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CHARACTERIZATIONS OF THE CLASS OF FREE SELF
DECOMPOSABLE DISTRIBUTIONS AND ITS SUBCLASSES

NORIYOSHI SAKUMA

Abstract. In this paper, we firstly characterize the class of free self-decomposable
distributions as a class of limiting distributions of suitably normalized partial sums
of free independent random variables. Secondly we introduce nested classes between
the class of free self-decomposable distributions and the class of free stable distri-
butions, characterize them in terms of Lévy measure and show that the limit of the
nested classes coincides with the closure of the class of free stable distributions. All
results here are the analogue of the results given in classical probability theory.

1. Introduction

Let X and Y be self-adjoint operators in a W ∗-probability space (A, τ), where A
is von Neumann algebra and τ is a tracial state on A. Then X+Y is also a self-adjoint

operator. If X and Y are freely independent, µX+Y is uniquely determined by µX

and µY . We call µX+Y the free additive convolution of µX and µY and denote it by

µX � µY . In classical probability theory, we use characteristic functions to study the

sum of independent random variables. Now we introduce a tool called the Cauchy

transform to study the sum of free independent random variables. In the following,

P stands for the class of all probability distributions on R.

Definition 1.1. Let µ ∈ P . The transformation Gµ : C+ → C− defined by

Gµ(z) =

∫
R

1

z − t
µ(dt) (z ∈ C+)

is called the Cauchy transform.

Let

Fµ(z) =
1

Gµ(z)
(z ∈ C+).

Fµ(z) has right inverse F−1
µ (z) on the region Γη,M for some M > 0 and η > 0, where

Γη,M := {z ∈ C : |Re (z)| < ηIm (z), Im (z) > M}.

Definition 1.2. The Voiculescu transform φµ of µ is defined by

φµ(z) = F−1
µ (z)− z.
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The free cummulant Cµ of µ is defined by

Cµ(z) = zφµ

(1

z

)
.

As in classical probability theory, the free cummulant of the sum of two free

independent self-adjoint operators is the sum of two free cummulant of self-adjoint

operators, as seen below.

Proposition 1.3. ([BeVo93]) Let µ1, µ2 ∈ P. Then

φµ1�µ2(z) = φµ1(z) + φµ2(z)

and

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z)

for all z in any region Γη,M , where all appearing functions are defined.

As in classical probability theory, the convergence of probability measures and

the convergence of the free cummulant are very connected each other.

Proposition 1.4. ([BeVo93]) Let {µn} ⊂ P. Then the following statements are

equivalent:

(a) The sequence {µn} converges weakly to a probability measure µ on R.

(b) There exist positive numbers η and M , and a function φ such that all the functions

φ, φµn are defined on Γη,M , and such that

(b1) φµn(z) → φ(z), n→∞, uniformly on compact subsets of Γη,M

and

(b2) supn∈N

∣∣∣φµn (z)

z

∣∣∣ → 0, as |z| → ∞, z ∈ Γη,M .

Infinite divisibility with respect to free additive convolution is defined as follows.

Definition 1.5. ([BeVo93]) µ ∈ P is free infinitely divisible (or �-infinitely divisible),

if for any n ∈ N, there exists µn ∈ P such that

µ = µn � µn � ...� µn︸ ︷︷ ︸
n times

.

By I(�), we denote the class of all free infinitely divisible distributions. In what

follows, I(∗) denotes the class of all classical infinitely divisible distributions on R.

As in classical probability theory, �-infinitely divisible distributions are charac-

terized by a free Lévy-Khintchine representation:
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Proposition 1.6. ([BeVo93], [BaTh06]) µ ∈ P is �-infinitely divisible if only if there

exist a ≥ 0, γ ∈ R and a Lévy measure ν such that the free cummulant transform Cµ

has the representation:

Cµ(z) = γz + az2 +

∫
R

(
1

1− tz
− 1− tz1[−1,1] (t)

)
ν(dt), (z ∈ C−). (1.1)

Here, the Lévy measure ν is a measure satisfying ν({0}) = 0 and
∫
R(|x|

2 ∧ 1)ν(dx) <

∞. In this case, the triplet (a, ν, γ) is uniquely determined by µ and is called the free

characteristic triplet for µ.

We now introduce free Gaussian, stable and self-decomposable distributions, fol-

lowing ([BaTh06]). For c > 0, Dcµ means that the distribution of cX where X is the

free random variable whose distribution is µ.

Definition 1.7. µ ∈ P is called the standard semi-circle distribution if

µ(dx) =
1

2π

√
4− x21[−2,2](x)dx.

By G(�), we denote the class of all semi-circle distributions, i.e.

G(�) = {Dcµ� δb : c ≥ 0, b ∈ R, µ is the standard semi-circle distribution},

where δb is the delta measure at b.

Since semi-circle distributions appear in the central limit theorem of free proba-

bility theory ([BeVo95]), we can regard semi-circle distributions as “the free Gaussian

distributions ”.

Definition 1.8. µ ∈ P is called free stable (�-stable), if the class

{ψ(µ) : ψ is an increasing affine transformation}

is closed under the operation �. By S(�), we denote the class of all free stable

distributions.

Remark 1.9. ([BeVo93],[BaTh06]) The �-stability of µ ∈ P is equivalent to each of

the following.

(1) µ ∈ P such that for any a, a′ > 0 and for b, b′ ∈ R, there exist a′′ > 0 and b′′ ∈ R
such that

Cµ(az) + bz + Cµ(a′z) + b′z = Cµ(a′′z) + b′′z.

(2) For each n ∈ N, there exist an > 0 and bn ∈ R such that

nCµ(z) = nCµ(anz) + bn. (1.2)
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an in (1.2) can be taken as an = n1/α with some α ∈ (0, 2]. The proof of this can be

carried out as in the classical case (See, e.g. [Fe71]).

Definition 1.10. µ ∈ P is free self-decomposable (�-self-decomposable) if, for any

b > 0, there exists ρb ∈ P such that

µ = Db−1µ� ρb.

By L(�), we denote the class of all free self-decomposable distributions.

An important connection between the free and classical infinite divisibility was

established by Bercovici and Pata ([BePa99]), by using the following bijection Λ :

I(∗) → I(�).

Definition 1.11. Suppose that µ is a measure in I(∗), and has its classical generating

triplet (a, ν, γ) in its Lévy-Khintchine representation. Define Λ(µ) as the probability

measure in I(�) with the same generating triplet (a, ν, γ) as free generating triplet

appearing in (1.1). We call this mapping Λ : I(∗) → I(�) the Bercovici-Pata bijec-

tion.

Example 1.12. Let µ be the standard Gaussian distribution, i.e.

µ(dx) =
1√
2π

exp(−1

2
x2)dx.

Then Λ(µ) is the standard semi-circle distribution.

Example 1.13. Let µ be the Cauchy distribution, i.e.

µ(dx) =
1

π

a

x2 + a2
dx.

Then Λ(µ) is the Cauchy distribution.

The following can be shown based on the Bercovici-Pata bijection.

Proposition 1.14. ([BaTh06]) The relationships of the subclasses of free Infinitely

divisible distributions is as follow:

G(�) ⊂ S(�) ⊂ L(�) ⊂ I(�).

2. The free analogue of a characterization of the classical

self-decomposable distributions

In classical probability theory, the class of self-decomposable distributions is char-

acterized as a class of limiting distributions. We are going to show here that the same

is true in the free probability theory. In the following, L stands for “the law of”.
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Definition 2.1. Let {kn : n ∈ N} be a sequence of positive integers, and let

A = {µnj
: n ∈ N, j ∈ {1, 2, · · · , kn}}

be an array of probability measures on R. We say then that A is a null array, if the

following conditions fulfilled: for any ε > 0,

lim
n→∞

max
1≤j≤kn

µnj
(R\[−ε, ε]) = 0.

Theorem 2.2. Let {Zk : k ∈ N} be free independent random variables and let Sn =∑n
k=1 Zk. Let µ be a non-trivial probability measure on R. Suppose that there are

{bn > 0 : n ∈ N} and {cn ∈ R : n ∈ N} such that

L(bnSn + cn) → µ, (2.1)

and that

{bnZk : k = 1, ..., n; n ∈ N} is a null array. (2.2)

Then, µ is free self-decomposable. Conversely, for any free self-decomposable dis-

tribution µ affiliated with some W ∗-probability space (A, τ) we can find {Zn} free

independent random variables, bn > 0, {cn ∈ R : n ∈ N} satisfying (2.1), (2.2).

To prove this theorem, we need the following lemma.

Lemma 2.3. Under the assumptions of Theorem 2.2, we have bn → 0 and bn/bn+1 →
1 as n→∞.

Proof. Let µk be the distribution of Zk. The condition (2.2) says that, for any ε > 0,

max
1≤k≤n

Dbnµk(R\[−ε, ε]) → 0 (as n→∞).

So,

max
1≤k≤n

µk

(
R\

[
−b−1

n ε, b−1
n ε

])
→ 0 (as n→∞).

Suppose that some subsequence {bn(l)} of {bn} tends to a non-zero b. Then it follows

that, for any k, µk(R\[−b−1ε, b−1ε]) = 0. Therefore µ is trivial, contrary to the

assumption. Hence we have bn → 0. We next show that bn/bn+1 → 1. Write

Wn = bnSn + cn.

By Proposition 1.4, there exist α and β > 0 such that

φL(Wn)(z) → φµ(z) (n→∞),
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uniformly on the compact subsets of the truncated cone Γα,β. Note

Wn+1 =
bn+1

bn
Wn + bn+1Zn+1 +

(
cn+1 −

cnbn+1

bn

)
and

Wn + bnZn+1 =
bn
bn+1

Wn+1 +

(
cn −

cn+1bn
bn+1

)
.

Since bn → 0 , cn → 0 and by Proposition 1.4 , there exist α′ and β′ > 0 such that

Im

(
bn+1

bn
φL(Wn)

(
bn
bn+1

z

))
→ Imφµ(z) (n→∞)

and

Im

(
bn
bn+1

φL(Wn+1)

(
bn+1

bn
z

))
→ Imφµ(z) (n→∞), (2.3)

uniformly on the compact subsets of Γα′,β′ ⊂ Γα,β. Applying (b2) of Proposition 1.4

once again to φL(Wn), we see that bn/bn+1 is bounded away from zero and infinity.

Indeed, suppose that bn/bn+1 is not bounded away, for example, from zero. Then,

provided that we pass to a subsequence, we have that, for every fixed z in the trun-

cated cone Γα′,β′ , the left-hand side of (2.3) goes to zero. Hence there exists N > 1

such that bn/bn+1 ∈ [1/N,N ] for every n.

Let us denote throughout the rest of the proof

dn :=
bn
bn+1

Selecting z = iy, y large enough, we get

zdn ∈
[
iy

N
, iyN

]
⊂ Γα′,β′ .

For each ε > 0, there exists n0(ε) ∈ N such that, for n ≥ n0(ε),∣∣∣∣ImφµL(Wn)
(dnz)− Imφµ(dnz)

∣∣∣∣ < ε

2N
,

from which it follows that∣∣∣∣Im 1

dn

φµL(Wn)
(dnz)− Imφµ(z)

∣∣∣∣ < ε

2Ndn

≤ ε

2
,

and ∣∣∣∣Im 1

dn

φµL(Wn)
(dnz)− Im

1

dn

φµ(dnz)

∣∣∣∣ < ε

2
.

Therefore, combining the last two inequalities, we get that, for n ≥ n0(ε),∣∣∣∣Im 1

dn

φµ(dnz)− Imφµ(z)

∣∣∣∣ < ε.
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By theorem 1 of [BePa00], µ is �-infinitely divisible and, since we suppose µ non-

trivial, by a Proposition 1.6, there exists a positive measure σ and a ∈ R such that

φµ(z) = a+

∫ +∞

−∞

1 + tz

z − t
σ(dt).

Therefore

Imφµ(iy) =

∫ +∞

−∞

y(1 + t2)

t2 + y2
σ(dt),

and we get ∣∣∣∣Im 1

dn

φµ(dnz)− Imφµ(z)

∣∣∣∣
= y

∣∣∣∣ ∫ +∞

−∞
(1 + t2)

(
1

t2 + d2
ny

2
− 1

t2 + y2

)
σ(dt)

= y3|1− d2
n|

∫ +∞

−∞

1 + t2

(t2 + c2ny
2)(t2 + y2)

σ(dt)

≥ y3|1− d2
n|

∫ +∞

−∞

1 + t2

(t2 +N2y2)(t2 + y2)
σ(dt).

Since, once y is fixed,

y3

∫ +∞

−∞

1 + t2

(t2 +N2y2)(t2 + y2)
σ(dt) = C ≥ 0,

it follows that for n ≥ n0(ε),

|1− d2
n| ≤

ε

C
.

Thus, letting ε→ 0, we finally get

lim
n→∞

dn = 1,

which yields the result. This completes the proof of lemma 2.3. �

Proof of Theorem 2.2. To show that µ is �-self-decomposable, we show for any b > 1

there exist positive numbers α′, β′ and some ρ ∈ P such that

φµ(z) = φDb−1µ
(z) + φρ(z) (z ∈ Γα′,β′).

Assume that µ is non-trivial. By Lemma 2.3, bn → 0 and bn/bn+1 → 1 as n → ∞.

For any b > 1 we can find sequences {n(l) : l ∈ N} and {m(l) : l ∈ N} of positive

integers going to infinity such that

m(l) < n(l) and bm(l)b
−1
n(l) → b,

(See, e.g. proof of theorem 15.3 in [Sa99].) Let

Wn = bnSn + cn,
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Ul = bn(l)

m(l)∑
k=1

Zk + bn(l)b
−1
m(l)cml

and

Vl = bn(l)

n(l)∑
k=ml+1

Zk + cn(l) − bn(l)b
−1
m(l)cml

.

Then Wn(l) = Ul + Vl and there exist α(l) > 0 and β(l) > 0 such that

φWn(l)
(z) = φUl

(z) + φVl
(z) (z ∈ Γα(l),β(l))

by the free independence. By the hypothesis (2.1) and Proposition 1.4, there exist

positive numbers α, β and a function φµ(z) such that all the functions φµ, φWn(l)
are

defined on Γα,β, and such that

(b1) φWn(l)
(z) → φµ(z), uniformly on compact subsets of Γα,β as n→∞.

and

(b2) sup
n∈N

∣∣∣∣φWm(l)
(z)

z

∣∣∣∣ → 0, as |z| → ∞ in Γα,β.

Since Ul = bn(l)b
−1
m(l)Wm(l), we have

φU(l)(z) =
bn(l)

bm(l)

φWm(l)

(
bm(l)

bn(l)

z

)
.

Now we can choose some positive numbers α′, β′ such that Γα′,β′ ⊂ ∩l∈N{z ∈ C+ :
bm(l)

bn(l)
z ∈ Γα,β}. On any compact subset K ⊂ Γα′,β′ , for any ε > 0, there exists some

large L such that, if l > L

sup
z∈K

∣∣φUl
(z)− b−1φµ(bz)

∣∣
≤ sup

z∈K

∣∣∣∣φUl
(z)−

bn(l)

bm(l)

φµ

(
bm(l)

bn(l)

z

)∣∣∣∣ + sup
z∈K

∣∣∣∣ bn(l)

bm(l)

φµ

(
bm(l)

bn(l)

z

)
− b−1φµ(bz)

∣∣∣∣ < ε.

So,

φUl
(z) → b−1φµ(bz), uniformly on compact subsets of Γα′,β′ as l→∞.

Also

sup
l∈N

∣∣∣∣φUl
(z)

z

∣∣∣∣ = sup
l∈N

∣∣∣∣∣∣
φWn(l)

(
bm(l)

bn(l)
z
)

bm(l)

bn(l)
z

∣∣∣∣∣∣ → 0, as |z| → ∞, z in Γα,β.
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So there exist positive numbers α′, β′ and a function φDb−1µ
(z) = b−1φµ(bz) such that

all the functions φDbµ
, φUl

are defined on Γα′,β′ , and such that

(b1) φUl
(z) → φDb−1µ

(z), uniformly on compact subsets of Γα′,β′ as l→∞.

and

(b2) sup
l∈N

∣∣∣∣φUl
(z)

z

∣∣∣∣ → 0, as |z| → ∞ in Γα′,β′ .

Thus, L(Ul) → Db−1µ. Since

φVl
(z) = −φUl

(z) + φWn(l)
(z) (z ∈ Γα,β),

L(Vl) → ρb ∈ P , too. So,

φµ(z) = φDb−1µ
(z) + φρ(z) (z ∈ Γα,β).

This implies that µ = Db−1µ � ρb and thus, µ is �-self-decomposable. The proof of

the converse is the same as Theorem 4.25. in [BaTh06]. �

3. Subclasses Lm(�) of L(�) and their characterisations

The class of free self-decomposable distributions includes that of free stable dis-

tributions. In this section, we introduce nested classes Lm(�), m = 1, 2, · · · between

the class L0(�) of self-decomposable distributions and the class S(�) of stable dis-

tributions, such that

L0(�) ⊃ L1(�) ⊃ L2(�) ⊃ ... ⊃ L∞(�) ⊃ S(�).

First, basic properties are proved and these classes are characterized as limits of par-

tial sums of free independent random variables whose distributions are in certain

classes closed under convolution and convergence.

Secondly, a representation of free cummulants of the classes above is presented, show-

ing, in particular, that L∞(�) contains the class S(�). The representation of dis-

tributions in L∞(�) indicates a clear connection to the representation of free stable

distributions. Put L0(�) = L(�). For example, semicircle distributions are �-self-

decomposable. It is known that all �-self-decomposable distributions are �-infinitely

divisible. We have the following proposition.

Proposition 3.1. ([BaTh06]) Let µ ∈ L0(�). Then ρb is uniquely determined by µ

and b, and both µ and ρb are in I(�).

Next we define the subclasses of �-self-decomposable distributions.
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Definition 3.2. For m = 1, 2, · · · µ ∈ Lm(�) if, for any c ∈ (0, 1), there exists

ρc ∈ Lm−1(�) such that

µ = Dcµ� ρc.

We also define

L∞(�) = ∩∞m=0Lm(�).

It is immediate, by Proposition 3.1 and Definition 3.2, that I(�) ⊃ L0(�) ⊃
Lm(�) for all m ≥ 1. Next lemma shows these classes form a nested sequence. Thus,

the intersection over all Lm(�) will give the limiting class.

Lemma 3.3. I(�) ⊃ L0(�) ⊃ L1(�) ⊃ L2(�) ⊃ · · · .

Proof. It is immediate. �

Remark 3.4. The class of trivial distributions is contained in L∞(�). Briefly,

let δx0 with x0 ∈ R be the probability measure concentrated at x0. Then δx0 =

δb−1x0+(1−b−1)x0
= δb−1 � δ(1−b−1)x0

for all b > 1. Hence δx0 ∈ Lm for all m.

Classes Lm(�) are closed under convolution, convergence and type equivalence.

These statements are proved in (2), (3) and (4) of following lemma,

Lemma 3.5. Let m ∈ {0, 1, 2, . . . ,∞}.
(1) If µ is in Lm(∗), then Λ(µ) is in Lm(�). The converse is also true, i.e.

Λ(Lm(∗)) = Lm(�) and Λ−1(Lm(�)) = Lm(∗)

(2) If µ1 and µ2 are in Lm(�), then µ1 � µ2 ∈ Lm(�).

(3) If µn ∈ Lm(�) and µn → µ, then µ ∈ Lm(�).

(4) If µ1 = L(X) ∈ Lm(�) and µ2 = L(aX + b) with a ∈ R and b ∈ R, then

µ2 ∈ Lm(�).

(5) If µ1 ∈ Lm(�), µ2 ∈ P and Cµ2(z) = aCµ1(z) with some a ≥ 0, then µ2 ∈ Lm(�).

Proof. The proof will be given by the induction method. Let µ is in L0(∗) with ρb.

We map µ = Db−1µ ∗ ρb by the Bercovici-Pata bijection. Then,

Λ(µ) = Λ(Db−1µ ∗ ρb) = Db−1Λ(µ) � Λ(ρb).

Thus, Λ(µ) is in L0(�). Assume that the assertion is true for m − 1. Let µ be in

Lm(∗), then, for any b > 1, there exists ρb ∈ Lm−1(∗) such that

µ = Db−1µ ∗ ρb.
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Then,

Λ(µ) = Λ(Db−1µ ∗ ρb) = Db−1Λ(µ) � Λ(ρb).

By the hypothesis, Λ(ρb) is in Lm−1(�). Therefore, Λ(µ) is in Lm(�). In the case

that m = ∞,

µ ∈ L∞(∗) ⇔ µ ∈ ∩∞m=0Lm(∗) ⇔ Λ(µ) ∈ ∩∞m=0Lm(�) ⇔ Λ(µ) ∈ L∞(�).

The converse is proved in the same way. (2), (3), (4), (5) are proved easily by using

the Bercovici-Pata bijection and [RoSa03], Chapter 1, Lemma 8. �

Next we prove that �-stable distributions are contained in the class L∞(�), and

that L∞(�) is the smallest class containing the �-stable distributions closed under

convolution and convergence once the representation of free cummulants of the class

L∞(�) is established.

Lemma 3.6. L∞(�) ⊃ S(�).

Proof. Let µ ∈ S(�). Since Λ−1(µ) ∈ S(∗), Λ−1(µ) ∈ L∞(∗). By Lemma 3.5 and

S(∗) ⊆ L∞(∗) (See [RoSa03] Chapter1), µ ∈ L∞(�). �

Lemma 3.5 shows that the class of distributions Lm(�) is completely closed class,

that is, closed under convolution, weak convergence and type equivalence. This prop-

erty is essential in characterizing this class in terms of limits for sums of independent

random variables.

Definition 3.7. Let D be a subclass of P . Define K(D) ⊂ P as follows. µ ∈ K(D)

if there are free independent random variables {Zn : n ∈ N}, {bn > 0 : n ∈ N} and

{cn ∈ R : n ∈ N} satisfying the following conditions.

L(bnSn + cn) → µ,

{bnZk : k = 1, ..., n; n ∈ N} is a null array. (3.1)

L(Zk) ∈ D for each k.

Using this operation K, the class of self-decomposable distributions is compre-

hended as a class of limit distributions, as well as the class of distributions Lm(�).
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Theorem 3.8. (1) L0(�) = K(P) = K(I(�)).

(2) Lm(�) = K(Lm−1(�)) for m = 1, 2, · · ·
(3) L∞(�) = K(L∞(�)) and L∞(�) is the largest class D that satisfies D = K(D).

Proof. First, We show (1). The first equality can be found in theorem 2.2. Thus

L0(�) ⊃ K(I(�)). The same argument as in the proof of (2) below combined with

yields L0(�) ⊂ K(I(�)). Second, We show (2). Let µ ∈ Lm(�). For every b > 1,

φρb
(z) = φµ(z)− φDb−1µ(z) (z ∈ C+),

with ρb ∈ Lm−1(�). First, we compose the free random variables sequence which

converge to µ. Let Z1, Z2, . . . be freely independent random variables with

φZk
(z) = (k + 1)φρ k+1

k

(
1

k + 1
z

)
,

and define Sn = n−1
∑n

k=1 Zk.

φSn(z) =
n∑

k=1

1

n
φZk

(nz)

=
n∑

k=1

k + 1

n
φρ k+1

k

(
n

k + 1
z

)

=
n∑

k=1

k + 1

n

{
φµ

(
n

k + 1
z

)
− φD k

k+1
µ

(
n

k + 1
z

)}

=
n∑

k=1

k + 1

n

{
φµ

(
n

k + 1
z

)
− k

k + 1
φµ

(
n

k
z

)}

=
n∑

k=1

k + 1

n
φµ

(
n

k + 1
z

)
− k

n
φµ

(
n

k
z

)
=
n+ 1

n
φµ

(
n

n+ 1
z

)
− 1

n
φµ (nz)

→ φµ(z) uniformly compact subset of C+

and

sup
n∈N

∣∣∣∣φSn(z)

z

∣∣∣∣ = sup
n∈N

∣∣∣∣∣ n+1
n
φµ

(
n

n+1
z
)
− 1

n
φµ (nz)

z

∣∣∣∣∣
≤ sup

n∈N

∣∣∣∣∣φµ( n
n+1

z)
n

n+1
z

∣∣∣∣∣ + sup
n∈N

∣∣∣∣φµ(nz)

nz

∣∣∣∣
→ 0 as |z| → ∞, z ∈ C+.
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So By Proposition 1.4, L(Sn) → µ. This sequence satisfies the condition (3.1). The

converse can be proved in the same way as Theorem 2.2. Next we show (3). By (2),

Lm(�) ⊃ K(Lm−1(�)) ⊃ K(L∞(�)) for all m ∈ N. Thus, L∞(�) ⊃ K(L∞(�)). If

µ ∈ L∞(�), then ρb ∈ L∞(�). Take Zk as the proof of (2). So L(n−1
∑n

k=0 Zk) → µ

and {n−1Zk} is null array. This means that µ ∈ K(L∞(�)). So, K(L∞(�)) = L∞(�).

Let D = K(D). Then D = K(D) ⊂ K(P) = L0(�). Since D ⊂ L0(�), we get

D = K(D) ⊂ K(L0(�)) = L1(�). By a cyclic application of the same argument,

D ⊂ Lm(�) for every m ∈ N. Therefore, D ⊂ L∞(�). �

The following is our final goal in this paper, which is an analogue of the corre-

sponding statement in classical probability theory.

Theorem 3.9. The class L∞(�) is the smallest class containing S(�) and closed

under �-convolution and weak convergence.

Proof. It has already been shown that the class L∞(�) contains S(�) and that it is

closed under convolution and convergence. Let Q be a class of probability measures

containing S(�) and closed under � and weak convergence. Q′ := Q ∩ I(�) has

the same properties, and hence Λ(Q′) contains S(∗), is closed under ∗ and weak

convergence by Theorem 5.7. and Corollary 5.14. in [BaTh06]. Hence, by the classical

analog of Theorem 3.16 (See e.g. theorem 24 in [RoSa03]), Λ(Q′) ⊇ L∞(∗) and

therefore Q ⊇ Q′ ⊇ Λ(L∞(∗)) = L∞(�). �
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and Lévy processes, Lect. Notes Math. 1866, Springer, 33–159.

[BePa99] H. Bercovici and V. Pata (1999). A free analogue of Hǐncin’s characterization of infinite
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