also [2])

3.1 Canonical Poisson algebra

We set n=2m. Throughout of this paper, S(2m) will denote the space of
symmetric complex 2m× 2m-matrices.

We give non-formal deformation quantizations of this Poisson algebra (3.1)
parametrized by S(2m). Consider the canonical Poisson structures on Ep(C2m):

{f, g} = f(
∑2m

i,j=1

←−
∂ziJ

ij−→∂zj )g (3.1)
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for functions f=f(z) and g=g(z), where J=
[

0 −Im
Im 0

]
and the arrow for the

differentials indicates the side of the action for functions. Then, Ep(C2m) is a
Fréchet Poisson algebra with the canonical Poisson bracket (3.1).

For every K = (Kij) ∈ S(2m), we define the product ∗K by the following
formula:

f∗Kg = f exp{ i~
2

(
∑2m

i,j=1

←−
∂ziΛ

ij−→∂zj )}g, (3.2)

where Λ=(Λij) = (Kij+J ij). It will be helpful to rewrite the formula (3.2) in
the following form:

f∗Kg =
∑
k

(i~)k

k!2k
∑

i1...ik,j1...jk

Λi1j1 · · ·Λikjk∂zi1 · · · ∂zik f ∂zj1 · · · ∂zjk g. (3.3)

The product (3.3) is well-defined at least for the polynomials f, g on C2m and
the associativity holds. This product formula gives the commutation relation:

zi∗Kz
j − zj∗Kz

i (= [zi, zj ]∗
K

) = i~J ij , (3.4)

which give the same commutation relations as the Weyl algebra W~. Let
P(C2m) be the set of polynomials of (z1, · · · , z2m). Summarizing above, we
have realizations of the Weyl algebra.

Proposition 3.1 For every K ∈ S(2m), (P(C2m), ∗K ) forms an associative
algebra isomorphic to the Weyl algebra W~.

Proposition 3.1 gives a representation of the Weyl algebra W~, and it contains
no further relation other than Weyl algebra. The product formula (3.3) gives
also the unique expression of elements of the Weyl algebra W~ by the usual
polynomials.

According to the choice of K = 0,K0, where (0,K0) =
([

0 0
0 0

]
,

[
0 I
I 0

])
,

the product formulas are given respectively by the following formula:

f(z)∗0g(z) =f exp
~i
2
{
←−
∂v∧
−→
∂u}g, (Moyal product formula)

f(z)∗K0
g(z) =f exp ~i{

←−
∂v
−→
∂u}g, (ΨDO product formula)

(3.5)

where z = (z1, · · · , z2m) = (u1, · · · , um, v1, · · · , vm),
←−
∂v∧
−→
∂u =

∑
i(
←−
∂vi
−→
∂ui −←−

∂ui
−→
∂vi) and

←−
∂v
−→
∂u =

∑
i

←−
∂vi
−→
∂ui . The psuedo-differential operator (ΨDO) or-

dering is usually called “standard” ordering in physics.
The product formula is well-defined on P(C2m) which is a dense in the

space Ep(C2m). We note that every exponential function eαx+βy is contained in
Ep(C2m) for any p > 1, but not in E1(C2m), and functions such as eax

2+by2+2cxy

are contained in Ep(C2m) for any p > 2, but not in E2(C2m).
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Theorem 3.1 The product formula (3.3) gives the following:

(i) For 0 < p ≤ 2, the space (Ep(C2m), ∗K) is a deformation quantization of
(Ep(C2m), ·, {, }) for every K ∈ S(2m).

(ii) For p > 2 and a fixed ~ ∈ R, the product formula (3.3) gives a continuous
bilinear mapping

Ep(C2m)× Ep′(C2m)→ Ep(C2m),
Ep′(C2m)× Ep(C2m)→ Ep(C2m),

(3.6)

for every p′ such that 1
p + 1

p′ ≥ 1.

(cf. [26]).
Since p > 2, we must have p′ ≤ 2, hence by statement (i) (Ep′(C2m) : ∗~)

is a Fréchet algebra. The statement (ii) means that every Ep(C2m), p > 2, is
a topological 2-sided Ep′(C2m)-module.

Theorem 3.1 shows that the space Ep(C2m) (p ≤ 2) gives an example of
non-formal deformation quantization.

3.2 ax + b-group

As a deformation quantization invariant under non-abelian Lie group actions,
the universal formulae in the case of ax+b have been studied within the context
of the Wigner formalism and signal analysis (cf. [7]). We show that this
universal deformation formula gives us a non-formal deformation quantization
for a certain class of holomorphic functions defined by [13].

Let G denote the Lie algebra of the group of affine transformations of
the real line. Formally, one has G = spanR{A,E} with table [A,E] = 2E.
Consider the linear map λ : G → C∞(R2) : X 7→ λX defined by λA(a, l) =
2l; λE(a, l) = e−2a, where R2 = {(a, l)}. One then checks that the map λ is a
homomorphism of Lie algebras when C∞(R2) is endowed with the symplectic
Poisson bracket { , } := ∂a∧∂l. Moreover, if ∗Mν denotes the formal Moyal star

product on C∞(R2)[[ν]] (i.e u ∗Mν v = u exp (ν
←
∂a ∧

→
∂l)v u, v ∈ C∞(R2)[[ν]]),

one has [λA, λE ]ν = 2ν{λA, λE} (where [u, v]ν := u∗Mν v−v∗Mν u). In particular,
the formula

ρν(X)u :=
1

2ν
[λX , u]ν X ∈ G, u ∈ C∞(R2)[[ν]]

defines a homomorphism of Lie algebras

ρν : G → Der(C∞(R2)[[ν]], ∗Mν ).
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Explicitly, one has ρν(A)u = −∂au; ρν(E)u = − e−2a

ν sinh(ν∂l)u. Intertwin-
ing the representation ρν by a transformation of the type

L(u)(a, z) :=
∫

R
e−zlu(a, l) dl,

one gets

ρ̂ν(A)L(u) := L(ρν(A)u) = −∂aL(u);
ρ̂ν(E)L(u) := L(ρν(E)u) = − e−2a

ν sinh(νz)L(u),

where we assumed u(a,±∞) = 0. Now, set formally

Zν(u)(a, z) :=
∫

R
exp

(
γ

1
ν

sinh(νz)l
)
u(a, l) dl,

and
f •ν g := Zν(Zν−1f Zν−1g) (γ ∈ C×).

Proposition 3.2 For all X ∈ G, ρ̂ν(X) is a derivation of the commutative
product •ν .

Definition 3.1 Let α, β ∈ Rn. The fundamental space Sβα(n) is defined as the
space of holomorphic functions ϕ ∈ E(Cn) such that there exists a, b ∈ (R+)n

and C > 0 with

|ϕ(x+ iy)| ≤ C exp
(
−a|x|

1
α + b|y|

1
1−β
)
, x, y ∈ Rn,

where we adopt the usual notations : a|x|e =
∑

j aj |xj |ej (a, x, e ∈ Rn); 1
α =

( 1
α1
, ..., 1

αn
); 1− β = (1− β1, ..., 1− βn) (cf. [13]).

Every element ϕ ∈ Sβα(n) is entirely determined by its restriction the “real
axis” ϕ(x) x ∈ Rn. We will often identify the space Sβα(n) with the subspace(
Sβα(n)

)
x

of C∞(Rn) constituted by the restrictions. In order to consider only
non-trivial spaces, we will assume α+β ≥ 1; α > 0; β > 0. We will denote
by F(u)(ξ) the Fourier transform of the function u ∈ L1(Rn) :

F(u)(ξ) :=
∫

Rm
eiξxu(x) dx,

where ξx denotes the canonical dot product on Rm. For even n = 2m, we will

denote by J the endomorphism of R2m defined by the matrix J=
[

0 Im
−Im 0

]
.

We denote by ω the bilinear symplectic structure on R2n defined by ω(x, y) :=
x Jy.
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Definition 3.2 We define the symplectic Fourier transform of the function
u ∈ L1(R2m) as

SF(u)(y) :=
∫

R2m

eiω(x,y)u(x) dx (y ∈ R2m).

Definition 3.3 The Weyl product between u and v in L1(R2m) is defined by

u ∗Wq v := SF−1 [SF(u)×q SF(v)] ,

where
u×q v(x) :=

∫
R2m

eiqω(x,y)u(y) v(x−y) dy (q ∈ R).

.

Definition 3.4 Let q ∈ R and θ ∈ [0, 2π). We define the twisting map φq,θ :
C→ C by {

φq,θ(z) = eiθ

q sinh(iqz) if q 6= 0
φ0,θ(z) = z.

Let us consider the fundamental space Sσ(α1,α2)
(α1,α2) (2), (α1, α2) ∈ R2. Let

ϕ ∈ Sσ(α1,α2)
(α1,α2) (2) and consider the partial function ϕx1 : x 7→ ϕ(x1, x). For

all x1 ∈ R, the function ϕx1 belongs to Sα1
α2

(1) =: Sα1
α2

. Therefore provided
some restrictions on (α1, α2), the function L−1(φ−1

q,k π
2
)∗L(ϕx1) (k = 0, 1) is well

defined as an element of S ′I .

Definition 3.5 We define the linear map

Sσ(α1,α2)
(α1,α2) (2)

τ
(k)
q−→ C∞(R2) (k = 0, 1)

by
τ (k)
q := idx1 ⊗

(
L−1 ◦ (φ−1

q,k π
2
)∗ ◦ L

)
x2

(x1, x2) ∈ R2.

We denote by E(k)
(α1,α2) its range in C∞(R2). The inverse map

idx1 ⊗
(
L−1 ◦ φ∗q,k π

2
◦ L
)
x2

∣∣∣
E

(k)
(α1,α2)

will be denoted by T
(k)
q . It yields a linear isomorphism T

(k)
q : E(k)

(α1,α2) →

Sσ(α1,α2)
(α1,α2) (2).

8

KSTS-RR-07/008
Nov., 13, 2007



Definition 3.6 The product ∗(k)q on E
(k)
(α1,α2) will be referred as the twisted

Weyl product.

Let A = (α1, α2) ∈ (0, 1)2 with α1 + α2 ≥ 1. Set SA := Sσ(α1,α2)
(α1,α2) (2).

The function f̂(y1, x2) := f(iy1, x2) determines completely f . So that we have
an injection (SA)x → C∞(R2) : f 7→ f̂ . We denote by ∗̂Wq the product on
ŜA obtained by transporting Weyl’s product on (SA)x via f 7→ f̂ . Observe
that ŜA is still stable under the pointwise multiplication whose ∗̂Wq is a non-
commutative deformation of ŜA. Observe also that for every ψ ∈ ŜA and y1 ∈
R the partial function x2 7→ ψ(y1, x2) is in Sα1

α2
. Therefore the transformations

τ
(k)
q and T

(k)
q are well defined on ŜA.

This procedure gives a non-formal deformation quantization [6].

Theorem 3.2 Set Ê(k)
(α1,α2) := τ

(k)
q (ŜA). Then for all a, b ∈ Ê(k)

(α1,α2),the for-
mula

a ∗̂(k)q b := τ (k)
q

(
T (k)
q a ∗̂Wq T (k)

q b
)

defines an associative R-algebra structure on Ê(k)
(α1,α2). The space Ê(k)

(α1,α2) con-
tains elements of exponential growth.

3.3 Heisenberg Lie algebra

We formulate the deformation quantization of a Fréchet Poisson algebra asso-
ciated with the (2m+1)-dimensional Heisenberg Lie algebra in the class Sab of
generalized functions on C2m+1 given by Gel’fand and Shilov [13] (cf. [32]). Let

Cn+1 be a complex (n+1)-space with complex coordinates z = (z0, z1, · · · , zn)
and P(Cn+1) the set of all polynomials on Cn+1. The usual pointwise multi-
plication

(f ·g)(p) = f(p)·g(p)

for polynomial functions f, g on Cn+1 gives a commutative associative struc-
ture on P(Cn+1).

To define a system of semi-norms, we use the following notations: p̃ and
b̃, etc. denotes (n+ 1)-tuples p̃ = (p0, p1, · · · , pn) and b̃ = (b0, b1, · · · , bn) with
pi > 0 and bi > 0 for 0 ≤ i ≤ n. Forgetting p0 and b0, we let p̃∗ and b̃∗ denote
p̃∗ = (p1, · · · , pn) and b̃∗ = (b1, · · · , bn), respectively.

Definition 3.7 Let r0 and N0 be positive real numbers and nonnegative inte-
gers, respectively. We define semi-norms || · ||p̃,b̃, || · ||p̃∗,b̃∗,r0 and || · ||p̃∗,b̃∗,N0
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on P(Cn+1) as follows:

||f ||p̃,b̃ = sup
(z0,··· ,zn)∈Cn+1

|f | exp(−
n∑
i=0

bi|zi|pi), (3.7)

||f ||p̃∗,b̃∗,r0 = sup
|z0|≤r0

sup
(z1,··· ,zn)∈Cn

|f | exp(−
n∑
i=1

bi|xi|pi), (3.8)

||f ||p̃∗,b̃∗,N0
=

N0∑
k=0

||fk(z1, · · · , zn)||p̃∗,b̃∗ , (3.9)

where we expand a polynomial f as f(z0, z1, · · · , zn) =
∑

k=0 fk(z1, · · · , zn)zk0
as a power series of z0 variable.

We denote the completions of P(Cn+1) under the systems of seminorms
{|| · ||p̃,b̃}b̃, {|| · ||p̃∗,b̃∗,r0}b̃∗,r0 and {|| · ||p̃∗,b̃∗,N0

}b̃∗,N0
,respectively, by

(E.1): Ep̃(Cn+1), (E.2): EHol,p̃∗(Cn+1), (E.3): E∞,p̃∗(Cn+1).

We abbreviate the notation by using EΩ(Cn+1) for any one of Ep̃(Cn+1),
EHol,p̃∗(Cn+1) and E∞,p̃∗(Cn+1). Then, EΩ(Cn+1) is a commutative associative
Fréchet algebra.

We remark that Ep̃(Cn+1) and EHol,p̃∗(Cn+1) are subalgebras of all entire
functions E(Cn+1) on Cn+1, and E∞,p̃∗(Cn+1) is the space Ep̃∗(Cn)[[x0]] of all
formal power series of x0 with coefficients in Ep̃∗(Cn) with the z0-adic direct
product topology.

We set n = 2m and let (z0, z1, · · · , zn) = (z, x1, · · · , xm, y1, · · · , ym). We
are mainly concerned with the case p1 = pi for 1 ≤ i ≤ n, so we set p =
(p0, p1, · · · , p1) and p∗ = (p1, · · · , p1).

We set
{f, g}H = z(f(

←
∂x ·

→
∂y −

←
∂y ·

→
∂x)g), (3.10)

for functions f=f(z, x1, · · · , xm, y1, · · · , ym) and g=g(z, x1, · · · , xm, y1, · · · , ym),

where
←
∂x ·

→
∂y −

←
∂y ·

→
∂x stands for a bidifferential operator:

f(
←
∂x ·

→
∂y −

←
∂y ·

→
∂x)g =

m∑
i=1

(∂xif · ∂yig − ∂yif · ∂xig). (3.11)

We have
{z, xi}H = 0, {z, yi}H = 0, {xi, yj}H = zδij . (3.12)

which gives a linear Poisson structure on C2m+1 associated to the Heisenberg
Lie algebra.
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Lemma 3.1 Let EΩ(C2m+1) be one of (E.1)–(E.3). Then (EΩ(C2m+1), ·, { , }H)
is a Fréchet Poisson algebra.

Let EΩ(C2m+1) be a Fréchet Poisson algebra given by Lemma 3.1. We con-
sider a noncommutative product which gives a deformation quantization of
(EΩ(C3), ·, { , }H): Setting ~ = 1, we define a product f∗g for f, g ∈ P(C3) by
the product formula, also called the Moyal product formula:

f ∗ g =
∞∑
p=0

(iz)p

2pp!
(f(
←
∂x ·

→
∂y −

←
∂y ·

→
∂x)pg). (3.13)

As for f, g ∈ P(C2m+1), the product (3.13) is an associative product.

Similar to Theorem 3.1, we have a non-formal deformation quantization of
linear Poisson algebra of Heisenberg type [32]:

Theorem 3.3 Let (EΩ(C2m+1), ·, {, }H) be a Fréchet Poisson algebra given by
Lemma 3.1. Assume that p is given by p = (p0, p1, · · · , p1). Then, we have
(EΩ(C2m+1), ∗) is an associative Fréchet algebra if and only if Ω satisfies one
of the following:

(A1) For Ω = p = (p0, p1, · · · , p1), 0 < p1 ≤
2p0

p0 + 1
,

(A2) For Ω = (Hol, p∗), p∗ = (p1, · · · , p1), 0 < p1 ≤ 2,

(A3) For Ω = (∞, p∗), p∗ = (p1, · · · , p1), 0 < p1.

4 Independence of ordering principle

In this section, we propose an idea for treating elements of an abstract algebra
by taking the Weyl algebra as an example, which will be called independence
of ordering principle. In the following sections, we go back to the case of the
non-formal deformation quantization of the canonical Poisson algebra defined
by Subsection 3.1.

4.1 Intertwiners

The intertwiner between the K-ordered and the K ′-ordered expressions is
explicitly given as follows:

Proposition 4.1 For every K,K ′ ∈ S(2m), the intertwiner is defined by

I
K′

K
(f) = exp

( i~
4

∑
i,j

(K
′ij−Kij)∂ui∂uj

)
f (= I

K′

0 (I
K

0 )−1(f)), (4.1)
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and it gives an algebra isomorphism I
K′

K
: (P(C2m), ∗K ) → (P(C2m); ∗

K′ ).
Namely, the following identity holds for any f, g ∈ P(C2m) :

I
K′

K
(f ∗K g) = I

K′

K
(f) ∗

K′ I
K′

K
(g), (4.2)

In this manner, intertwiners does not change the product structure, but does
change the expression of elements as usual complex valued functions.

Define the infinitesimal intertwiner at K ∈ S(2m) to the direction Γ as
follows:

dIK (Γ )(f) =
d

dt

∣∣∣
t=0

I
K+tΓ

K
(f) =

i~
4

∑
i,j

Γ ij∂ui∂ujf. (4.3)

This is viewed as a flat connection on the trivial bundle
∐
K∈S(2m)Hol(C2m)

where Hol(C2m) is the space of all entire functions on C2m.
Although the differential equation for parallel translations may not be

solved for general initial function, every global parallel section (if exists)
{f(K);K ∈ S(2m)} of this bundle is naturally identified with an element
of Hol(C2m) via a fixed ordered expression. One may regard such a parallel
section as an element of extended Weyl algebra, and the evaluating at K is its
K-ordered expression.

4.2 Extension of products

Let P(C2m)[[~]] be the space of all formal power series of ~ with coefficients
of polynomials on C. Obviously, ∗K -products and the intertwiners extend
naturally to P(C2m)[[~]] by the same formula. (P(C2m)[[~]], ∗K ) is an asso-
ciative algebra and I

K′

K
is an algebra isomorphism of (P(C2m)[[~]], ∗K ) onto

(P(C2m)[[~]], ∗
K′ ).

It is obvious that every polynomial is contained in Ep(C2m) and P(C2m) is
dense in Ep(C2m) for any p > 0 in the Fréchet topology defined by the family
of seminorms {|| ||p,s}s>0.

Theorem 4.1 For 0 < p ≤ 2, the intertwiner I
K′

K
extends to give an isomor-

phism of (Ep(C2m), ∗K ) onto itself. (cf. [29])

It is easily seen that the following identities hold on Ep(C2m), p ≤ 2

I
K

K′
I
K′

K
= 1, I

K′′

K′
I
K′

K
= I

K′′

K
. (4.4)

Hence, for every f ∈ Ep(C2m), the set f∗(uuu) = {IK0 (f);K ∈ SC(2m)} is a
globally defined parallel section.
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For every f ∈ Ep(C2m) such that p ≤ 2, f(K) = I
K

0 (f) is a globally
defined parallel section. Thus, we naturally extends our object to the space
of all parallel sections {f(K);K ∈ S(2m)} of the trivial bundle∐

K∈S(2m)

(Ep(C2m), ∗K ), (0 < p ≤ 2).

On the other hand, several anomalous phenomena occur on the space
(E2+(C2m), ∗K ) =

⋂
p>2(Ep(C2m), ∗K ).

4.3 Independence of ordering principle

We have introduced the notion of ordered expression to realize elements of
the Weyl algebra using the K-ordered product (3.3). Obviously, the algebraic
structure of (P(C2m), ∗K) depends only on the skew part of Λ. Elements of the
Weyl algebra are expressed in terms of elements of P(C2m) via a K-ordered
expression once we choose a ∗K-product defined by (3.3). For every K and
K ′, the corresponding K- and K ′-ordered expressions have explicit relations
given by an intertwiner.

We interpret the various expressions for the Weyl algebra elements together
with the intertwining relations as the independence of ordering principle (IOP)
(exactly means “the principle of independence of which order we choose.” ),
parallel to the standard notion in geometry and physics that geometric and
physical objects are coordinate free quantities. These suggestions in geometry
and physics seem parallely to propose a naive idea of IOP in treating abstract
algebra.

As will be seen below, the IOP has nontrivial implications, since many del-
icate anomalous phenomena appear when considering star exponential func-
tions. Moreover, these ordered expressions occur in the transcendental calculus
of non-formal deformation quantization. The main goal of this paper is to pro-
pose a method for handling anomalous objects appearing in the construction
of star exponential functions of quadratic forms in the Weyl algebras.

In fact, we show below that there may be difficulties in implementing the
IOP. In spite of these difficulties, we are hopeful that the IOP provides deeper
insight into abstract algebra.

5 Star exponentials of linear functions

Set f(K) = I
K

0 (f). Then, we easily see that I
K′

K
f(K) = f(K ′). We think

that the set {(K; I
K

0 (f));K ∈ S(2m)} expresses a certain element f∗(z) of
the Weyl algebra W 2m

~ , where z=(z1, · · · , z2m) are the generators of the Weyl
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algebra which are also identified with the coordinates of the complex C2m.
f(K) is viewed as the K-ordered expression of f∗(z). We denote this by

:f∗(z):K = f(K), (precisely :f∗(z):K,z = f(K), )

where : :K,z means the K-ordered expression with respect to the generators z.
If a generator system is fixed, : :K,z is simply denoted by : :K .

Let λ=(λ1, · · · , λ2m) ∈C2m. By a direct calculation of the intertwiner, we
see that

I
K′

K
(e

1
i~ 〈λ,z〉) = e

1
4i~ 〈λ(K′−K),λ〉e

1
i~ 〈λ,z〉. (5.1)

For λ ∈ C2m and K ∈ S(2m), we denote by 〈λ, z〉=
∑

i,j λizi and 〈λK, λ〉=∑
ijK

ijλiλj . The set {e
1

4i~ 〈λK,λ〉e
1
i~ 〈λ,z〉;K ∈ S(2m)} is viewed as a single

element in a transcendentally extended Weyl algebra.

: e
1
i~ 〈λ,z〉
∗ :K= e

1
4i~ 〈λK,λ〉e

1
i~ 〈λ,z〉 = e

1
4i~ 〈λK,λ〉+

1
i~ 〈λ,z〉. (5.2)

It is easy to check that the exponential law holds for every ordered expression.
Hence one may write

e
s 1
i~ 〈λ,z〉
∗ ∗et

1
i~ 〈λ,z〉
∗ =e

(s+t) 1
i~ 〈λ,z〉

∗ .

Viewing that differentiation is defined for star exponential functions, one may
write

d

ds
e
s 1
i~ 〈λ,z〉
∗ =

1
i~
〈λ, z〉∗es

1
i~ 〈λ,z〉
∗ .

e
s 1
i~ 〈λ,z〉
∗ may be called ordering free expression of star exponential functions.

Suppose Re 1
i~〈λK, λ〉 < 0. Then it is clear that for every α∈C, the integral∫ ∞

−∞
:e
t(α+ 1

i~ 〈λ,z〉)
∗ :Kdt

converges. Using standard estimates in our Fréchet context, the following
definitions

ϑ∗(α+
1
i~
〈λ, z〉) =

∑
n∈Z

e
n(α+ 1

i~ 〈λ,z〉)
∗ (5.3)

ϑ∗+(α+
1
i~
〈λ, z〉) =

∞∑
n=0

e
n(α+ 1

i~ 〈λ,z〉)
∗ , ϑ∗−(α+

1
i~
〈λ, z〉) =

∞∑
n=0

e
−n(α+ 1

i~ 〈λ,z〉)
∗

make sense. These are parallel sections defined on an open (but not dense)
domain Dλ, where

Dλ = {K ∈ S(2m); Re
1
i~
〈λK, λ〉 < 0}.
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Remark 5.1. We use notations such as e
s 1
i~ 〈λ,z〉
∗ , ϑ∗+(α+ 1

i~〈λ, z〉) without
: :K for parallel sections defined on some open domain of expressions. These
may be called elements written by the independence of ordering.

Denote the K-ordered expression of (5.3) by

ϑK (α+
1
i~
〈λ, z〉) = :

∑
n∈Z

e
n(α+ 1

i~ 〈λ,z〉)
∗ :K .

Then, we see

ϑK(α+
1
i~
〈λ, z〉) =

∑
n∈Z

en
2 1

4i~ 〈λK,λ〉en(α+ 1
i~ 〈λ,z〉). (5.4)

Setting τ= 1
4i~〈λK, λ〉 and q=eτ , w=1

2(α+ 1
i~〈λ, z〉), we see the K-ordered

expression of ϑ∗(α+ 1
i~〈λ, z〉) is given as the ordinary theta function

ϑK (w, q) =
∑
n∈Z

qn
2
e2nw.

The independence of ordering principle suggests that for orderings, for
which identity :

e
α+ 1

i~ 〈λ,z〉
∗ ∗

∞∑
n=−∞

e
n(α+ 1

i~ 〈λ,z〉)
∗ =

∞∑
n=−∞

e
n(α+ 1

i~ 〈λ,z〉)
∗ , (5.5)

is defined, we have the following properties in the K-ordered expression.

Proposition 5.1 (i) (Pseudo-periodicity)

ϑK
(
α+

1
2
〈λK, λ〉+ 1

i~
〈λ, z〉

)
= e−( 1

4i~ 〈λK,λ〉+α+ 1
i~ 〈λ,z〉)ϑK(α+

1
i~
〈λ, z〉)

(ii) (Reflectivity)

ϑK(α+
1
i~
〈λ, z〉) = ϑK(−(α+

1
i~
〈λ, z〉)).

Note also there are two different inverses of 1−e(α+ 1
i~ 〈λ,z〉)

∗ , which appar-
ently breaks associativity (cf. [31]). See [22] for other associativity breaking
phenomena.
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6 Star exponential functions of quadratic functions

In this section, we show how the star exponential functions of quadratic func-
tions on C2m are understood reasonably. As for computations of star expo-
nential functions, we refer [4, 15, 17]. Our idea is to use K-ordered expressions
and to glue the star exponential functions defined locally on domains via the
extended intertwiners. This procedure will propose us to view the star expo-
nential functions as double valued elements (cf. [27]-[31]).

6.1 Extended Intertwiners

Let A be a 2m × 2m symmetric complex matrix and 〈zA, z〉 the quadratic
function associated with A, where z=(z1, · · · , z2m). For simplicity we denote
ge

1
i~ 〈zA,z〉 by (g;A).
We call g and A the amplitude and the phase part of ge

1
i~ 〈zA,z〉. In this

notation, we see that

I
K

0 (g;A) = (g det(I −AK)−
1
2 ;TK(A)),

where
TK : S(2m)→ S(2m), TK(A) =

1
I−AK

A

is viewed as the phase part of the intertwiner I
K

0 .
Computing the inverse I0

K
= (I

K

0 )−1, and the composition I
K′

0 I0
K

, we easily
see

I
K′

K
(g;A) =

(
g det(I−A(K ′−K))−

1
2 ;

1
I−A(K ′−K)

A
)
. (6.1)

This mapping has a singularity at A such that det(I−A(K ′−K))=0 and the
sign ambiguity can not be removed. T

K′

K
(A)= 1

I−A(K′−K)A is viewed as the
phase part of the intertwiner.

We rewrite (6.1) by

I
K′

K

( g√
det(I−AK)

;
1

I−AK
A
)

=
( g√

det(I−AK ′)
;

1
I−AK ′

A
)

(6.2)

if I−AK, I−AK ′ are invertible.
Let DK = {A ∈ S(2m); det(I−AK) 6= 0}. For every K,

D̃K =

{( g√
det(I−AK)

;
1

I−AK
A
)

;K∈DK

}
is a double covering of DK .
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Proposition 6.1 The intertwiner I
K′

K
is then a 2-to-2 mapping from D̃K to

D̃
K′ .

Note that the intertwiners do not satisfy a cocycle condition of the kind that
one-to-one mappings do.

Both mappings A→ −AJ and A→ JA give isomorphisms of S(2m) onto
sp(m,C), the Lie algebra of Sp(m,C), where

sp(m,C)={X∈M(2m,C); tXJ+JX=0}.

Thus, we set α=−AJ , ξ=−QJ , κ=JK, κ′=JK ′ for every A,Q,K,K ′∈S(2m).
These are elements of sp(m,C). We translate everything in terms of sp(m,C).
Then, we see

Proposition 6.2 The covering space D̃K through (c, 0) is translated into

D̃κ=
{
c
√

det(I+(I+κ)ξ e
1
i~ 〈z(ξJ),z〉; ξ∈Dκ

}
, (6.3)

which is a double covering space of Dκ.

Proposition 6.2 shows in particular that one can know the amplitude when-
ever one knows the phase. Moreover, the covering space D̃κ through (1, 0) is
closed under the ∗κ-product, for the ∗κ-product of two elements must be the
same on the covering space by the uniqueness of the real analytic solutions of
linear differential equations.

The intertwiner I
K′

K
is translated easily by using κ, κ′, and these intertwin-

ers may be viewed as coordinate transformations:

D̃κ ⊃ π−1(Dκ∩Dκ′)
Iκ
′

κ−→ π−1(Dκ′∩Dκ) ⊂ D̃κ′
↓ π ↓ π ↓ π ↓ π
Dκ ⊃ Dκ∩Dκ′ == Dκ′∩Dκ ⊂ Dκ′

However intertwiners Iκ
′

κ are 2-to-2 mappings. Thus the union
⋃
κ D̃κ is a

manifold-like object glued by 2-to-2 coordinate transformations (cf. [30] for a
little more general setting to obtain `-to-`, or Z-to-Z coordinate transforma-
tions).

6.2 Blurred Lie group

We show the union
⋃
κ D̃κ has a group-like structure, which we would like to

call Blurred Lie group. A reduced version of this section to the commutative
case has been seen in [32].
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First of all, recall that the Cayley transform C0(X) = I−X
I+X has following

properties:

X ∈ spC(m)⇔ C0(X) ∈ Sp(m,C), C2
0 (X) = X,

det(I + C0(X)) = (det(I +X))−1.
(6.4)

Let D0 = {X ∈ sp(m,C); det(I+X) 6= 0}. C0 : D0 → Sp(m,C) is a local
coordinate system of Sp(m,C). Define the twisted Cayley transform by

Cκ(α) = (I − (I−κ)α)
1

I + (I+κ)α
=

1
I+α(I+κ)

(I−α(I−κ)),

(Cκ)−1(Y ) =
1

I−κ+Y (I+κ)
(I−Y ).

(6.5)

Cκ : Dκ → Sp(m,C) gives also a local coordinate system of Sp(m,C).
Set Tκ′−κ(α) = 1

I−α(κ′−κ)α for α∈sp(m,C) such that det(I−α(κ′−κ)α)6=0.
The identity det(I − α(κ′−κ)α)= det(I + α(κ′−κ)α) gives that T−1

κ′−κ(α) =
1

I+α(κ′−κ)α. It is easy to see that Tκ′−κ(α) ∈ sp(m,C) if α∈sp(m,C). We have
also

1
I−α(κ′−κ)

(I+α(I+κ)) = I+Tκ′−κ(α)(I+κ′).

Lemma 6.1 Cκ(Dκ) is open dense in Sp(m,C), and
⋃
{Cκ(Dκ);κ ∈ sp(m,C)} =

Sp(m,C),
⋂
{Cκ(Dκ);κ ∈ sp(m,C)} 3 I.

We regard Tκ′−κ as a coordinate transformation on Sp(m,C), and the
intertwiner Iκ

′
κ as a coordinate transformation

Iκ
′

κ : C×Dκ,κ′ → C×Dκ′,κ, (Dκ,κ′ = Dκ ∩ Dκ′). (6.6)

By Proposition 6.2, the covering space D̃κ is naturally translated to the
double covering space of Cκ(Dκ). We denote this space by C̃κ(Dκ).

We have

Lemma 6.2 The intertwiner Iκ
′

κ : D̃κ → D̃κ′ is a morphism in the sense that
Iκ
′

κ is a homomorphism as 2-to-2 mapping where they are defined.

This is immediately translated to the following:

Proposition 6.3 Intertwiners are morphisms between C̃κ(Dκ) and C̃κ′(Dκ′)
as 2-to-2 mappings.

Thus the union forms a Lie group-like object glued by 2-to-2 coordinate
transformations. If this were a manifold, then it would have had to be a
connected double cover of Sp(m,C), which is simply connected.
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We have

(g;α) ∗κ (g′;β) =
(
gg′(

1
P

)
1
2 ;C−1

κ (Cκ(α)Cκ(β))
)
, (6.7)

where P = I+α(I−κ)β(I+κ).
Now we fix arbitrarily κ0∈sp(m,C). For every (g;α), the family

{Iκκ0
(g, α);κ∈sp(m,C)}

is a densely defined double valued parallel section. Moving κ, we have the set of
all densely defined double valued parallel sections G such that G(κ)=C eS(n).
Singularities move when κ moves. Hence, for every (g; a), (g′; b), Iκκ0

(g; a) ∗κ
Iκκ0

(g′; b) is defined for every κ moving in an open dense domain. This will be
denoted by (g; a) ∗ (g′; b).

Theorem 6.1 Under the notion of double valued sections, the product (g; a)∗
(g′; b) is defined as a double valued section. However the associativity holds
only as double valued sections. In spite of this, (1; 0) is the identity with respect
to ∗κ-product for all κ.

By the above observation, the independence of ordering principle will give us
naturally the necessity of double valued elements.

Remark 6.1 Note that the work by Olver [20] seems a similar direction to our
work. Also, we think that the notion of “blurred Lie group” is related to the
question of integrability to the corresponding Lie group of a skew-symmetric
Lie algebra representation in Hilbert space, which is known to require e.g. a
dense domain of common analytic vectors for generators [11]. When these
are absent we get “local” representations that can sometimes be made into
true representations of an infinite-dimensional Lie group (cf. [10]). When
starting with generators of the regular representation (on L2(G)) of a simply
connected compact simple Lie group G and making it nonsimply connected
by removing a suitable subset of Haar measure zero, then taking e.g. a double
covering G2 of it (see [12] and [16]) we get one parameter unitary groups that
do not close to what would have had to be G2, but to an infinite subgroup
of the unitary group of L2(G2), hard to study and with sometimes strange
algebraically indecomposable subrepresentations [16]. It seems that our notion
of “blurred Lie group” can provide a subgroup of that huge infinite group more
amenable to study.

7 Transcendental calculus

In the previous section, we showed that anomalous phenomena occur for the
star exponential functions of the quadratic forms, and proposed to view them
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as double valued elements. On the other hand, choosing suitable family of K-
ordered experessions together with the intertwiners I

K′

K
leads us to an advan-

tage for the transcendental calculus in non-formal deformation quantization.
We think that notion and properties deriven by a broad family of K-

ordered expressions will be acceptable as independence of ordering.
In this section, we consider the case m = 1 for simplicity. Namely, we put

z1=u and z2=v as below.

7.1 The star exponential function e
t(z+ 1

i~uv)
∗

Let K =
[
0 ε
ε δ

]
. The product ∗(ε,δ) and the ordered expression : :(ε,δ) stand

for ∗K and : :K , respectively.

The (ε, δ)-ordered expression of the star exponential function e
t 1
i~ 2uv
∗ (ε,δ) is

given by

:e
t 1
i~ 2uv
∗ :(ε,δ)=

2
∆

exp
(
(
et−e−t

∆
)2δ

1
i~
u2+

et−e−t

∆
1
i~

2uv
)
, (7.1)

where ∆=(et+e−t)−ε(et−e−t). The general ordered expression is a little more
complicated involving the square root in the amplitude.

Note that if the function f has the form f = h(uv), then I
(ε′,0)
(ε,0) (h(uv)) is

also a function of uv. From here on, we mainly concern with functions of uv

alone. We set 2
i~uv=〈zA, z〉, where z=(u, v) and A=

[
0 1
1 0

]
. The intertwiner

I
(ε′,0)
(ε,0) is given as follows:

I
(ε′,0)
(ε,0) (get

2
i~uv)=g

1
1−t(ε′−ε)

e
1
i~

1
1−t(ε′−ε)2uv (7.2)

Solving the evolution equation for the exponential function, we see that

e
t 1
i~ 2uv
∗ is given by

:e
t 1
i~ 2uv
∗ :0 =

1
cosh t

e
1
i~ 2uv tanh t (7.3)

in the Weyl ordering, and by

:e
t 1
i~ 2uv
∗ :K0

= ete
1
i~ (e2t−1)uv (7.4)

in the K0-ordered expression.

Since :e
t 2
i~uv
∗ :ε = I

(ε,0)
0 ( 1

cosh te
1
i~ 2uv tanh t), we see that

:e
t 1
i~ 2uv
∗ :ε=

2
(1−ε)et+(1+ε)e−t

exp
( et−e−t

(1−ε)et+(1+ε)e−t
1
i~

2uv
)
. (7.5)
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Note that (1−ε)et+(1+ε)e−t=0 if and only if e2t= ε+1
ε−1 . Hence, :e

t 1
i~ 2uv
∗ :(ε,δ)

has a singular point at 2t= log ε+1
ε−1+2πiZ. However, if ε=±1, then :e

t 1
i~ 2uv
∗ :(±1,δ)

are entire functions with respect to t.
The properties, like singularities, of star exponential functions in ordered

expressions will be general properties as an independence of ordering.

7.2 Inverses

Formula (5.2) gives in particular

:e
t(z+ 1

i~v)
∗ :(ε,δ)=e

1
4i~ t

2δet(z+
1
i~v). (7.6)

It follows that if Im δ < 0, then e
1

4i~ t
2δ is rapidly decreasing in t. By (7.6), the

integrals

:
∫ 0

−∞
e
t(z+ 1

i~v)
∗ dt:(ε,δ), −:

∫ ∞
0

e
t(z+ 1

i~v)
∗ dt:(ε,δ).

converge. Both integrals are respectively inverses of z+ 1
i~v, and are denoted

by (z+ 1
i~v)−1

+∗, (z+ 1
i~v)−1

−∗, respectively, with the subscript (ε, δ) omitted.

Proposition 7.1 If Im δ < 0, then the (ε, δ)-ordered expression of the differ-
ence of the two inverses is given by

:(z+
1
i~
v)−1

+∗−(z+
1
i~
v)−1
−∗:(ε,δ)=

∫ ∞
−∞

e
1

4i~ t
2δet(z+

1
i~v)dt.

This difference is holomorphic in z.

We now consider the inverses of (z+ 1
i~uv) which have the different features

from the above. We formally set

(z+
1
i~
uv)−1

+∗ =
∫ 0

−∞
e
t(z+ 1

i~uv)
∗ dt, (z+

1
i~
uv)−1
−∗ =

∫ ∞
0

e
t(z+ 1

i~uv)
∗ dt. (7.7)

(7.7) makes sense for the (ε, δ)-ordered expression such that Im δ < 0. We
have the following result (cf.[33], [23], [24]).

Theorem 7.1 The inverses (z+ 1
i~uv)−1

+∗, (z− 1
i~uv)−1

−∗ extend to holomorphic
functions in z on C−{−(N+1

2)} in (ε, δ)-ordered expression such that Imδ < 0.

Corollary 7.1 Let Imδ < 0. If −1
2 < Re z < 1

2 , then the difference of the two
inverses is given by

(z+
1
i~
uv)−1

+∗−(z+
1
i~
uv)−1
−∗=

∫ ∞
−∞

e
t(z+ 1

i~uv)
∗ dt. (7.8)

Its (ε, δ)-ordered expression is holomorphic on this strip.
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Although we restrict ordered expressions, Corollary 7.1 gives us a suggestion
that there are two inverses for (z+ 1

i~uv). Furthermore, the following discrete
picture will be a general feature for uv.

7.3 Star functions

By suitable choices of K-orderings, we can produce several interesting star
functions. In this subsection, we briefly show star gamma functions and star
sine functions.

We first recall the ordinary gamma function and beta function:

Γ (z)=
∫ ∞

0
e−ttz−1dt, B(x, y)=

∫ 1

0
tx−1(1−t)y−1dt.

The star gamma function and the star beta function may be defined by
replacing x with z ± uv

i~ :

Γ∗(z ±
uv

i~
) =

∫ ∞
−∞

e−e
δ
e
δ(z±uv

i~ )
∗ dδ,

B∗(z ±
uv

~i
, y) =

∫ 0

−∞
e
δ(z±uv

i~ )
∗ (1−eδ)y−1dδ.

(7.9)

The star gamma function is defined in the (ε, 0)-ordered expression where
ε∈C−{ε≥1}∪{ε≤−1}. On the other hand, we can define the star sin function
sin∗ π(z+ 1

i~uv) via the formula

sin∗ π(z+
1
i~
uv) =

1
2i

(exp∗(πi(z+
1
i~
uv))− exp∗(−πi(z+

1
i~
uv))),

in the (ε, 0)-ordered expression where Re ε<0. Adapting the arguments of the
infinite product formulas for complex analytic functions (cf. [1]) to a star
product version, we can show that in a appropriate context, the star gamma
function and the star sine function have infinite product formulas (cf. [33]).

Γ∗(z+
uv

~i
)

= e
−γ(z+uv

~i )
∗ ∗(z+uv

~i
)−1
∗+∗

∞∏
k=1

∗
((

1+
1
k

(z+
1
i~
uv)
)−1

+∗∗e
1
k

(z+ 1
i~uv)

∗

)
,

sin∗π(z+
1
i~
uv)

=π(z+
1
i~
uv)∗ lim

n→∞

n∏
k=1

∗(1−1
k

(z+
1
i~
uv))∗e

1
k

(z+ 1
i~uv)

∗

∗
n∏
k=1

∗(1+
1
k

(z+
1
i~
uv))∗e−

1
k

(z+ 1
i~uv)

∗ .
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These computations suggest the following theorem, which indicate a gen-
eral feature on the discrete picture for the element uv as independence of
ordering.

Theorem 7.2 sin∗ π(z+ 1
i~uv)∗Γ∗(z+ 1

i~uv) is defined as an entire function of
z, vanishing at z∈N+1

2 in any (ε, 0)-ordered expression such that Re ε<0, and
ε∈C−{ε≥1}∪{ε≤−1}.

The statements mentioned in this section have been announced with an
outline of proofs in [33] (see also [23] and [24]). The complete proofs with
careful checks of associativity will appear elsewhere.
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R. Acad. Sci. Paris Sér. A-B 277 (1973), A939–A942.

[13] Gel’fand, I.M.; Shilov, G.E.: Generalized Functions, 2. Academic
Press, 1968.

[14] Kontsevich, M.: Deformation quantization of Poisson manifolds.
Lett. Math. Phys. 66 (2003), 157–216.

[15] Maillard, J-M.: Star exponentials for any ordering of the elements
of the inhomogeneous symplectic Lie algebra. J. Math. Phys. 45
(2004), no. 2, 785–794.

[16] Maillard, J-M.; Sternheimer, D.: Sur certaines représentations
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