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Abstract
Sparse sublattices of Z2, obtained by recursive removal of increas-

ingly large squares of points, are shown to have critical site percolation
probabilities strictly between zero and one. We show that for every
such lattice the infinite cluster, if it exists, is unique. The discussion
leads to an apparently new type of ergodic theorem of independent
interest.

1 Introduction

In this article, we consider independent site percolation on sublattices of
Z2 which are obtained by recursively removing larger and larger squares of
points; we call these lattices lattices with large holes. The precise definition
is given in section 3. To keep the exposition simple, we have chosen a fixed
dimension two and a special system for recursive removal; it is easy to replace
these with more general choices. Our goals are to show that for such lattices,
the critical probability lies strictly between zero and one (section 5) and that
for each such lattice, there are at most one infinite cluster with probability
one (sections 6 and 7). In section 7, we discuss an apparently new type of
ergodic theorem and an interesting question concerning more general strictly
ergodic systems.

2 Configuration space

Let

Z(3) :=

{
z =

∑
i≥0

zi3
i : zi ∈ {0, 1, 2} for i ≥ 0

}
.

Under coordinatewise addition modulo 3 with right carry, Z(3) is the compact
Abelian group of 3-adic integers. We identify the usual integers Z with
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the subset of Z(3) whose elements z have either only finitely many nonzero
coordinates zi (z ≥ 0) or only finitely many coordinates zi 6= 2 (z < 0). Thus
Z acts on Z(3) by translation.

If z1 and z2 belong to Z(3), then we set z = (z1, z2) and

I(z) := {i ≥ 0 : z1
i = z2

i = 2}.
The subset

Ẑ0 := {z : I(z) = ∅}
of Z(3)×Z(3) has again a product structure, with eight possibilities for each
pair (z1

i , z
2
i ) (the possibility (2, 2) is absent). We denote by µ0 the product

probability measure on Ẑ0 giving probability 1/8 to each of these possibilities,
independently for i ≥ 0. If we set

Z0 := {z ∈ Ẑ0 : z1, z2 /∈ Z},
then it is easy to see that µ0(Z0) = 1, since each one-dimensional section of
Ẑ0 has µ0-measure 0 and we have removed countably many such sections.

For each nonnegative integer k, we define

Z0,k := {z ∈ Z0 : z1
i = z2

i = 0 for 0 ≤ i ≤ k}.
Then

µ0(Z0,k) =

(
1

8

)k+1

(k ≥ 0)

and
Z0 ⊇ Z0,0 ⊇ Z0,1 ⊇ · · · .

Further, set
Ik := {(s, t) ∈ Z× Z : 2 · 3k ≤ s, t < 3k+1}.

That is, the nonnegative integers s and t with (s, t) ∈ Ik are those having
ternary expansions of length k + 1 with leading (highest) coordinates equal
to 2. Then, the countable collection of sets

(∗) Z0,k + (s, t)

with k ≥ 0 and (s, t) ∈ Ik, together with the single set Z0, are pairwise
disjoint and partition the set

Z :=
{
z = (z1, z2) ∈ Z(3)× Z(3) : z1, z2 /∈ Z, I(z) finite

}
.

We extend the probability measure µ0 on Z0 to the σ-finite measure µ
on Z by defining µ on each set (∗) to be the translation of µ0 restricted to
the corresponding set Z0,k. It should be clear from the construction that Z2

acts on Z by translation, as the action of an element of Z on an element of
Z(3) \ Z changes at most finitely many coordinates.
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Lemma 2.1. µ is the unique (σ-finite) measure on Z invariant under the
action of each element of Z2 for which µ(Z0) = 1.

Proof. For each k ≥ 0, the set Z0,k together with 8k+1 − 1 of its translates
disjointly cover Z0; these partitions generate the σ-algebra restricted to Z0,
and each of them must have measure 1/8k+1, since µ(Z0) = 1. Thus µ is
uniquely determined on Z0, and by the above translations on all of Z.

Corollary 2.2. The action of Z2 on (Z, µ) is ergodic.

Proof. This follows from the uniqueness of Lemma 2.1.

We call an element z ∈ Z a configuration and the measure space (Z, µ)
configuration space.

3 Lattices with large holes

To each z ∈ Z we assign a subset Λ(z) of Z2 by setting

Λ(z) := {(s, t) ∈ Z2 : z + (s, t) ∈ Z0}.

The nearest neighbour graph on Λ(z) will be called the lattice with large
holes of z. At each “level” k this Λ(z) has a block structure with two types
of blocks of size 3k × 3k. One block is the empty block (no points), whereas
the other is obtained by putting together nine blocks of size 3k−1 × 3k−1,
one empty and the other eight the nonempty block at that level. Here are
pictures for levels one and two:

(1)
· · ◦
· · ·
· · ·

(2)

· · ◦ · · ◦ ◦ ◦ ◦
· · · · · · ◦ ◦ ◦
· · · · · · ◦ ◦ ◦
· · ◦ · · ◦ · · ◦
· · · · · · · · ·
· · · · · · · · ·
· · ◦ · · ◦ · · ◦
· · · · · · · · ·
· · · · · · · · ·

where we have circled the absent points. The coordinates of z = (z1, z2)
govern the placement in Z2 of these blocks recursively.
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4 Site percolation on Λ(z)

In this and in the following sections, we assume acquaintance with the ideas of
site percolation for subgraphs of Zd, and in particular with the original results
of Broadbent and Hammersley [2] concerning critical values and of Aizenman,
Kesten, and Newman [1] regarding uniqueness of the infinite cluster when
percolation occurs. We refer the reader to the excellent treatise of Grimmett
[4], which discusses these ideas (but for bond percolation) and to [3] for the
arguments concerning uniqueness.

Our first result, based on ideas in [9], deals with the nontriviality of
critical values:

Theorem 4.1. For any z ∈ Z, the critical value for site percolation on Λ(z)
lies strictly between 0 and 1.

Our second result, regarding uniqueness, is:

Theorem 4.2. For any z ∈ Z and any value of p at which percolation occurs
on Λ(z), the infinite cluster is unique with probability 1.

The next three sections provide proofs of these theorems.

5 Proof of Theorem 4.1

If z ∈ Z, then we can translate z by an element of Z2 to obtain z ∈ Z0, so
that we may assume z ∈ Z0. (Critical values are the same for any translate.)
Since Λ(z) ⊆ Z2, it should be clear that its critical value is strictly positive,
since the critical value for site percolation on Z2 is positive, and cannot
decrease if we go to a subgraph. So we only have to show that for some
p < 1, percolation occurs on Λ(z). Actually, we can make this p explicit. Let
us consider the polynomial

f(q) = q64 + 64q63(1− q)− q.

Then
f(1) = 0

and
f ′(1) = 64 · 63− 64 · 63− 1 = −1,

so for values of q less than 1 but close to 1, f(q) ≥ 0. Let p be the largest
solution to f(q) = 0 which is less than 1 for p. Then p < 1 and

p64 + 64p63(1− p) = p.
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Now the left hand side is exactly the probability that at least 63 of the 64
points in the picture (2) are open, if each single point is open (independently)
with probability p. So if we define the block in (2) to be “open” if at least
63 of the 64 points in the block are open, then the probability of a block (of
size 81× 81) to be “open” is also equal to p.

Proceeding to the next (even) level, we define a block of size 94×94 to be
“open” if each of its 64 nonempty subblocks of size 92×92 are “open”, and we
continue this definition recursively for blocks of sizes 92k × 92k, k ≥ 1. Then
it should be clear that the event that such a block is “open” has probability
p for any k ≥ 1. This shows indeed that percolation occurs for Λ(z) at p;
if this were not the case, then the probability that the block of size 9 × 9
containing the origin has a connected open set of size n should tend to 0 as n
tends to infinity. However, the above calculation shows that this probability
is at least p for any n, because “open” blocks next to each other are obviously
connected. (Steps of size two are necessary for this.)

6 Uniqueness for almost every z ∈ Z

Let 0 < p < 1. We denote by Pp the probability measure on

Ω = {0, 1}Z2

giving probability p to each of the events

ω(s, t) = 1,

independently for (s, t) ∈ Z× Z. If now

(z, ω) ∈ Z × Ω,

then we say that the site (s, t) ∈ Z× Z is open if both

(s, t) ∈ Λ(z)

and
ω(s, t) = 1.

Thus for each z ∈ Z we have a site percolation situation on Λ(z) ⊆ Z×Z, in
which each site in Λ(z) is open with probability p and closed with probability
1− p, independent of the other sites. (We disregard the values of ω(s, t) for
(s, t) /∈ Λ(z).) In the sequel we assume familiarity with the basic percolation
concepts, and with the contents of [3]. On Z ×Ω we define the simultaneous
Z × Z action given by the action on Z above and translation by the same
Z×Z element of ω ∈ Ω. The product measure µ×Pp is invariant under this
action.
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Lemma 6.1. The Z × Z action on Z × Ω is ergodic with respect to the
product measure µ× Pp.

Proof. Suppose that A ⊆ Z × Ω is Z× Z invariant, and that both

µ× Pp(A) > 0

and
µ× Pp(Z × Ω \ A) > 0.

Set Ac := Z ×Ω \A. Then there exist finite cylinder sets C and D in Z ×Ω
such that both

µ× Pp(C ∩ A)

µ× Pp(C)
> 1/2

and
µ× Pp(D ∩ Ac)

µ× Pp(D)
> 1/2;

we may assume also that C,D ⊆ Z0×Ω by translation invariance. However,
it is clear from the above that if (s, t) is sufficiently large and has the correct
relation modulo 3n for some n, then

Pp(C ∩ ((s, t) + D)) > 0;

thus (s, t) + Ac intersects A, which is a contradiction.

For (z, ω) ∈ Z × Ω, the total number of infinite open clusters is denoted
by N = N(z, ω). Since N is invariant under the spatial shift and µ × Pp is
ergodic under this Z2-action, N is constant µ× Pp-almost everywhere, i.e.

µ× Pp({N = l}c) = 0

for some l ∈ {0, 1, 2, · · · ,∞}. By Fubini’s theorem, this is equivalent to

µ(Z \ {z : Pp{ω : N(z, ω) = l} = 1}) = 0.

Proposition 6.2. For µ-almost every z ∈ Z, N is either zero, one, or infinity
with Pp-probability one.

Proof. We use the argument in [8]. Let

Zl := {z : Pp{ω : N(z, ω) = l} = 1},
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and suppose that µ(Z \ Zl) = 0 for an integer l ≥ 2. We set

Rn := ([−n, n]× [−n, n]) ∩ Z2,

∂Rn := {(s, t) ∈ Z2 : max{|s|, |t|} = n},

Dn :=

{
ω :

there exist at least two distinct
infinite open clusters starting from Rn

}
.

For z ∈ Zl,

Pp

(⋃
n≥1

Dn

)
≥ Pp{ω : N(z, ω) = l} = 1.

We can choose M so large that Pp(DM) > 1/2. Then,

Pp{N(z, ω) < l} ≥ Pp(DM ∩ {all sites in RM are open})
≥ p|RM |/2 > 0,

which is a contradiction.

Theorem 6.3. For µ-almost every z ∈ Z,

Pp{ω : N(z, ω) ∈ {0, 1}} = 1.

Proof. Suppose that

µ× Pp({(z, ω) : N(z, ω) = ∞}c) = 0.

We set

Tn :=

{
(z, ω) :

there exist at least three distinct
infinite open clusters starting from Rn

}
.

Then,

0 = µ× Pp

((⋃
n≥1

Tn

)c)
= lim

n→∞
µ× Pp (T c

n) .

We can choose a large M such that

µ× Pp (T c
M) <

1

2
.

Let

T̃n :=

{
ω :

there exist at least three distinct
infinite open clusters starting from Rn

}

and
Z̃M := {z : Pp(T̃M) > 1/2}.
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If µ(Z \ Z̃M) > 1, then

µ× Pp (T c
M) ≥

∫

Z\Z̃M

µ× Pp(dz, dω)1T c
M

(z, ω)

=

∫

Z\Z̃M

µ(dz)× Pp(Ω \ T̃M)

≥ µ(Z \ Z̃M) · 1

2
>

1

2
,

which is impossible. Thus we have µ(Z \ Z̃M) ≤ 1 and µ(Z̃M) > 0.
A point (s, t) ∈ Z2 is an encounter point for (z, ω) ∈ Z × Ω if

• (s, t) belongs to an infinite open cluster C of (z, ω), and

• the set C \ {(s, t)} has no finite components and exactly three infinite
components.

For z ∈ Z̃M , using the finite energy property (or, simply independence) of Pp

to change ω in RM , we can see that (0, 0) is an encounter point with positive
probability.

Let

f(z, ω) :=

{
1 if (0, 0) is an encounter point,

0 otherwise,

f0(z, ω) :=

{
1 if (0, 0) ∈ Λ(z),

0 otherwise.

By the ratio ergodic theorem (see e.g. Krengel [6]),

lim
R→∞

∑
(s,t)∈R f((s, t) + (z, ω))∑
(s,t)∈R f0((s, t) + (z, ω))

=

∫
f(z, ω)µ× Pp(dz, dω)∫
f0(z, ω)µ× Pp(dz, dω)

Pp-a.s. for µ-a.e. z ∈ Z. Since the integrals of f and g are both positive
and finite, the relative density of encounter points in the set of all allowable
lattice points is positive. We have

# of the sites on the boundary of R

≥ # of the distinct infinite open paths starting from the boundary of R

≥ (# of encounter points in R) + 2

≥ ε ·# of the sites in R,

which yields a contradiction for large R.
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7 Uniqueness for every z ∈ Z

In the previous section, we showed that µ-almost every z ∈ Z, i.e. for almost
every lattice with large holes, there can be at most one infinite cluster with
Pp-probability one, for any 0 < p < 1. Now we sketch the proof that this is
true for every z ∈ Z, leaving a number of details to the reader.

Let us begin by consideration of a simpler situation, more general in
nature in some aspects. Let

X :=

{
x =

∑
i≥0

xi2
i : xi ∈ {0, 1} for all i ≥ 0

}
' {0, 1}N,

Sx := x + 1 (mod 2 coordinatewise with right carry),

µ := (1/2, 1/2)N

be the well-known binary odometer, and let (Y, T, ν) be a compact separable
metric space Y provided with a homeomorphism T and a T -invariant proba-
bility measure ν. Consider the compact space X×Y with the transformation
S × T and the S × T -invariant probability measure µ × ν. By the ergodic
theorem, for any f ∈ L1(µ× ν), we have that

f̄(x, y) := lim
n→∞

1

n

n−1∑

k=0

f(Skx, T ky)

exists for µ× ν-almost every (x, y) ∈ X × Y .

Theorem 7.1. If f is continuous on X × Y , then there exists a subset Y1 of
Y with ν(Y1) = 1 such that for every x ∈ X and y ∈ Y1, f̄(x, y) exists.

Proof. Let g(x) = 1 − x0 and let h be a continuous function on Y . Set
f(x, y) = g(x)h(y). Then

1

2n

2n−1∑

k=0

f(Skx, T ky) =
1

2n

n−1∑

k=0

h(T 2ky),

so that clearly f̄(x, y) exists for every x ∈ X and ν-almost every y ∈ Y . It is
standard to extend this result to any g on X which depends on finitely many
coordinates. Using countability considerations and the fact that linear com-
binations of such functions are uniformly dense in the continuous functions
on X × Y leads now to the stated result.
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Straightforward but tedious arguments now show that the analogous re-
sult holds in our case of interest, namely, the ratio ergodic theorem for the
Z×Z action on Z ×Ω with respect to the infinite invariant measures µ×Pp

introduced earlier. We omit the proof.
Finally, we use the encounter point method to complete the proof of

Theorem 4.2. Following this method, and returning the notation of the
previous section, we say that the origin is an encounter point for the pair
(z, ω) if it is contained an infinite cluster and if removal of the origin separates
this infinite cluster into exactly three infinite disjoint clusters. Let E denote
the set of (z, ω) for which the origin is an encounter point, and denote by E0

the set of (z, ω) (which does not depend on ω) for which the origin belongs to
Λ(z). Using finite energy (actually, here we can use independence), it follows
that µ×Pp(E) > 0, if there are at least three infinite cluster. Also, from our
normalization we have that µ× Pp(E0) = 1. The function

f0(z, ω) = 1E0(z, ω)

is a continuous function on Z × Ω, but the function

f(z, ω) = 1E(z, ω)

is not, and the ratio ergodic theorem discussed above does not apply directly.
However

µ× Pp(E) = α > 0,

and if we define for any n the event En to be the set of (z, ω) such that the
origin is contained in an open cluster which reaches the boundary of a box
Rn with sides of length 2n + 1 centered at the origin, and such that removal
of the origin results in exactly three disjoint open clusters which each reach
the boundary. (We call the origin is an n-encounter point.) Then it is clear
that ⋂

n

En = E,

so that µ× Pp(En) ≥ α for every n; moreover, the function

fn(z, ω) = 1En(z, ω)

is continuous for each n, so that we can apply the ratio ergodic theorem to
the pair fn and f0. This now leads to a contradiction, since by the ergodic
theorem, some translate of Rn must have a density of n-encounter points
at least α − ε for every n, which is impossible for large n by following the
reasoning in [3].
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Remark 7.2. The theorem of this section certainly remains true for some
other strictly ergodic systems (X, S, µ). In separate discussions last summer,
H. Nakada in Yokohama pointed out that it is valid for Kronecker systems,
and B. Weiss in Budapest observed that it remains valid for strictly ergodic
systems of zero entropy (because of disjointness - here more hypotheses are
apparently needed on Y ) and for strictly ergodic K-systems (due to previous
articles). We have as yet no counterexample for any strictly ergodic system,
although we suspect that such counterexamples exist.

8 Related results

In this article we have established a method which can be used to prove
uniqueness of the infinite cluster for finite dimensional lattices with large
holes in site percolation, following the encounter point method. We summa-
rize briefly related results. In interesting and remarkable articles, Shinoda
[9, 10] considers percolation phase transition for non-oriented and oriented
bond percolation on Sierpiński carpet lattices. It is difficult to prove further
properties. Using sponge crossing arguments, Kumagai [7] shows the unique-
ness of the critical point, the absence of the infinite cluster at criticality, and
the uniqueness of the infinite cluster in the supercritical regime for a class of
two-dimensional Sierpiński carpet lattices. Introducing a branching process
argument, Higuchi and Wu [5] extends the result to the standard Sierpiński
case, to which the theorem in [7] cannot be applied. In higher dimensions,
the uniqueness of infinite cluster up to now has only been proved for large p
(Wu [11, 12]).

Acknowledgement. The authors warmly thank the COE at Keio University,
where this article was written.
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on Sierpiński carpet lattices. Probab. Theory Relat. Fields 125, 447-456
(2003)

[11] Wu, X.-Y. : Uniqueness of the infinite open cluster for high-density
percolation on lattice Sierpinski carpet. Acta Math. Sin. (Engl. Ser.)
17, 141-146 (2001)

[12] Wu, X.-Y. : On the critical points for percolation on Sierpinski carpet
lattices. preprint, (2005)

Michael Keane
Department of Mathematics, Wesleyan University,
Middletown, Connecticut 06459-0128.
E-mail: mkeane@wesleyan.edu

Masato Takei
Department of Technological Science, Faculty of Engineering,
Osaka Electro-Communication University,
Neyagawa, Osaka 572-8530, Japan.
E-mail: takei@isc.osakac.ac.jp

12

KSTS/RR-07/006
June 6, 2007



Department of Mathematics
Faculty of Science and Technology

Keio University

Research Report

2006

[06/001]
　

N. Kumasaka, R. Shibata, High dimensional data visualisation: Textile plot,
KSTS/RR-06/001, February 13, 2006

[06/002]
　

H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Geometric objects in an approach
to quantum geometry, KSTS/RR-06/002, March 15, 2006

[06/003]
　

M. Nakasuji, Prime geodesic theorem for higher dimensional hyperbolic manifold,
KSTS/RR-06/003, March 15, 2006

[06/004]
　

T. Kawazoe, Uncertainty principle for the Fourier-Jacobi transform,
KSTS/RR-06/004, April 11, 2006

[06/005]
　

K. Kikuchi, S. Ishikawa, Regression analysis, Kalman filter and measurement error
model in measurement theory, KSTS/RR-06/005, April 19, 2006

[06/006]
　

S. Kato, K. Shimizu, G. S. Shieh, A circular-circular regression model,
KSTS/RR-06/006, May 24, 2006

[06/007]
　

G. Dito, P. Schapira, An algebra of deformation quantization for star-exponentials
on complex symplectic manifolds, KSTS/RR-06/007, July 9, 2006

[06/008]
　

H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Expressions of algebra elements and
transcendental noncommutative calculus, KSTS/RR-06/008, August 30, 2006

[06/009]
　

T. Iguchi, A shallow water approximation for water waves,
KSTS/RR-06/009, October 3, 2006

[06/010]
　

S. Kato, A distribution for a pair of unit vectors generated by Brownian motion,
KSTS/RR-06/010, November 29, 2006

2007

[07/001]
　

A. M. Khludnev, V. A. Kovtunenko, A. Tani, Evolution of a crack with kink and
non-penetration, KSTS/RR-07/001, January 26, 2007

[07/002]
　

H. Boumaza, Positivity of Lyapunov exponents for a continuum matrix-valued
Anderson model, KSTS/RR-07/002, January 29, 2007

[07/003]
　

Y. T. Ikebe, A. Tamura, On the existence of sports schedules with multiple venues,
KSTS/RR-07/003, March 16, 2007

[07/004]
　

F. Schaffhauser, A real convexity theorem for quasi-hamiltonian actions,
KSTS/RR-07/004, May 1, 2007

[07/005]
　

Y. Maeda, S. Rosenberg, F. Torres-Ardila, Riemannian geometry on loop spaces,
KSTS/RR-07/005, May 9, 2007

[07/006]
　

M. Keane, M. Takei, Percolation in lattices with large holes,
KSTS/RR-07/006, June 6, 2007




