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RIEMANNIAN GEOMETRY ON LOOP SPACES
YOSHIAKI MAEDA, STEVEN ROSENBERG, AND FABIAN TORRES-ARDILA

ABSTRACT. A Riemannian metric on a manifold M induces a family of Riemannian
metrics on the loop space LM depending on a Sobolev space parameter. In Part I,
we compute the Levi-Civita connection for these metrics. The connection and cur-
vature forms take values in pseudodifferential operators (¥DOs), and we compute
the top symbols of these forms. In Part II, we develop a theory of Chern-Simons
classes CSY_, € H**~1(LM,R), using the Wodzicki residue on ¥DOs. By results
in Part I, for stably parallelizable manifolds these “Wodzicki-Chern-Simons” classes
are defined for all metrics and are smooth invariants of M for k > 2. We produce
examples of nontrivial three dimensional Wodzicki-Chern-Simons classes.
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1. Introduction

The loop space LM of a manifold M appears frequently in mathematics and math-
ematical physics. In this paper, using an infinite dimensional version of Chern-Simons
theory, we develop a nontrivial, computable theory of secondary characteristic classes
on certain infinite rank bundles including the tangent bundles to loop spaces.

The theory of primary characteristic classes on infinite rank bundles was treated
via Chern-Weil theory in [20]. While these classes can be nonzero, the Pontrjagin
classes vanish for loop spaces (Corollary 6.15).

In fact, the Pontrjagin forms vanish on loop spaces, which is the precondition
for defining Chern-Simons classes. For technical reasons, we can only define Chern-
Simons classes for stably parallelizable manifolds, (i.e. manifolds whose tangent bun-
dle is stably trivial), but these “Wodzicki-Chern-Simons” classes
CSy . € H* Y(LM,R) are stronger than their finite dimensional counterparts in
several ways:

e they are defined for any metric on M for k£ > 2 (Theorem 6.11);

e they are frame independent, and hence give real (as opposed to R/Z) classes
(Proposition 6.13) ;

e they are metric independent (i.e. smooth invariants) for £ > 3 (Theorem 7.2);

e they are potentially nontrivial in all odd dimensions (Remark 6.4).

We produce computer examples of metrics on M = SO(3) x St with CSY # 0, so
the theory is nontrivial at least in this dimension.

Since Chern-Weil and Chern-Simons theory are geometric, it is necessary to un-
derstand connections and curvature on loop spaces. A Riemannian metric ¢ on M
induces a family of metrics ¢°* on LM parametrized by a Sobolev space parameter
s > 0, where s = 0 gives the usual L? metric. This metric is too weak for analysis on
LM, so we think of s as a necessary but annoying regularizing parameter.

In Part I, we compute the connection and curvature forms for the Levi-Civita
connection for g°. These forms take values in pseudodifferential operators (¥DOs)
acting on a trivial bundle over S', as first shown by Freed for loop groups [12]. We are
able to write down the Levi-Civita connection one-form fairly explicitly for integer
Sobolev parameter; the noninteger case is more technical and is quarantined to a
separate section. The symbol calculus for YDOs effectively computes symbols of the



RIEMANNIAN GEOMETRY ON LOOP SPACES 3

connection and curvature forms, so this theory is as computable as finite dimensional
curvature calculations. In particular, it is easy to spot the parameter-independent
portion of the calculations.

In Part II, we develop a theory of Chern-Simons classes on loop spaces, The struc-
ture group of the tangent bundle of (LM, ¢*) is a group of YDOs, so we need to find
invariant polynomials on the corresponding Lie algebra. We could use the standard
polynomials Tr(Q2*) on the curvature = Q°, where Tr is the operator trace, but
this trace is impossible to compute in general. Instead, as in [20] we use the locally
computable Wodzicki residue, the only trace on the full algebra of ¥DOs. Following
Chern-Simons [6] as much as possible, we build a theory of Wodzicki-Chern-Simons
(WCS) classes. The main difference from the finite dimensional theory is the absence
of a Narasimhan-Ramanan universal connection theorem. As a result, we can only
define WCS classes for stably parallelizable manifolds. We define parameter-free or
regularized WCS classes by setting s = 1 is the final formulas (Definition 6.4); this
“continuation to s = 1”7 is not the same as computing WCS classes in the s = 1
metric on LM.

The paper is organized as follows. Part I treats the family of metrics ¢* on LM
associated to (M, g). §2 discusses the relatively easy case s € Z*. After some prelim-
inary material, we compute the Levi-Civita connection one-form for g* (Theorem 2.1)
and show that the one-form takes values in YDOs of order zero (Proposition 2.2).

§3 discusses the case s € Z*. In this case, the Levi-Civita one-form takes values in
bounded operators GL(H) on a specific Hilbert space #; these operators are in some
sense a limit of WDOs of increasing order. As a result, we have to extend the structure
group for the frame bundle FLM to GL(#H). The corresponding extended frame
bundle is trivial, so we lose the topological information in the original frame bundle.
We can define an extension of the Wodzicki residue to the appropriate operators,
except possibly when s is a half integer.

In §4, we compute some symbols of the Levi-Civita connection one-form and the
curvature two-form for the g® metric. The key results are Theorems 4.3, 4.4, which
state that the curvature takes values in WDOs of order at most -1, for s not a half
integer, and compute the top order symbol. This unexpected negative order underlies
the main results bulleted above. We finish Part I in §5 with a comparison of our results
with Freed’s on loop groups [12].

Part II covers Wodzicki-Chern-Simons classes. In §6 we review finite dimensional
Chern-Weil and Chern-Simons theory for O(n)-bundles. As mentioned above, we
replace the ordinary matrix trace by the Wodzicki residue to define characteristic and
secondary classes on LM. (An alternative trace given by the leading order symbol
is also discussed in §6.3) We show that the Wodzicki-Pontrjagin classes vanish on
LM and more generally on Maps(N, M), the space of maps from one Riemannian
manifold to another. For M stably parallelizable, WCS classes and regularized WCS
classes are defined in §6.4 and are shown to be independent of the trivializing frame.
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In §7, we show that the WCS classes CS}y (LM, R) are independent of the metric
on stably parallelizable M for k > 3, and C'Sy" is an invariant of conformal families
of Einstein metrics. In §8, we use Mathematica calculations to produce examples (up
to high precision) of metrics on SO(3) x S! with nonvanishing CS}V.

Our many discussions with Sylvie Paycha are gratefully acknowledged.

Part I. The Levi-Civita Connection on the Loop Space LM

In this part of the paper, we compute the Levi-Civita connection on LM associated
to a Riemannian metric on M and a Sobolev parameter s. The main result is Theorem
2.1, which computes the Levi-Civita connection explicitly except for one term denoted
AxY. This term is analyzed more concretely in Proposition 2.2 for s € Z*.

Part I is organized as follows. In §2, we review background material on LM and
pseudodifferential operators on manifolds, and prove the main theorem for s € Z*.
In §3, we cover the more technical case of s ¢ Z™. In §4, we compute symbols of the
Levi-Civita connection one-form and the curvature two-form. In §5, we compare our
results with earlier work of Freed [12] on loop groups.

2. The Levi-Civita Connection for Integer Sobolev Parameters

This section covers background material and computes the Levi-Civita connection
on LM for integer Sobolev parameter. In §2.1, we review material on LM, and in
§2.2 we review pseudodifferential operators and the Wodzicki residue. In §2.3, we
give the main computation of the connection one-form for the Levi-Civita connection
on LM. In §2.4, we give a more complete calculation of the Levi-Civita connection
for integer Sobolev parameter. In §2.5, we prove a technical lemma allowing us to
reduce local coordinate computations on LM to local computations on M.

2.1. Preliminaries on LM. Let (M,{ , )) be a closed oriented Riemannian n-
manifold with loop space LM = C*®(S', M) of smooth loops. LM is a smooth
infinite dimensional manifold, but it is technically simpler to work with the smooth
manifold of loops in some Sobolev class s > 0, as we now recall. For v € LM, the
formal tangent space T',LM is I'(y*T'M), the space of smooth sections of the pullback
bundle v*TM — S'. For s > 1/2, we complete I'(y*T M ® C) with respect to the
Sobolev inner product

1
(X.Y), = 5 / (1 + AP X (@), Y(0))y@da, X,Y € T(v"TM).
Here A = D*D, with D = D/d~y the covariant derivative along y. We need the
complexified pullback bundle, denoted from now on just as v*T'M, in order to apply
the ¥DO (14 A)®. The construction of (1 + A)® is reviewed in §2.2. We denote this
completion by H*(y*TM).
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A small real neighborhood U, of the zero section in H*(y*T'M) is a coordinate
chart near + in the space of H* loops via the pointwise exponential map

exp, : Uy — LM, X — (a— €XDoy(a) X()). (2.1)

The differentiability of the transition functions exp;l1 - exp,, is proved in [8] and [12,
Appendix A]. Here 7,7 are close loops in the sense that a geodesically convex
neighborhood of 7, (#) contains v5(f) and vice versa for all #. Since v*T'M is (non-
canonically) isomorphic to the trivial bundle R = S* x R* — S', the model space
for LM is the set of H® sections of this trivial bundle.

The tangent bundle TLM has transition functions d(expy;' oexp,,). Under the
isomorphisms T, LM ~ R ~ T, LM, the transition functions lie in the gauge group
G(R), so this is the structure group of TLM.

2.2. Review of DO Calculus. We recall the construction of pseudodifferential
operators (¥DOs) on a manifold M from [13, 22|, assuming knowledge of ¥DOs
on R". We emphasize how to calculate global symbols in local coordinates, since
subprincipal terms are coordinate dependent (e.g. (2.2)).

A linear operator P : C*°(M) — C*°(M) is a ¥DO of order d if for every open
chart U C M and functions ¢, 9 € C*(U), ¢Pv is a YDO of order d on R*, where
we do not distinguish between U and its diffecomorphic image in R*. Let {U;} be a
cover of M with subordinate partition of unity {¢;}. Let ¢; € C®(U;) have ¢; = 1
on supp(¢;) and set P; = ¢; P¢;. Then . ¢; Piyp; is a YDO of M, and P differs from
>; ¢iPi; by a smoothing operator, denoted P ~ ). ¢;P;3;. In particular, this sum
is independent of the choices up to smoothing operators.

An example is the YDO (1 + A — \)~! for A a positive order nonnegative elliptic
UDO and X outside the spectrum of 1 + A. In each U;, we construct a parametrix
P; for A; = ¥;(1 + A — XN)¢; by formally inverting o(A;) and then constructing a
UDO with the inverted symbol. By [1, App. A}, B = ), ¢; Pit); is a parametrix for
(1+4A—=X)"" Since B~ (1+A =X (1+A = X)"is itself a YDO. For z € U,
by definition

o((1+A =) ) (@,§) = o(P)(x,¢) = 0(sP9)(x,8),

where ¢ is a bump function with ¢(x) = 1 [13, p. 29]; the symbol depends on the
choice of (U, ¢;).

The operator (1+A)® for Re(s) < 0, which exists as a bounded operator on L?(M)
by the functional calculus, is also a YDO. To see this, we construct the putative
symbol o; of ¥;(1 + A)*¢; in each U; by a contour integral [, A*o[(1+ A — X) ]dX
around the spectrum of 1 + A. We then construct a DO @; on U; with o(Q;) = oy,
and set Q = ), $;Q;%;. By arguments in [22], (1+ A)®* ~ @, so (1 + A)* is a YDO.
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Fora = (au,...,qy), let 0% = (0% /0z$") ... (0% /0x) in some local coordinates.
For any ¥DO P ~ Y. ¢;P;1; and fixed z € U,;, the symbol of P in U;, coordinates is

o(P)(z,6) = a(6(}_ é:Pibi)9) Z¢ )¢i(z)o(Prji)

= D @e@ ] L—!aza(a)a:(w)
= Z¢(w)¢i(x)a(a)<m,awi(m)as(x)
= 2 a@oR))

where we use ¢; = 1 on supp(¢;), 0%¢(z) = 0 and 0%¢ = 0 on supp(¢) for o # 0.
Thus symbols can be calculated locally.

Recall that the Wodzicki residue of a YDO P on sections of a bundle £ — M™ is
/ tr oy (P)(x, £)dedz,
* M

where S*M is the unit cosphere bundle for some metric. The Wodzicki residue is
independent of choice of local coordinates, and up to scaling is the unique trace on
the algebra of ¥DOs (see e.g. [9]). It will be used in Part II to define characteristic
classes on LM.

If the U; are diffeomorphic to precompact open balls in R”, o(FP;) extends smoothly
to OU; after possible shrinking of the U;. Let Vi = Uy, V; = U; — UZ\ U;. As with any
differential form, letting ¢; equal one on “more and more” of U; and letting the other
¢; equal one on “a little more than” V;, we get

/*Mtr o_n(P)(z,€)dédz = Z z)tr o_n(P)(z, €)déd
Z/ tr o_,(P;)(z, &)dEdx;

the invariance of the Wodzicki residue makes the right hand side well defined.

Therefore, for Wodzicki residue calculations we can sum up the integrals of the
locally defined symbols. In particular, for a bundle E over S! with ¥YDO P, we can
find a closed cover I; = [a;, a;+1] with E|;, trivial, and then

/ tr o_y(P)(z,&)dédo = Z/ tr o_1(P)(z, €)dédz. (2.2)
S*S1

auaH—l
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2.3. Computing the Levi-Civita Connection. The H® metric makes LM a Rie-
mannian manifold. The H?® Levi-Civita connection on LM is determined by the six
term formula

AV X, Z)s = XY, 2),+Y(X,2), — Z(X,Y), (2.3)
+H(X, Y], 2)s + (2, X], V) — ([, Z], X)s.
Recall that
X, Y] = X(Y*), - Y(X)9, = 6x(¥) — by (X) (2.4)

in local coordinates on a finite dimensional manifold. Note that X‘9;(Y*) = X(Y?) =
(0xY)® in this notation.

(2.4) continues to hold for vector fields on LM, even though the index a does not
refer to coordinates on LM. To see this, one checks that the coordinate-free proof
that LxY (f) = [X,Y](f) for f € C®(M) (e.g. [25, p. 70]) carries over to functions
on LM. In brief, the usual proof involves a map H(s,t) of a neighborhood of the
origin in R? into M, where s,t are parameters for the flows of X,Y, resp. For LM,
we have a map H(s,t,0), where 6 is the loop parameter. The usual proof involves
involve only s, ¢ differentiations, so @ is unaffected. The point is that the Y are local
functions on the (s,t,6) parameter space, whereas the Y are not local functions on
M at points where loops cross or self-intersect.

Fix a loop 7y and choose a cover {(a;, b;)} of S' such that there is a coordinate cover
{U;} of an open neighborhood of Im(y) in M with

V([ai, bi]) € Ui (2.5)

With these covers fixed, (2.5) holds for all loops near . Let {¢;} be a partition of
(@

a) be the metric tensor

unity on S' subordinate to the cover {(a;,b;)}, and let gop = g
on U;. The first term on the right hand side of (2.3) is

Xy (Z / 6 901+ A)’ Y]“Z”) (2.6)

’L)Z

Since ¢; is independent of 7, we have

S [ aoxdin s ayvez
i Y (ai,bi)

30 [ a2

+Z/ b gD ((L+ A5 V) - 2 @2.7)
(aiab')

i

R AT

af’L bz
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We will abbreviate terms like =, [, @i - Sx g [(1 4+ A)*Y]eZ? by Jo1 0x ga[(1 +
A)*Y]*Z°, and terms like [(6x (1 + A)*)(Y)]* by dx(1 + A)*Y® For example,

2= [ sedd@r 812 = [ a1+ ayyyz

Collecting all terms from the six term formula similar to the last two terms in (2.7)
gives

i0i

/ gap(L+ A [6xY* - ZP + Y 6x Z° + 6y X 20 + X - 6y 2" — §,X°-Y"  (2.8)
Sl
— X" 67Y " + (6xY — 6y X)* - Z° + (62X — 6x2)* - YP — (6v Z — 67Y)* - X"]
= 2/ gab(l + A)deya : Zb.
Sl

The three terms in the six term formula corresponding to the first term on the right
hand side of (2.7) contribute

/ Oxgap - (L+APY - Z° 4 6y gay - (L +APXY - Z° — 6400 - (1 +A)PX- Y
Sl

= / 5Xgab' (1+A)5Ya'Zb+6ygab' (1+A)8Xa'Zb
g1
— Z'0igap - (1 + A)* X Y? (2.9)
= / 6Xgab' (1+A)8Ya'Zb+5ygab' (1+A)3Xa'Zb
g1

— 9 Z°g% 0,905 - (1 + A XC- Y/

The three terms in the six term formula corresponding to the second term on the
right hand side of (2.7) contribute

/ gab [Ox (L + AY°Y* - Z°0 + 6 (1 + A)PX*- 20 — 5,(1+ A X*-YP] . (2.10)
S1
The last term in (2.10) is linear in Z, and so is of the form

(6,(1+ A)*X,Y), = (Ax(Y), Z), (2.11)

for some Ax(Y) € T,LM.
By (2.7) - (2.11),

2<VXYa Z>5
= / (29ab(1+A)55XYa-Zb—|—6Xgab- (1+A)5Ya 'Zb-f-gabé)((]_-i-A)SYa 'Zb
g1

+0ygan(1+A)° X - Z° + gupdy (1 + A)* X - Z° (2.12)
—9ab[9"0sges - (1 + A XY + Ax (V)] 2%).
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The second term on the right hand side of (2.12) is
Oxgar - (L+A)Y- 2" = g Z°g" bxgep - (1 + A)°Y",
so for g, = 9((;2: we get,
/ Sxga((1+A)°Y*)Z°
S1
= Z/ $i0xgar((1+A)°Y)*- 2° (2.13)
i Y (aibi)

= Z[ " Pigan [(1 +A)*(1+ A)—s(gtf(ngef((l + A)SY)eat)}aZb-

In the last line, we take a diffeomorphism of (a;, b;) to R, and compute the various
WUDOs in these local charts as in §2.2.

The last expression in (2.13) is not of the form (W, Z),, since
(1+A)*s(gtf’(i)(5xggf) ((1+A)°Y)¢0,) depends on i. In fact, all the other terms on right
hand side of (2.12) are of the form [, ¢;gas(f*)*Z° for some locally defined vector
fields f%, since e.g. dxY“ also depends on coordinate choices along «y. Since the left
hand side of (2.12) is global, the apparently local terms on the right hand side must
sum to a global expression. With this understanding, we have

Theorem 2.1. The Levi-Civita connection V = V) for the H*-metric on LM is
given by

1
(Vx¥)" = 0x(Y)+5(1+A)7 ["bxges - (1+ )Y +ox(1+4)'Y"]

1
+§(1 + A) 7P (g Sy gep - (1 4+ APPX+ 6y (1+ A)PX?] (2.14)

1
—5 (14 2)7" [g"0ges - (1 +A) X - YT+ Ax (V)]
with AxY defined by (2.11).

In the theorem, §x (1 + A)*Y® is shorthand for [(dx(1 + A)*)(Y)]*, and similarly
for the other terms.

2.4. Integer Sobolev Parameters. If s is a positive integer, it is easy to understand
the terms on the right hand side of Theorem 2.1.

Of the six terms on the right hand side of Theorem 2.1 involving the ¥DO (1+A)~%,
the first, third and fifth are standard ¥YDOs acting on Y.

For the second and fourth terms, we have to analyze the variation of (1 + A)®.
Let Z € T,LM = H*(v*'TM). If f: M — R is a (locally defined) function on
M, then 0, f(x) = Z'0;f(z) in local coordinates near z = ~(f), since df(z) =
(d/dt)]i=of(a(t)), where a(0) = z, &(0) = Zy().
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The situation is different for (locally defined) functions on S* x LM, such as 4*. Let
7 :[0,27] x (—&,€) — M be a smooth map with 7(6,0) = (8), and |,_o7(0, 1) =
Z(0). Since (0, 7) are coordinate functions on S! x (—¢,¢), we have

0 0 0 0
il 5(0 - =
a7 |z (ae (6, 7)” ) 00 or
The covariant derivative along +y is the operator on 7 € I'(y*TM) given by
Dt . .
oL = (7Y™ () = 0 + (M) (90) (1)
= 0y(7)0; +¥'7'T,0;,

where VM is the Levi-Civita connection on M, w™ is the connection one-form in local

coordinates {0;} on M, s is a section of v*T'M, and I}, are the Christoffel symbols.
For A = (%)*%, an integration by parts gives

(AY)F = —05Y* — 2TF A 0pY" — (0pT k" + Thgi” + Th Thi 4") Y.
Therefore, by (2.15)
(GZA)Y)r = (=2Zi9,T% 4 — 2Tk uZ¥)V* — (Zla k4% 4 Tk 77

Z(y") =07 (¥") = 30,7) = 8,2" = 2"

- (2.15)

+ BT + U8 2Y + 20T, Ul 4 + TS Z' Ty 3

vp©T el

HIh D25 4+ T8, DA 27 ) Y. (2.16)

vuT gl

Thus (0zA)Y, resp. dz(1 + A)*Y, is a second order differential operators in Z and a
first, resp. 2s — 1, order differential operator in Y.

In summary, the second term in (2.1) is order —1 in Y. Similarly, the fourth term
(14 A)*[6y(1 + A)*X] in (2.1) is order —2s +2in Y.

We now treat the last term in Theorem 2.1. By (2.11),

(AxY,Z) = / 9ardz(1 + AP XY = Z / 6908, (1 + AP XYP.  (2.17)
St (ai,h;)
Applying integration by parts to the right hand side of (2.17), we obtain the L? inner
product of Z with a second order differential operator acting on Y'; this operator is
AxY. Applying (1 4+ A)~°, we get the H® inner product of Z with a YDO of order
—25 4 2.

In particular, for s > %, this term does not contribute to the 0 or —1 order symbol
of the connection one-form.

We summarize this section:

Proposition 2.2. The term AxY in Theorem 2.1 is a second order differential op-
erator acting on'Y . For s € ™", the last siz terms on the right hand side of Theorem
2.1 are YDOs in Y of order 0,—1,—2s,—2s + 2, —2s, —2s + 2, respectively.



RIEMANNIAN GEOMETRY ON LOOP SPACES 11

Remark 2.1. For s > 2, only the first two terms have order 0 or —1. This is crucial
for the Chern-Simons theory calculations in §6, as the Wodzicki residue for ¥YDOs
over the circle depends on o_;. The case s = 1 is more difficult to treat directly. In
86, we instead compute Wodzicki-Chern-Simons classes for s > 0 and continue the
formulas to s = 1.

2.5. The Levi-Civita Connection One-Form. In local coordinates on a manifold

N, the Levi-Civita connection on TN is V = d 4+ w. For a vector field Y and a

tangent vector X, dx(Y) = 0xY in the notation of §2.3, and w(X)(Y) is the Levi-

Civita connection one-form. In Theorem 2.1, the right hand side is not in the form

d + w, since 0x(Y®) is computed in local coordinates on M, not on N = LM.
Nevertheless, we make the following definition:

Definition 2.1. The Levi-Civita connection one-form for the H® metric on LM 1is
the sum of the last siz terms on the right hand side of (2.14) and is denoted w = w'®.

In this section, we prove a technical local lemma that justifies using this Levi-Civita
connection one-form to compute symbols as in §4 below. We also extend the local
lemma to a global lemma used in §6 to extend our definition of Wodzicki-Chern-
Simons classes from parallelizable to stably parallelizable manifolds.

As just mentioned, for a vector field Y on LM and a tangent vector X € T, LM,
(05MY) £ §x(Y?) in local coordinates along a portion of . Indeed, in local coordi-
nates (¥o)%%, of LM near v, 6%MY can only mean X (Y *),, while Y® are compnents
with respect to a finite set of coordinates of M near some (). Of course, we can
still substitute V = 6 +w from Theorem 2.1 into Q(X,Y) = VxVy = VyVx = Vix y]
to compute the curvature on LM; as usual, we obtain Q = dw + %[w, w], where dw is
defined by the Cartan formula in the a-coordinates. This is very useful for computing
symbols of {2, whereas a decomposition V = dj s +wr in coordinates on LM would
be useless for symbol computations.

For Chern-Simons theory in Part II, we have to compute terms of the form x*6,
where x is a local section of the frame bundle F'LM and 0 is a Lie algebra valued con-
nection one-form on F'LM. We have to compare x*0 for LM with the M-coordinate
expression w'®), as we can only compute symbols for w-like expressions.

The following lemma relates x*6 to w.

Lemma 2.3. Given vg € LM, there exists an open neighborhood V- C LM of v, a
local frame x : V. — FLM, and local coordinates {U;} on M covering Im(vyy) such
that x*0,(X)(Y) = w,(X)(Y) on each U;, for all y € V.

PrROOF: For any local frame y, x*f is the connection one-form in the y trivialization
of TLM, so VxY = X(Y*)¢o + x*0(X)(Y), where x(7) = (o) for v € V. Let {p;}
be a partition of unity for a cover {U;} as in (2.5), and let p;Y = Y;*9), = Y,*419;.
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Then
VxY = Vx (Z mY) =D Vx(¥a) = 3 X (V7)o + X 0(X)(Y)
= D X0 + X 0X)(Y)

= DX+ XY = Y VEX ()9,

12

= X (Z(mY)j> 9+ X"0(X)(Y) = ) YX ()9,

7 A

= X(¥Y7)0; + x"0(X)(Y) = > Y X (44)0;

= x(Y)3; +x0X)(Y) = 3 VX (42)0;.

Since VxY = 0x(Y7)0; + w(X)(Y), we get
w(X)(Y) = x"0(X)(Y) - ZYiaX(i/fﬁ;)aj-

The lemma follows if we can find x and U; (with coordinates) such that X (¢%)(v)(0) =
0 whenever v(0) € U;.

Let (¢2) be a basis of the H5$T M, and let {e;} be a global frame of 7;T M. Fix
p = (). For short vectors V,, = {v € T,M : |v| < €}, exp,V is a coordinate
neighborhood U, with coordinate vectors 0; = dexp,e; (thinking of e; € T, T,M).
At p, 0; = e;. {&; = dexp,e;} is a global frame of y*T'M for v close to vy. We can
trivialize TLM on some neighborhood V of 7, by writing 42 = 1/*e;, and setting

HTM xV =5 TLM |y, (Yar7y) — Ve

For the section x : v — (¢,) = (Ygéx), we have ¢, = gé = g0, near p, and so
X (Ya) = X (45)0 = 0. m

Remark 2.2. (i) The metric on M used to define the exponential coordinates and
the local frame y in the proof need not be the fixed metric on M.

(ii) If M is parallelizable with global frame {e;}, this frame also trivializes v*T'M
for all v € LM: cf. Definition 6.4 of regularized Wodzicki-Chern-Simons classes.

To end this section, we check that the local section in Lemma 2.3 can be extended
to a global section if the frame bundle F'LM is trivial, the setup of Part II.

Lemma 2.4. Assume FLM is trivial. Let V. C LM be an open set with a local
section x : V. —> FLM. There exists an open subset V' C V', and a global section
X: LM — FLM with X|y» = X-
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ProOF: Let x; be a global section of FLM. There exists a gauge transformation
g:V — Aut(R) with g o x1 = x. It suffices to extend g to g; : LM — G. Let V'
be an open subset of V with C = V' C V. By [7], g|¢ has a continuous extension g,
from the metric space LM to the locally convex vector space Hom(R). Identifying
R with v*T'M at a loop v and composing g, with the pointwise exponential map on
GL(n,C) gives a continuous extension g3 : LM — G.

For a cover {U,} of G, set V, = g5'(U,). Since LM is a Hilbert manifold, each
component function of gs|y, _¢ can be uniformly approximated by a smooth function
gaq [3]. Since LM admits a partition of unity, these local approximations can be
glued to a smooth function g; which agrees with g on V. g

3. The Levi-Civita Connection for Noninteger Sobolev Parameters

If s ¢ Z*, we have to analyze the fourth and sixth terms AxY,dy (1 + A)*X in
(2.14) more carefully. The calculations leads to an extension of the structure group
of the frame bundle of LM, which weakens the corresponding theory of characteristic
classes.

In §3.1, we check that 6z(1+ A)*® is a YDO for any value of s. In §3.2, we analyze
AxY and dy (1 + A)*X, noting that the integration by parts used in §2.4 no longer
terminates after a finite number of steps. This leads to an extended notion of Wodzicki
residue in §3.3, and forces us in §3.4 to extend of the frame bundle of LM from a
gauge bundle to a GL(#) bundle for a particular Hilbert space #.

This is the most technical section of the paper. Its purpose is to justify later
calculations of Wodzicki-type characteristic classes for noninteger parameters, but
the reader may prefer to just assume the integer theory extends to the noninteger
case.

3.1. The Variation of (1 + A)*.
Lemma 3.1. For Re(s) #0, dz(1 + A)*Y is a YDO of order 2s —1 in Y.

PROOF: 0z(1 + A)*® is a limit of differences of YDOs. The result follows, since the
algebra of DO is closed in the Fréchet topology of all C* seminorms of symbols and
smoothing terms on compact sets.

Since we will need the symbol of (1 + A)®, we give a second proof. First assume
Re(s) < 0. As in the construction of (1 + A)®, we will compute what the symbol
asymptotics of dz(1 + A)® should be, and then construct an operator with these
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asymptotics. From the functional calculus for unbounded operators, we have
dz(1+A)Y = 4y (i / N1+ A- A)‘%A)
2'/T T
1
= — [ Xoz(1+A = )X)"td)
o [ Xdz+ a2
- / M1+ A= N1 E,A)(1+ A — \)Ld\,
2T T

where I' is a contour around the spectrum of 1+ A, and the hypothesis on s justifies
the exchange of 6 and the integral. The operator A = (1+A—X)"16;A(1+A—-)\)7!
is a YDO of order —3 with top order symbol

o_3(A)(0,)" = (€ =N '6p(—2Z'0,Tk, A — 2T Z")E(€ — N) 7'
= (=2Z'9,T%4" — 2Tt 27)E(€% — \) 72

Thus the top order symbol of 67 (1 + A)® should be

raa (5214 A0, = —5- [ X (270l - 20, 266 - N P

= 21 SN (=220, T 5 — 2T, Z)E(€2 — \)~ld
™

= s(— 2Z“8 LAY — 200, Z2)E(€2 — A)° .

Similarly, all the terms in the symbol asymptotics for A are of the form Bff”(fZ —A)™
for some matrices Bf = Bf(n, m). This produces a symbol sequence o ~ », 095,
and there exists a YDO P with o(P) = 0. (As in §2.2, we first produce operators
P; on a coordinate cover U; of S*, and then set P = >; 9iPb;i.) The construction
depends on the choice of local coordinates covering  as in (2.5), the partition of
unity and cutoff functions as above, and a cutoff function in &; as usual, different
choices change the operator by a smoothing operator. Standard estimates show that
P —67(1+ A)?® is a smoothing operator, so dz(1 + A)* is a YDO.
For Re(s) > 0, motivated by differentiating (1 + A)™* o (1 + A)* =1d, we set

021+ AP =—14+A)0dz(1+A) o (1+A)°% O

Remark 3.1. (i) For s € Z*, §z(1 + A)* differs from the usual definition by a
smoothing operator.

(ii) For all s, the proof shows that o(d,(1 + A)*) = 65 (a((1 + A)?%)).

(iii) Since dz A is second order in Z, a symbol calculus calculation shows that o4 (A)
has at most k& — 2 derivatives of Z. It follows that for Re(s) < 0, 095 (0z(1 + A)?)
has at most k£ derivatives of Z, and the same result then holds for Re(s) > 0.
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3.2. Analyzing the Difficult Terms. We continue to assume s ¢ Z™.

We first analyze the term AxY defined by (2.11). By Lemma 3.1 and Remark
3.1(iii), 6z(1 + A)® is a YDO with explicitly computable symbol o ~ >, /1 02s,
and o9s_; contains at most & derivatives of Z. Fix ¢ and let P = Pz, be a ¥YDO
with symbol Zi:l 02s—k- As in the proof of Lemma 3.1, P = ). ¢, P1); with respect
to some cover {(a;,b;)} of S, and the symbol expansion of o depends on the cover.
@ = 6z(1 + A)* — P is an operator of order at most 2s — £ — 1. Suppressing the i
dependence of the symbols, we have

/ Jardz(1 + A)*X°Y?
Sl

- /S P (X)Y? + / I QX)Y? (3.1)
- [ e (S w0

l)’L

MN

(09s—1)%(0,6)9;(0') X“(0 ')dgde') Y?df

>
Il

1
+3 / L BaQX)Y"

In the next to last term in (3.1), consider a term (Z¢)(®) A2 in a fixed 09,4, with
k < ko derivatives in Z. In order to write this term as an inner product with Z, we
have to perform £ integration by parts in #. There are several special cases:

(k)
(1) If k f-derivatives act on ¢;, replace this term with ¢i¢;5i ,
function extends by zero to {¢; = 0}. This gives the expression

(k)
2 / M Yot (Z /T vy € ZAL. 05Oy (01X (0 )dfde)Y”de

Z / ¢z gdeg "Gab
(Z / eO-0E 70 45,(60,€)6,(6 )wj(e')XC(e’)dsde') v,
a],
which locally is the L? inner product of Z = Z%9, with

(k)
\ (Z/ ) ei(ﬂ—ﬂ’)-ﬁA?C(H, 5)‘/59(9)% (ol)Xc(el)dfd0'> Ybae_
J *(aj,bj
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This is the (local) H® inner product of Z with

(k) .
QZZ. 9% Ga (Z /T ( b)e“a "EAL(0,€)05(60 )wj(e’)XC(o')d5d0'> Y*9,
? j *(a;,b;

This term is a YDO of order —2s as an operator on Y.
(2) If k O-derivatives act on g, we get the local H® inner product of Z with

) (Z/ i(e‘a')'gfl?cw,f)qu(ewj(9')Xc<e')dfd9') vo,

(1+A)°

(1+A)"°

which is of order —2s as an operator on Y.
(3) If k O-derivatives act on ¢, we get the local H* inner product of Z with

(1+8)" |4 gu (Z /. ,, (z’f)ke“a—e’)'fAﬁc(e,s>¢j(6>wj(0’)X¢(9'>dfd0’) v'o,
j a;,0j5

which is of order —2s as an operator on Y.
(4) If k @-derivatives act on A4, (0,£)¢;(0), we get the local H® inner product of
Z with

9 Gab (Z /T . HO-00E (A2,(0,€)9;(9)) ’“)wj(e')XC(e')dfde'> Yo,

which is of order —2s as an operator on Y.
(5) If k O-derivatives act on Y, we get the local H® inner product of Z with

0 s (Z /T - (0-0)€ 40 (9 §)¢j(0)¢j(0')Xc(0')d§d0’) wk)ae] ,
j 5595

which is of order —2s + k as an operator on Y.

(1+A)

1+A)7°

In general, each of the k integration by parts will act as in one of the previous
cases, so the final result can be written as an H® inner product with Z.

In summary, for fixed £, AxY involves the operator @) in (3.1) which we are ignoring,
and an operator (1 + A)~*Py , of order at most —2s + £ defined by

/ 9arPz,o(X)"V" = / 9 Px (V) Z" = (1 + 8)7°Py,(Y), Z);  (32)
S1 S1

The term (14 A) %4y (1+ A)*X is easier to treat. For fixed Y, let o(dy (1+A)%) ~
>k 02s—k as an operator on X. As before, let Py, be an operator with symbol

Zi 09s k- Omitting partitions of unity and cutoff functions, by Remark 3.1(iii) a
typical term in (1 4+ A)*Py, is of the form

/ 00y (9) A2 (6, €)X(8')db'dE.
T*S1
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Pulling Y%®) out of the integral shows that for fixed X,
(1+A)" Py (3.3)

is a DO in Y of order at most —2s + £.
In the next section, we address the issue that ¢ can be arbitrarily large.

3.3. A Framework for the Difficult Terms. Let H be the Hilbert space H*y*T M
for a fixed s and . Let GL(H) be the group of bounded invertible linear operators
on H; inverses of elements are bounded by the closed graph theorem. GL(H) has
the subset topology of the norm topology on B(#), the bounded linear operators
on H. GL(H) is an infinite dimensional Banach Lie group, as a group which is an
open subset of the infinite dimensional Hilbert manifold B(#) [18, p. 59], and has Lie
algebra B(#H). Let ¥DO, YDOj denote the algebra of classical YDOs and the group
of invertible zeroth order WDOs, respectively, where all ¥DOs act on H. Note that
UDO; C GL(H).

Remark 3.2. The inclusions of YDOg, YDO into GL(H), B(H) are trivially contin-
uous in the subset topology. For the Fréchet topology on WDO, the inclusion is not
continuous.

Lemma 3.2. (14+ A)*AxY and (1+ A)7%0y (1 + A)*X (as operators on'Y') are in
B(H).
Proor: If Y — 0 in H?, then for fixed X and for all Z € H?,

(Ax(Y), Z)o = (Y,02(1+ A)*X)o — 0,
since 0z (1+A)*X € H~*t' C H~*, which pairs with H*. This implies that Ax(Y) —
0in H~*. Thus (1 + A)~*Ax(Y) — 0 in H*.

For (1 + A)~*y (1 + A)*X, we extend X, Z to X, Z near v as follows. Extend X
arbitrarily to X = X (r, ), where (r, 1) are polar coordinates on T,LM (i.e. on each
fiber of the trivial bundle y*T'M) and r ~ 0. (Set X = 0 if X, = 0.) Let €(¢) be
a smooth positive function on the unit sphere of 7,LM in the H® metric, and set
X.(r,v) = X (e())r, ). For e(¢)) small enough, |X(r,1) — X|gs —> 0 uniformly in
Y asr — 0. For s > 3, | X(r,v) — X|c: — 0 uniformly by the Sobolev embedding
theorem. Thus 6y X, — 0 uniformly in C° as Y —» 0 in H*. We similarly extend
Z arbitrarily to 7, and then to 21,6.

Set Z. = 2176 + ((Z,X)s — (Zl,e,X'e)s)L. Then 8y Z. —» 0 uniformly in C° as

/s BAE
Y — 0in H® and Y(X,, Z.)s = 0 for all Y. Dropping the tildes and epsilons, we
have

0 = Y(X,Z)S:/ 5ygab-(1+A)sX“-Zb+/ gapdy (1 + A¥X*. 7°
St St

+ / gup(1 + A)6y X 20+ / gu(1+ A X5y 2" (3.4)
Sl Sl
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Since 0y g, — 0 uniformly as Y — 0 in H®, by the estimates above and (3.4),
(0y(1 + A)*X,Z)y —> 0 for all Z € H®. Thus dy(1 + A)*X — 0 in H * and
(14+A) %5y (1 4+ A)*X — 0 in H®. O

This justifies the next definition.

Definition 3.1. Let A C B(H) be the subspace spanned by WDO (considered as a
vector space), (1+A)°Ax for X € T,LM, and (1+A)7*5.(1+A)*X for X € T,LM.

Elements of A have a W DO ezxpansion given by an o € R and a sequence of ¥DOs
Pyt € Zt, ord(P;) < a + £. This expansion is linear in A € A and is defined as
follows: (i) if P € UDO, set P, = P for all k£, and o = ord(P); (ii) for (1 + A)*Ay,
set « = —2s and P, = (1 4+ A)™*Py, in (3.2); (iii) for (1 + A)7%6.(1 + A)*X, set
a=—2sand Pp=(1+ A)*Py,in (3.3).

Note that X — Ax in (ii) and X — (Y — (1 4+ A)7*0y(1 + A)*X) in (iii) are
elements of AY(LM, A),

Definition 3.2. For A € A, we define the extended Wodzicki residue to be

£
lim EZ / tr o_1(Ag)dédo,
S*S1

k=0

provided the limit exists.

Lemma 3.3. The extended Wodzicki residue exists for all YDOs on H and equals the
usual Wodzicki residue. In cases (ii), (iii), the extended Wodzicki residue vanishes if
s is not a half-integer.

PrOOF: The first statement follows from the definition. In cases (ii), (iii), P, has
order —2s 4+ ¢ # —1 for s not a half integer. O

In summary:

Corollary 3.4. For s > % and not a half-integer, only the first and second terms in
the connection one-form (2.14) contribute to its extended Wodzicki residue, and the
extended and ordinary Wodzicki residues agree.

The restriction on s follows as in the case of integer s (cf. Remark 2.1).

Remark 3.3. (i) Our Chern-Simons classes will have a linear dependence on s, so
we will extend our results to half integer values by continuity.

(ii) An alternative approach to this section would be to couple the Sobolev pa-
rameter s to the “cutoft” parameter ¢, so that the ord(P;) = —2s + £ is always less
than —1. This would artificially force the fourth and sixth terms of (2.14) to have no
contribution to the Wodzicki residue of the connection one-form.
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3.4. Extensions of the Frame Bundle of LM. We recall the relationship between
the Levi-Civita connection one-form 6 on the frame bundle F'N of a manifold N and
local expressions for the Levi-Civita connection on T'N. Let x : N — F'N be a local
section of the frame bundle. A metric connection V on T'N with local connection
one-form w determines a connection Opy € A'(FN,0(n)) on FN by (i) Oy is the
Maurer-Cartan one-form on each fiber, and (i7) Opy(Y,) = w(X,), for ¥, = x.X,
[23, Ch. 8, Vol. II], or equivalently

X*GFN = Ww. (35)

This applies to N = LM. The frame bundle FLM — LM is constructed as in
the finite dimensional case. The fiber over  is isomorphic to the gauge group G of R
and fibers are glued by the transition functions for LM . Thus the frame bundle is
topologically a G-bundle.

However, for s € Z™", the connection form and hence the curvature form take
values in UDO«, the algebra of ¥DOs of order at most zero. For s ¢ Z, these forms
take values in the bounded operators B(#), on H = H*y*T'M. These forms should
take values in the Lie algebra of the structure group. In the first case, we should
take as structure group WDOg, the group of invertible zeroth order (i.e. elliptic)
UDOs, since the Lie algebra is YDO«. In the second case, we will take GL(#) as
the structure group. This leads to extended frame bundles, also denoted F'LM. The
transition functions are unchanged, since G C YDOj C GL(#H). Thus (FLM,6°) as
a geometric bundle (i.e. as a bundle with connection 6° associated to V?) is either a
UDO;-bundle or a B(H)-bundle.

In summary, we have

G — FLM UDO; — (FLM,0°) GL(H) — (FLM,6°)

+ + +
LM LM LM

(s € ZT) (s ¢ Z7)
As in the previous section, we restrict attention to s > 3/2.

Remark 3.4. For s € Z™, if we extend the structure group of the frame bundle
with connection from ¥YDO] to GL(H), the frame bundle becomes trivial by Kuiper’s
theorem. This would allow us to define Chern-Simons forms on LM for all M by the
procedures of §6.4 However, there is a potential loss of information if we pass to the
larger frame bundle. For s € Z™, we are forced to extend the structure group.

The situation is similar to the following examples. Let E — S* be the GL(1,R)
(real line) bundle with gluing functions (multiplication by) 1 at 1 € S' and 2 at —1 €
S'. E is trivial as a GL(1, R)-bundle, with global section 8 — f(@), f(—7) =1, f(0) =
0, f(m) = 2. However, as a GL(1,Q)"-bundle, E is nontrivial, as a global section is
locally constant. As a second example, let E — M be a nontrivial GL(n, C)-bundle.



20 Y. MAEDA, S. ROSENBERG, AND F. TORRES-ARDILA

Embed C" into a Hilbert space H, and extend F to an GL(H)-bundle £ with fiber
‘H and with the same transition functions. Then £ is trivial.

4. Local Symbol Calculations

In this section, we compute the 0 and —1 order symbols of the connection one-form
and the curvature two-form of the H® Levi-Civita connection, under the assumption
that s > 3/2 is not a half integer. The dependence of these symbols on s is linear,
so we can extract the parameter independent part (see Definition 6.4 of regularized
Wodzicki-Chern-Simons classes).

Since the connection one-form takes values in ¥DO«, the curvature takes values
in the same algebra. The main result is Theorem 4.2, which states that the order of
the curvature is at most —1. This is crucial for the Chern-Simons theory in Part II.

Throughout this section, we denote the last six terms on the right hand side of
(2.14) by ax through fx, so their sum is the Levi-Civita connection form wx as an
operator on Y.

4.1. The 0 and —1 Order Symbols of the Connection Form. The only term in
(2.14) contributing to the zeroth order symbol of wy is ax. Hence

1 .
oo(wx)e = §9an23i9ef- (4.1)
From the identity 0,,gap = T, 0nb + L% Gans we get g% 0;ger = T%gn 9% + I'%iGen g%
Thus

Lemma 4.1. The Levi-Civita connection form wx is a zeroth order ¥ DO with zeroth
order symbol

1 . 1 .
oo(wx)e = §ganZaz'gef = 9 ( ei T gafgen }lz )XZ- (4.2)

We now compute the —1 order symbol of wy, which involves contributions from ax
and byx. Denote the kth order symbol of an operator P by [P]*. To simplify notation,
set

o(A)] = €26] + ihj& + 1.
The contribution from ax is
1
([ax]™")e = 2 ([ + A) ]2 g 0xges (1 + A)°)
+[(1+A) ] (g 0x ges (1 + A) T

i (14 A) ) g g1 + AP )

- — a 1 a m a
=1is€(&%) (59(9 T6xgse) + 5(9 16x gmph™ — kgkféXgef)> -
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The contribution from by is

(1bx]™) = 5[4+ A)*6x 1+ AY]): = Sise(€)oxhi.
From these expressions, we obtain
Lemma 4.2. The -1 order symbol of the Levi-Civita connection form wx is given by
(lwx] e = isE(%) '0a(9™ dx gye)
+ 5156 (Oxhe + g Oxgush’ — hgoxaer), (43

where hi = =2I'0,y" and 0x = X'0;.
4.2. Symbols of the Curvature Form. In this section we compute the symbols of
the curvature

V=0 =Q(X,Y)Z=VxVyZ -VyVxZ - VixyZ. (4.4)

To use Theorem 2.1, by Lemma 2.3 we have to choose exponential normal coordi-
nates on local neighborhoods of Im(7y). Since the top order symbol of an operator is
tensorial, we can center the normal coordinates at a fixed point (), which allows
us to drop terms with first order derivatives of the metric or with an undifferentiated
Christoffel symbol. In particular, we can assume that the first order symbol of A is
ZETo.

e The zeroth order symbol of the curvature
Combine (4.4) with (2.14). The only zeroth order terms in (4.4) are
[VxVy]° = [0xay]’, [VyVx]® = [dyax]’, [V[X,y]]o =0, (4.5)

as the terms multiplied by ax or ay have vanishing zeroth order terms in normal
coordinates. (In (4.5) we abuse notation by omitting terms like dxdy on the right
hand sides, since dxdy — dydx — dix,y] = 0.)

The following crucial result extends [11] for loop groups.

Theorem 4.3. For s > 3/2 and not a half integer, the zeroth order symbol of the
curvature vanishes. Thus Q° is a YDO of order at most —1.

PROOF: From the computation of ax in (4.1), and using (4.4), (4.5), we get
1 o
0o(QUX, Y)) = g™ X'V (3:0;9er — 0:0iges) (4.6)

in normal coordinates. Recall that in normal coordinates 0;0;g.; = % (Ricjr — Rifej)-
Hence,

(Rjeif — Rjfei) = 0;0iges,

Wl

0;0gef =

i.e. (4.6) vanishes at v(0).
Proposition 2.2 implies that the order of Q° is max{—2s +2, -1} = —1. O
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e The —1 order symbol for the curvature tensor

We explicitly compute the —1 order symbol of €2°. As before, we use normal
coordinates to find the contribution from each of the terms on the right hand side of
(4.4). The contribution from the first term is given by

[VxVy]™ = [6xVy]™' + [axVy]™ + [bx Vy] 7 (4.7)
In fact, the contribution from the last two terms of (4.7) is zero. We have
laxVy]™ = Y [ax]*[Vy]" = [ax]°[Vy]™" + [ax] 7' [Vy]".
s+t=—1

However, in normal coordinates [ax]° = [ay]® = 0, so this contribution vanishes.
Similarly,

bxVy]™ = Y [bxIVy] = [bx] T [Vy ] = [bx] T [av]” = 0.

Hence the only contribution to (4.7) comes from [0xVy]™' = [dxwy|™*. From (4.3)
and using A = 0, we get

([5XVY]_1)2 =4 ) af(s 1 Svhe af5 ™ he Icf5
W_ X 0(9 Ygfe)+§( vh, + g Y9mfle — Nig Ygef)

1
= (5X(69(g“f(5ygfe)) + 5(5)((51/]1?.
Call these last two terms AX, BX. For AX, we obtain
(AX)Z = 5X (aﬁ(gadegfe)) = gadeaedYgef = ganpap(aﬁ(anqgef))
= g“pr(ag(Yq)apaqgef + 8p(Yq)898qgef + anpagaqgef). (48)

For BX, we obtain

1 e
(BY): = §6X5th:6X5Y(7tFte)
= XP0,(Y0,(¥'Ty,)) = XP0,(Y 0,y Ty, 4+ 7'04(T%.))) (4.9)

€

= XP30,(Y)O,LY, + EXPY D, (1B, + Oy Oy, +7'0,0,T%).

The second term on the right hand side of (4.4) has —1 order terms AY and BY
given by switching X and Y in (4.8) and (4.9).

Finally, from (4.3), (4.4), the last contribution to the —1 order symbol of the
curvature tensor is given by (is£(£%)7! times)

V —1\a 1 .
([z's?(?%l)e = @) (wixy )™ = 0 (9™ Six.v195e) + S0kt (410)
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Let AXY] BIXY] be the last two terms in (4.10). The notation X <+ Y means “the
previous term(s) with X and Y switched.” We obtain
AR = 95(9* dx v197e) = 9*09(XP8,(Y 8y 950) — X 2 Y)
= gafGO(Xp(ap(Yq)aqgfe + XPY90,0497.) — X < Y)
= ¢ (XP0,(Y1)0pygse) — X <+ Y
= g7 (XP0,(Y)0pOygse) — X < Y
The first term on the right hand side of the last equation cancels with the third term

of AX and the second term cancels with the third term of AY.
For the remaining term BX-Y] we have

1
BIXY! — 55[X,Y]hg = aﬂt‘s[X,Y]F?e
= 80’)’tXpaqu8qF?e —X eV

The first term on the right hand side cancels the first term in BX, and the second
term cancels the corresponding term in BY .

Therefore, for 6 1(Q) = W([Q(X, Y)]™!), we obtain
(6_1(Q))2 = AX —AY + BX — BY — AXY] _ pIXY]
9 XP(09Y 0p0yges + Y0p0p0g9er) — X ¢ Y
+XPY(0,007' 0,T%, + 0,057 0,1, + 05y 0,0,T%) — X < Y.
Applying x4 = X* from (2.15) gives
(6-1())e
= gaf (X”(angap(?qgef + anwtapataqgef) + angXpapaqgef) - XY
+XPY 0,097 0pL}, + 0,07 0,TE, + 057 0,0,I%) — X < Y
= g7 XPY 99y (8,0:0,9c; — 040:0p9es) + XPY 109" (3,0,T%. — 9,0,T'%.) .

Since ajaigef = % (Riejf — Rifej) and 6kanl = % (ka? — Rk:lng)’ we have
~ a 1 a
(J—I(Q))e = gg pranG'Vt (3,, (Rqetf - quet) - aq (Rpetf - Rpfet))
1 a a a a
+§Xpyq8‘97t (8:0 (the - Rqet ) - 84 (Rpte - Rpet ))

1
= gganquao’Yt (3,, (Rqetf - quet) - aq (Rpetf - Rpfet))

1
+3X7Y 9" 007" B (Rates + Raet ) = O (Rytes + Fpars))-
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Let 0,(.) denote all the terms with p-derivatives in (6_1(2))%. Using the symmetries
of the curvature tensor and the Bianchi identity, we get

8,,(.) = ap (2Rqetf - quet + thef )
= ap (_2Rqeft + quet + Refqt)
= _38queft = 3theq;p-

There is a similar expression for the g-derivative terms. We finally obtain

Theorem 4.4. The curvature Q°(X,Y) of the H® connection is a WDO of order at
most —1 for s > % and s not a half integer. The —1 order symbol at a loop v is

(0—1[QS(X7 Y)])g = iS&(ﬁZ)_lXqu"Ye( aéeq;p - Raéep;q)’ (411)

where RY,, . (v(0)) are the components of the covariant derivative of the curvature
tensor on M.

Remark 4.1. (i) Locally symmetric spaces are characterized by the vanishing of
the covariant derivatives of the curvature tensor, so for these spaces the order of the
curvature is at most —2.

(ii) This theorem extends to Maps(N, M), where N has a Riemannian metric (hy,)
[24]. ©* has order at most —1 and

(G,l[Q(X, Y)])g = i8(§2)7lfl/hququ8N7t (Rateq;p o Ratep;q) : (412)

5. The Loop Group Case

In this section, we relate our work to Freed’s work on based loop groups QG [11].
We find a particular representation of the loop algebra that controls the order of the
curvature of the H' metric on QG.

QG C LG with base point e.g. e € G has tangent space T,QG = {X € T,LG :
X (0) = X(27) = 0} in some Sobolev topology. Instead of using D?/d%? to define the
Sobolev spaces, the usual choice is Agi = —d?/df? coupled to the identity operator
on the Lie algebra g. Since this operator has no kernel on T,Q2M, 1+ A is replaced by
A. These changes in the H® inner product do not alter the spaces of Sobolev sections,
but they do change the Levi-Civita connection. In any case, for X, Y, Z left invariant
vector fields, the first three terms on the right hand side of (2.3) vanish. Under the
standing assumption that G has a left invariant, Ad-invariant inner product, one
obtains

VY)Y = [X, Y]+ AT[X, A*Y] + A[Y, A*X]
[11].

It is an interesting question to compute the order of the curvature operator as
a function of s. For the H® inner product on the free loop space LG defined via
1 + D?/04?%, the order is at most —2, using Remark 4.1(i) and considering G as a
symmetric space.
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For the more standard H® inner product on (G, the following case appears to be
very special.

Proposition 5.1. The curvature of the Levi-Civita connection for the H' inner prod-
uct on QG s a DO of order —oo

ProoF: We give two proofs.
By [11], the H' curvature operator Q = QW) satisfies
QX V)Z, W), (/ v, 2, [ [x, W]) (X oY),
st g

where Z = 8,7 as usual, and the inner product is with respect to the Ad-invariant
form on the Lie algebra g. We want to write the right hand side of this equation as
an H' inner product with W, in order to recognize Q(X,Y’) as a YDO.

Let {e;} be an orthonormal basis of g, considered as a left-invariant frame of TG.
Let ¢f; = ([es, €;], ex)q be the structure constants of g. (The Levi-Civita connection
on left invariant vector fields for the left-invariant metric is given by VyY = 1[X, Y],
so the structure constants are twice the Christoffel symbols.) For X = X'e; =
X%(0)e;, Y = Ye;, ete., integration by parts gives

QX,Y)Z,W), = ( /S 1 YiZjd0> ( . Xmecw) GO — (X & Y).
Since

/S 1 Xy = /S 1 (5mc%Xfem) Wbeb) _ < AT (5T X le,), W) ’

g 1

we get

QX,Y)Z,W), = ([ /S lYiZj] e 5end ™l ATH (X em), W)1
- ([/S af(&,&’)Zj(H')dG’] ek,W>1 ,

a5(0,8) = Y (8) 6 (A—l(Xéem))k (0).

We now show that 7 — (fsl (0,0')79(0')d0’) ey is a smoothing operator. Apply-
ing Fourier transform and Fourler inversion to Z7 yields

/ af (0,027 (0')d’ = / af(0,0")e"” " 73 (0")dg" de de!
St S1xRxS1

— / [a‘l;(e’ 9/)6—1'(9—9').5} ei(a—a”)-gz‘j (all)dglldgdal’
S1xRxS1

with
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so Q(X,Y)Z is a YDO with symbol

50,6 = [ ak0.00e " ap

(with the usual mixing of local and global notation.)

For fixed 0, the integral is the Fourier transform of Y#(¢'), the only term in ak(0,0")
depending on #'. Since the Fourier transform is taken in a local chart with respect to
a partition of unity, and since in each chart Y times the partition of unity function is
compactly supported, the Fourier transform of a? in each chart is rapidly decreasing.
Thus b%(6,€) is the product of a rapidly decreasing function with €, and hence is
of order —oo

We now give a second proof. Recall that for all s

Vi¥ = [[X,¥] - SATAX, Y] + SAT(X, AT

Label the terms on the right hand side (1) — (3). As an operator on Y for fixed X,
the symbol of (1) is ¢((1))% = 3X°c?,. Abbreviating (%) * by £ %%, we have

1 1
28 ~ —Zcf *28ASX€ T 251 ASXE
R N [ R
o (=28) (=25 = 1) e (=25 =L+ 1) o0 pisnsoe
+€Z o EBIEAX
=2
. - —25—1 2s —L+1) ;50
a((3)s ~ —cw X +Z 2% - )¢ fagX].
Thus
O'(VX |:2X6 ZSASXE _ lg—Qs—laeAsXs
1

—2s)(=2s—1)...(=2s —£+1)
it

EBEAXE (5.1)

Mg

(=2
L (—28) (=25 —1) ... (=25 —€+1) 4y
+Z 7 elolxe.

=1

Set s =1 in (5.1), and replace £ by £ — 2 in the first infinite sum. Since A = —93,
a little algebra gives

o0
NCuZ
=0

where {e;} is an orthonormal basis of g as before.
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Denote the infinite sum in the last term of (5.2) by W(X,6,&). The map X —
W (X, 0,&) takes the Lie algebra of left invariant vector fields on LG to the Lie algebra
Lg[[¢ ], the space of formal ¥DOs of nonpositive integer order on the trivial bundle
St x g — St where the Lie bracket on the target involves multiplication of power
series and bracketing in g. We claim that this map is a Lie algebra homomorphism.
Assuming this, we see that

o (QX,Y)) = 0 ([Vx,Vy] ~ Vixw) ~ o (ad W(X),ad (V)] - ad (X, V]))
= o (ad (W(X),W(Y)]) — ad W([X,Y])) = 0,

which proves that Q2(X,Y’) is a smoothing operator.
To prove the claim, set X = z%e™%,,Y = yfnezmeeb. Then

WY = Warymeomide,) = 3 E ok of (onyh i) -ty
=0
p+q 2%e0) 99 (1 etmo —(p+q) .k
wew el = 30 5 EEa (e 3 (e € 10,
£=0 p+q=¢
and these two sums are clearly equal. O

It would be interesting to understand how the map W fits into the representation
theory of the loop algebra Lg.

Part II. Characteristic Classes on LM

In this part of the paper, we construct a general theory of Chern-Simons classes
on infinite rank bundles including the frame/tangent bundle of loop spaces, following
the construction of primary characteristic classes in [20]. The primary classes vanish
on loop spaces, which forces the consideration of secondary classes. We discuss the
metric and frame dependence of these “Wodzicki-Chern-Simons” (WCS) classes, and
give an example of a nontrivial WCS class. The key ingredient is to replace the
ordinary matrix trace in the Chern-Weil theory of invariant polynomials on finite
dimensional Lie groups with the Wodzicki residue on invertible DOs.

In §6, the general theory is developed for stably parallelizable manifolds, and we
prove a vanishing result for the Pontrjagin classes of LM and more general spaces
of maps. In §7, we show that the WCS forms are closed in dimensions three and
above, and the resulting cohomology classes are metric independent in dimensions
above three. The three dimensional WCS class is an invariant for conformal families
of Einstein metrics, and the first WCS form is closed for Einstein metrics. In §8, we
use computer calculations to check that certain metrics on SO(3) x S have nontrivial
three dimensional WCS class.
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6. Chern-Simons Classes on Loop Spaces

We begin this section with a review of Chern-Weil and Chern-Simons theory in
finite dimensions (§6.1), following the seminal paper [6]. In §6.2, we discuss Chern-
Simons theory on a class of infinite rank bundles including the frame bundles of loop
spaces. Since the geometric structure group of these bundles is WDOg, we need traces
on the Lie algebra DO« to define invariant polynomials. There are essentially two
possible traces, one given by taking the zeroth order symbol and one given by the
Wodzicki residue.

In §6.3, we discuss the zeroth order symbol theory. Chern-Simons forms are al-
ways defined, but we have no examples of nontrivial Chern-Simons classes. In §6.4,
we consider the richer Wodzicki-Chern-Simons theory. WOCS classes are defined
for the loop space of a stably parallelizable manifold and are independent of the
frame/trivialization of the stabilized tangent bundle. As a result, the WCS classes
are real, not just R/Z classes. We can spot the part of the WCS class which is in-
dependent of the Sobolev parameter, and this enables us to define regularized WCS
classes. In §6.5, we prove that the corresponding Wodzicki-Pontrjagin classes vanish
for the tangent bundle to Maps(N, M) for Riemannian manifolds N, M.

6.1. Chern-Weil and Chern-Simons Theory for Finite Dimensional Bun-
dles. We first review the Chern-Weil construction. Let G be a finite dimensional Lie
group with Lie algebra g, and let G — E — M be a principal G-bundle over a
manifold M Set g' = g® and let

I'(G) = {P : g8 — R |P symmetric, multilinear, Ad-invariant}
be the Ad-invariant polynomials on g.

Remark 6.1. For classical Lie groups G, I'(G) is generated by the polarization of
the Newton polynomials Tr(A!), where Tr is the usual trace on finite dimensional
matrices.

For ¢ € A¥(E,g!), P € I'(G), set P(¢) = Po ¢ € AF(E). Two key properties are:
e (The commutativity property) For ¢ € A¥(E, g'),

d(P(¢)) = P(dg). (6.1)
e (The infinitesimal invariance property) For v; € A¥(E,g), ¢ € A'(E,g) and
P e IYQ),
I
S (=1F Py A A [ B A - d) = 0. (6.2)

=1

Theorem 6.1 (The Chern-Weil Homomorphism [15]). Let E — M have a connec-
tion 0 with curvature Qp € A*(E,g). For P € I'(G), P(QE) is a closed invariant real
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form on E, and so determines a closed form P(Qy) € A2(M,R). The Chern-Weil
map

®i=1I'(G) — H*(M,R), P [P(Quy)]

s a well-defined algebra homomorphism.

[P(2yr)] is called the characteristic class of P.
We now review Chern-Simons theory. A crucial observation is that P(Qg) is exact,
although in general P(€2;/) is not.

Proposition 6.2. [6, Prop. 3.2] Let G be a finite dimensional Lie group. For a
G-bundle E — M with connection 0 and curvature Q = Qg, and for P € IY(G), set

1
b =10+ 5~ 8.0, TPO) =1 [ POAS i
2 0

Then dTP(0) = P(Q) € A%(E).

Proof. We recall the proof for later purposes. Set f(t) = P(¢}), so P(Q) = fol fl(t)dt.
We show f'(t) =1-dP(6 A ¢, ') by computing each side. First, we have

7' = % () = P (%ﬁi) =i (%“5 " ¢> 6.3
—P@nd (1= 5) P (0.0 07), -

where we have used the commutativity property (6.1). On the other hand, we have
1-dPOAGTY) = IP(OAST) —1(1—1)POAdp A ¢L2) (6.4)
= IP@QA G~ SIP(0.0) A 67 — 10— VPO A dd, A 67,
by (6.1) and the structure equation Q = df+ 1[0, 0]. Since d¢, = t[¢;, 6], the last term
in (6.4) equals
L(L—=1)P(OAdd, A $,%) = L(L—1)P(0 At[ey, 0] A ¢)72).

Using the invariance property (6.2) with ¢ =0, ¢y = 6 and ¢y = ¥y, k=2,...,1— 1,
we obtain

11— 1)P(0 At[¢r, 0] A ¢y %) = —1tP([0,6] A gy ).
This implies (6.4) equals (6.3). O
Setting £ = EG, M = BG in Theorem 6.1 gives the universal Chern-Weil homo-
morphism
W I(G) — H*(BG,R).
We write P € I(G) if W(P) € H*(BG,Z). For this subalgebra of polynomials, we
obtain more information on 7'P(0).
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Theorem 6.3. [6, Prop. 3.15]. Let E = B be a G-bundle with connection 6. For

P € I}(G), let TP(0) be the mod Z reduction of the real cochain TP(0). Then there
exists a cochain U € C*~Y(B,R/Z) such that

~——

TP(0) = n*U + coboundary.
In Theorem 6.10 below, we rework the proof of this theorem in our context.

Corollary 6.4. [6, Thm. 3.16] Assume P € I}(G) and P(Qg) = 0. Then there exists
CSp(#) € H*"Y(B,R/Z) such that

[TP(0)] = 7" (CSp(0)).

Proof. Choose U € C2l_i(§;R/Z) as in Theorem 6.3. Since P(% 0, Proposition

6.2 implies 0T P(f) = dTP(f) = 0. By Theorem 6.3, 7*U and T P(f) are cohomolo-
gous. Set CSp(#) = [U]. O

Notice that the secondary class or Chern-Simons class CSp(6), is defined only
when the characteristic form P(2g) vanishes. The proof of Theorem 6.10 shows that
CSp(0) is independent of the choice of U.

The following corollary will be taken as the definition of Chern-Simons classes for
trivial YDOg-bundles (see Definition 6.2).

Corollary 6.5. Let (E,0) —— B be a trivial G-bundle with connection, and let x be
a global section. For P € I}(G),

CSp(0) = x*[TP(0)].
Proof. This follows from Corollary 6.4 and 7y = Id. O

If we do not reduce coefficients to R/Z, this corollary fails; cf. Prop. 6.13.

6.2. Chern-Simons Theory on Loop Spaces. In [20], Chern forms are defined
on complex vector/principal bundles with structure group YDO] and with WDO}-
connections, where the WDOs act on sections of a finite rank hermitian bundle £ —
N over a closed manifold (e.g. v*TM ® C — S for loop spaces). The key technical
point is to find suitable polynomials P € I'(¥DOj). We single out two analogs of the
Newton polynomials Tr(A%): for A € YDOj, define

PO(A) = k() / tr oo(AY)(z, &) dédz. (6.5)
S*N
Here S* N is the unit cosphere bundle of N and k(I) = (27i) *(Vol S*N) L. Note that
d; = (2mi) ! is the normalizing constant such that d;[tr((Q*)")] € H?*(BU(n), Z) for a

connection % on EU(n) — BU(n)". In [19], Pl(o) is called a Leading Order Symbol
Trace.

'We often omit this normalizing constant in the rest of the paper.



RIEMANNIAN GEOMETRY ON LOOP SPACES 31

The second analog is
RY(A) = k() [ tr oy A)(o,€) ded (6.6)
S*N

P/ (A) is a multiple of the Wodzicki residue of A'. As usual, P, P determine

polynomials by polarization.

For both Pl(o), P, the commutativity and invariance properties hold because (6.5)
and (6.6) are tracial [20]: Tr[og([A, B])] = 0 for A,B € ¥DO«, and the Wodz-

icki residue vanishes on commutators. Thus P, P¥ are in both I'(G), I'(¥DO})
(although trivially PV = 0 on the gauge group G).

The proof of Proposition 6.2 to carries over to YDOj-bundles with connections. In
particular, it applies to the H*-frame bundle of loop space for s € Z™, and then to
general s > 3/2, s not a half-integer, by §§2.5 — 2.6. Thus, we have

Proposition 6.6. For a WDO}-bundle with connection (£,0) — B, and for P €
I'(¥DOS), set

by = 10 + (2 — 1)[0, 0],
2
1 (6.7)
TP(0) = 1/ PO A ¢ 1)dt

Then dTP(0) = P(Q2). We can replace ¥DO;, by G.

Remark 6.2. By Chern-Weil theory, Pl(o)(Q),PlW(Q) are closed forms with coho-
mology class independent of the connection #. The cohomology classes for Pl(o), PV
are the components of the so-called leading order Chern character and the Wodzicki-
Chern character. Using Newton’s formulas, the Chern characters define Chern classes
cl(o), c]” as well as Pontrjagin classes for real bundles. Examples of nontrivial lead-
ing order Chern classes are given in [20], and examples of nontrivial Wodzicki-Chern

classes are given in [21].

6.3. Leading Order Chern-Weil and Chern-Simons Theory. In this section,
we show that Theorem 6.3 extends to the R/Z secondary classes associated to the

characteristic forms P = Pl(o) built from the leading order symbol of a connection on
a G-bundle. We also show that leading order Chern classes are essentially pullbacks
of finite dimensional Chern classes, and hence contain limited new information.

For FLM, only the L? = H° Levi-Civita connection is a G-connection. One eas-

ily checks that the L? connection one-form wn(yo) (X)) = w%,) (X)) on LM acts

pointwise, as does the curvature two-form. Thus B(O)(Q(O))7 = = f7 tr P (QM) db,
so the theory of leading order characteristic forms is a straightforward generalization
of the finite dimensional case. Considering constant loops, we see that secondary
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classes are only defined for flat metrics on M. In contrast, we will see in §6.4 that
Wodzicki-Chern-Simons classes are defined for all metrics.

As we now explain, the case of gauge bundles over Maps(N, M) which arise from
finite rank bundles over M is similar. This class of bundles includes T Maps(N, M).
For most of this section, we assume that G is the gauge group of an oriented real
bundle £ — M, but the arguments carry over to e.g. hermitian bundles.

By [2], B¢ = CR(M,BSO(n)) = {f : M — BSO(n)|f*ESO(n) ~ E}. For
N closed and connected, let ev : C*®(N,M) x N — M be the evaluation map
ev(f,n) = f(n). The bundle ev* E' determines an infinite rank bundle 7, ev* E —»
C*°(N, M), where m,ev* E|; = I'(f*E — N), with I denoting some Sobolev space
of sections. (Here m : C*°(N, M) x N — C°°(N, M) is the projection.) For n € N,
define ev,, : C°(N, M) — M by ev,(f) = f(n).

It is well known that connections push down under 7,. For the gauge group case,
this gives the following:

Lemma 6.7. The universal bundle EG — BG is isomorphic to m,ev* ESO(n). EG
has a universal connection 0¥9 defined on s € T(EG) by

(0775)(7) (@) = ((ev* 0")z00us) (7, ).

Here 0" is the universal connection on ESO(n) — BSO(n), and us : C*°(N, M) x
N — ev* ESO(n) is defined by us(f,n) = s(f)(n).

Proof. See [19, §4]. O
Corollary 6.8. The curvature QF9 of 0F9 satisfies
Q"9(Z,W)s(f)(n) = ev* Q*((Z,0), (W, 0))us(f, n).
Proof. This follows from
(2, W)s(£)(n) = V2OV = Vi VZE = VizhwJs(f)(n)
and the previous lemma. O

Lemma 6.9. Let G be the group of gauge transformations acting on sections of a
finite rank bundle E —s M. Then P € IL(G).

Proof. For all ny € N, the maps ev,,, are homotopic, so the cohomology class
[P (ev;, 0] € H*(BG x {no}, R) = H*(BG,R)

is independent of ng. Thus

d d
o [t @ s = e [ o (e, 2] e
= [dievi, tr oo ((Q")Y)], (6.8)

evy, [dl tr ((Q")Z)} ,
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since Q% is a multiplication operator. By the choice of d;, the last term in (6.8) lies
in evy H*(BSO(n),Z) C H*(BG),Z). Thus

w(p) = [P(QF)] € H*(BG, ).
U

Remark 6.3. Let (£,0) — B be a G-bundle with connection, where G is the gauge
group of the rank n hermitian bundle £ — N, and let f : B — BG be a geometric
classifying map. The argument above shows that the [*! leading order Chern class
equals f*ev: ¢;(EU(n)). Thus all leading order Chern classes are pullbacks of finite
dimensional Chern classes, although the effect of ev; may be difficult to compute.
(This argument was developed with S. Paycha.)

As in [6], we have

Theorem 6.10. Let (£,0) — B be a G-bundle with connection 6 and assume

P(Q2) = 0. Let TP(0) be the mod Z reduction of TP(6). Then there exists a cochain
U e C*Y(B,R/Z) such that

—~——

TP(#) =n"(U) + coboundary.

Proof. By Lemma 6.7, EG — B@G has a universal connection 0 (with curvature Q)
Thus there exists a geometric classifying map ¢ : B — BG: i.e. (£,0) ~ (¢*EG, ¢*é).
By Lemma 6.9, P € I}(G), so its mod Z reduction is zero. From the Bockstein
sequence

... — H{(BG,Z) —s Hi(BG,R) 2% Hi(BG,R/Z) — H*'(BG,Z) —» -+ -

——
N A

we deduce that P(f2) represents an integral class in BG. Thus P(f2) as a cochain
vanishes on all cycles in BG, and hence is an R/Z coboundary, i.e. there exists u €

C2-1(BG,R/Z) such that 6u = P(2). We have

57 (i) = m*(6u) = 7*(P(Q)) = dTP(0) = 5(TP(0)).

The acyclicity of EG implies TP(#) = 7* (i) + coboundary. Now set U = ¢*(@). O

Definition 6.1. Let (£,0) — B be a G-bundle with connection 6 and curvature S,
and assume PI(O)(Q) = 0. In the notation of Theorem 6.10, define the Chern-Simons
class CSY, (8) € H*'(B,R/Z) by

OS5, (0) = [U].
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We can also define leading order Chern-Simons classes for ¥YDOg-bundles with
connection. If ¥DOj acts on E — N, the top order symbol is a homomorphism
oo : YDOy — G, where G is the gauge group of 7*E — S*N. A ¥DOg-bundle £ has
an associated G-bundle £’ with transition functions oo(A), for A a transition function
of £. A connection § with curvature €2 on & gives rise to a connection #' = g¢(f) on &’
with curvature oo(€2). Since P{”(2) = P (54(12)), we define CS\ () = CSY (8").

The homomorphism oy may lose information from the original YDOg-bundle. This
indirect definition is forced on us, because we do not know if EUYDO; — BYDOj
admits a universal connection.

This lack of a Narasimhan-Ramanan theorem prevents us from defining Chern-
Simons classes on arbitrary ¥YDOg-bundles using the Wodzicki residue. In the next
section, we will define Wodzicki-Chern-Simons class for F LM when M is stably
parallelizable.

6.4. Wodzicki-Chern-Simons Classes. In this section, we extend the classical def-
inition of Chern-Simons classes to PV for trivial ¥DOj-bundles. This allows us to
define Wodzicki-Chern-Simons classes for loop spaces of stably parallelizable mani-
folds.

We use the construction of Corollary 6.5 to define secondary classes.

Definition 6.2. Let (£,0) — B be a trivial YDO§-bundles with connection 6, curva-
ture ) and global section x : B — £. Let P be an Ad-invariant degree | polynomial on
UDO«. Assume that P(Q) = 0. The Chern-Simons class CS% (6, x) € H*~'(B,R)
I8

CSy 1(0,x) = X" [TP(9)].

For the case of a trivial frame bundle FLM — LM for a Riemannian manifold
(M, g) and P = P in (6.6), the corresponding Chern-Simons class is denoted

CSy1(6°(9), x)
and is called the s*® Wodzicki-Chern-Simons (WCS) class of LM with respect to g.

Remark 6.4. In finite dimensions, the form TPy 3() vanishes because the trace of
the product of an odd number of skew-symmetric matrices is zero. Thus the usual
indexing is C'S; € H*"'(M,R/Z). On LM, the connection and curvature forms are
skew-symmetric WDOs, but their symbols need not be skew-symmetric. Therefore,
we have to allow for the existence of WCS classes in all odd dimensions.

For the rest of this section, we specialize to the frame bundle F'LM.

Remark 6.5. (i) We have not taken the mod Z reduction as in finite dimensions,
but the a priori dependence of the WCS class on y will be removed in Proposition
6.13.

(ii) As in Remark 3.4, we can always extend the structure group to GL(#) so that
a global section x exists whether or not the original ¥DOj bundle is trivial. This
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yields a general definition of a Wodzicki-Chern-Simons form, but with a possible loss
of information.

Theorem 6.11. On LM, P}V (Q%) =0 for all £ > 2. Thus WCS classes are defined
whenever LM 1is parallelizable.

PRrooO¥F: This follows immediately from Theorem 4.4. U

Lemma 6.12. If M is parallelizable, then LM is parallelizable.

Proof. Let ¢ : TM — M x R" be a trivialization of TM. For X, € T,LM =
[ (y*TM), define

U:TLM — LM x T(S' x R* — S%)
Xy — (7, = ma(d(X,()))),

where 75 : M X R® — R" is the projection. It is easy to check that « is a smooth
trivialization of T"LM in the H® norm. g

The proof extends to Maps(N, M).

To investigate the dependence of the WCS class on the frame, we recall the Cartan
homotopy formula [17, 26]. For Ay, A; € A'(M, g) for a manifold M and a Lie algebra
g, set Ay = Ag+1t(A1—Ap), Qy = dA;+ A A A;. Define [; from the algebra F' generated
by the symbols Ay, 2 to A*(M x [0,1],g) by l;A; = 0, ;Q; = (A1 — Ap)dt, with [,
extended as a signed derivation to F'. For a polynomial S(A, Q2), the Cartan homotopy
formula is

S(A1,21) — S(Ao, Q) = (dk + kd)S(As, ), (6.9)

where
1
kS(At, Qt) - / ltS(At, Qt)
0

This formalism implies kP (€2;) = TP(Ap) on the total space of a bundle E — M.
In fact, the Cartan homotopy formula is just the standard Cartan formula [23, Ch. 8,
Vol. 1] applied to polynomials of A, €.

A frame xy : M — FM determines a “loopified” frame Ly : LM — FLM by

Lx(7)(0) = x(7(0)). Denote Ly just by x.

Proposition 6.13. On a parallelizable manifold M, the WCS class CSY (0,x) €
H?=Y(LM,R) is independent of the choice of loopified frame x : LM — FLM.

Proof. Consider loopified frames x1,xo : LM — FLM. The pullbacks of the con-
nection 6 on FLM are related by

Xi(0) = g7 'x5(0)g + 97 'dg, 9(7) : xo(7) = x1(7),
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where ¢ is the loopified gauge transformation taking xo(m) to xi(m). For the family
Ay =tg'x5(0)g + g 'dg and S(A,Q) = TP(A,Q) = x*TPY(0), (6.9) yields

TP(A)) —TP(g7'dg) = (dk + kd)TP(A;) = da + kP(Q;) = da + TP(Ay),
with o = kT P(A;). Hence,
CSy_1(0,x1) = C8y_1(8,x0) = [TP(A)] = [TP(Ag)] = [TP(g™"dg)].

Since the gauge transformation g is a multiplication operator on 7'LM, the Wodzicki
residues of the connection g 'dg and its curvature vanish. Thus TP(g 'dg) =0. O

Remark 6.6. (i) For a principal bundle with compact structure group, [TP (g 'dg)]
is an integer class, called the instanton number in [10]. This shows that the R/Z
reduction of x*T'P(f) is frame independent. A more topological proof, valid for
compact structure groups only, is in [6, (6.2)].

(i) Assume the mod Z reduction of C'SyY (6) = CS¥ (0, x) € H3*(LM,R) vanishes
for a loopified frame on LM for M parallelizable. The Bockstein sequence gives a
(non-unique) class in o € H3*(LM,Z) mapping onto CS3" (). a has a representative,
a gerbe with connection, whose curvature is x*7TP(f) [14]. Analogously, for finite
dimensional parallelizable manifolds, there is a gerbe associated to a vanishing three
dimensional Chern-Simons class. This gerbe functions as a tertiary characteristic
class associated to a connection and a framing.

The definitions and results of this section extend to stably parallelizable manifolds
such as S™, i.e. manifolds M with TM @ ¥ = " for trivial bundles £*,c". We have
TM®eF = T(M xRF). For a Riemannian metric g on M and the standard metric g,
on R put the product metric § = g ® gy on M x Rf. By Lemma 6.12, FL(M x RF)
has a global section .

Definition 6.3. Let (M, g) be a stably parallelizable Riemannian manifold. The s*®
Wodzicki-Chern-Simons (WCS) class of LM with respect to g is CSy ,(6°(g), x) €
H?=1(LM,R).

Here we work with R* with its standard chart to define (1 + A)® on M x R* and
the H* metrics on M x R*. The definition uses that L(M x R¥) is diffeomorphic to
LM x LR* so H*(LM) = H*(L(M x R*)) by the de Rham theorem for loop spaces
[4]. There is an ambiguity in the definition, in that one can replace e* by &° for s > k.
However, taking the standard frame on R* % and its loopification x* ¥, one easily
checks that the C'S)Y | (0°(g @ g5), X* X x*~*) is independent of s.

For M stably parallelizable, by Remark 2.2(ii) we can take a global frame so that
Lemma 2.3 applies, which allows us to use the symbol calculations of §4. By Lemma
4.1, Lemma 4.2 and Theorem 4.4, the Wodzicki residue of a wedge of connection and
curvature forms is a constant multiple of s > 3/2. Therefore, the WCS class also
depends linearly on s. This motivates the following definition:
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Definition 6.4. The regularized WCS class C'S5;®, (0, x) is
S_lc‘sglvfl(gsa X)

The regularized WCS class captures the s-independent part of this theory. It differs
a priori from a direct definition of the WCS class at s = 1, as the symbol calculations
are not valid at this parameter.

6.5. Vanishing Results for Wodzicki-Chern Classes. The tangent space T'LM
to a loop space fits into the framework of the Families Index Theorem. In this section,
we show that the infinite rank bundles appearing in this framework have vanishing
Wodzicki-Chern classes, generalizing [16]. For loop spaces, this follows from Theorem
4.4. This vanishing indicates that WCS classes could be interesting objects in the
more general Families Index Theorem setup.

Recall this setup: there is a fibration Z — M —— B of closed manifolds and
a finite rank bundle £ — M, inducing an infinite rank bundle £ = m,F — B.
For the fibration N — N x Maps(N, M) — Maps(N, M) and E = ev*TM, £ is
TMaps(N, M).

Theorem 6.14. If £ — B satisfies € = w,FE as above, then the Wodzicki-Chern

classes ¢}’ (€) vanish for all k.

Proof. As in Lemma 6.7, £ admits a connection whose curvature € is a multiplication
operator. Q' is also a multiplication operator, and hence ¢}’ () = 0. O

For a real infinite rank bundle, Wodzicki-Pontrjagin classes are defined as in finite
dimensions: p}’ (£) = (—=1)kcl, (€ ® C).

Corollary 6.15. The Wodzicki-Pontrjagin classes of TMaps(N, M) and of all nat-
urally associated bundles vanish.

Proof. Pick an element fj in a fixed path component Ay of Maps(N, M). For f € Ay,
TrMaps(N,M) ~T(f*T'M — N) ~I'(f§TM — N) with the second isomorphism
noncanonical. Thus over each component, TMaps(N, M) is of the form m, ev* T M,
and the previous Theorem applies. The vanishing of the Wodzicki-Pontrjagin classes
of associated bundles (such as exterior powers of the tangent bundle) follows as in
finite dimensions, since there is a universal geometric bundle. 0

In general, the Wodzicki-Chern classes are an obstruction to the reduction of the
structure group of a YDOy bundle.

Proposition 6.16. Let £ — B be an infinite rank YDOg-bundle, for YDO; acting
on E — N™. If £ admits a reduction to the structure group G(F), then ¢}/ (€) =0
for all k. If £ admits a YDOg-connection whose curvature has order —k, then 0 =

Cn/k)(E) = Clym+1(E) = . ..
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PROOF: For such an &, there exists a connection one-form with values in Lie(G) =
Hom(E), the Lie algebra of multiplication operators. Thus the Wodzicki residue
of powers of the curvature vanishes. For the second statement, the powers of the
curvature of the connection has ord(Q2f) < —n for ¢ > [n/k], and so the Wodzicki
residue vanishes in this range. O

7. Invariance of Wodzicki-Chern-Simons Classes

In this section we show that the WCS classes CS),_, € H*"Y(LM,R),k > 3,
are smooth invariants on loop spaces of parallelizable manifolds, and give results for
CS}Y,CSY related to conformal geometry. In contrast, Chern-Simons classes are
conformal invariants in finite dimensions.

7.1. Conformal Invariance in Finite Dimensions. We begin with a discussion
of the finite dimensional case TM — M. We avoid using the Narasimhan-Ramanan
universal bundle theorem, as these techniques do not carry over to infinite dimensions.

We recall results from [6] about the conformal geometry of Chern-Simons classes.
Let § = e?/g be a conformal change of the metric g on M, and pick a g-orthonormal
frame x of TM. For x = (e1,...,e,), A = A9 = x*69 is a global one-form defined
by V9e; = A¥(e;)ey, where 69, V9 are the Levi-Civita connection one-form on FM
and the Levi-Civita connection on TM for g, respectively. ¥ = (e fey,...,e " e,)
is g-orthonormal. Let €); be the curvature of V; = (1 — #)V9 + tV9, the Levi-Civita
connection for the metric g, = e*/g.

The invariant polynomials are generated by P(A) = Tr(A*) for £ even. [6, Thm. 4.5]
shows that TP () — TP(0) is exact on FM, so TP(x*f) — TP(x*0) is exact on M.
Thus

A

TP(*0) —TP(x'0) = [TP(x"0) — TP(X*0)] + [TP(X*0) — TP(x0)]
= exact +[TP(3*0) — TP(x*)]. (7.1)

Since the last term is an integral class [6, (6.2)], [T P(A)] € H*(M;R/Z) is conformally
invariant whenever P(§2) = 0, a conformally invariant condition.
For M parallelizable, we have a slightly stronger result with real coefficients.

Proposition 7.1. Let M be parallelizable. For the Levi-Civita connections Ay, A1 of
two conformally related metrics and for P(2) = Tr(QF), TP(A,) — TP(A) is eract.
Thus, if P(£) = 0, then the class [TP(Aq)] € H* (M, R) is a conformal invariant.

PROOF: Let A; = x;6; be the connection one-form for V, in the x, frame. For the
projection 7w : M' = M x [0,1] — M, the bundle 7*T'M — M’ is trivial via the
frame x; over My = M x {t}, and comes with a connection V = d + A = dyp + A,
with respect to this trivialization. The curvature Q of V satisfies Q|xs, = Q; + 0y Aydt.
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For i, : M — M',i(m) = (m,t), the Cartan homotopy formula gives

TP(A) —TP(A) = i*TP(A) —iTP(A) = dyITP(A) + Tdy/TP(A)
= exact +ZdyTP(A), (7.2)

where Zw = — fol(—l)deg(“’)_lzatw dt.
We claim the last term in (7.2) vanishes. We have

1
Tdy/TP(A) =IP(Q) =¢ / Tr(Q A 0,A,)dt. (7.3)
0

It follows from the definition of A;? that

(0eADS = (e5()0F — ex(f)o])e' = (e (£)8F — 8™ e (£)0}0)e’, (7.4)

where {e} are the dual one-forms. Fix ¢, and use tildes to denote e.g. (Qt); =
R kee Aét ek = e Tek. Then

TH( A (e ()8 — 5™ e ()8610)¢")

_ i1 kl er J1 kz &2
- R Jlkﬂ“l A R J2k27“2 A
Jt—2 k1 g ) Je-1 _ sm,je—1 s\, —fxi
AR o iry i€ A (e“(f)& ) em(f)d;, 0i)e ' €
_ Rﬂ 2 kg_l/\e'l'g_l A éi A les (f) fRn ~k1 P! RJl ~kQéT2 A
- 4,ke—1,Te—1 1 jikiri € jokars € ce
/\R]l k3 ék(,zéke,g A 67‘[,2]
4,Ke—2,T¢—2
~' . ~k1 ~T¢_1 ~4 —f D1 ~k2 "7'2 Je—2 ~k1 ~T1
+R]11k17“16 Ne ne' [ R jokora € € R erke_1re 1€ €
= 0,

because R, A & A & =0 by the Bianchi identity. This vanishing and (7.3), (7.4)
show that the last term in (7.2) is zero. d

The proof carries over to stably parallelizable manifolds with product metric as in
Definition 6.3.

7.2. Metric Invariance in Infinite Dimensions. We modify the previous Propo-
sition to show that on LM the WCS classes C'Sy, |, ¢ > 3, are independent of the
metric on M.

As in (6.7), we set

TPV (0) = ¢ /0 1 / L e PO A

for P, the polarization of Tr(A*).
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Theorem 7.2. Let M be stably parallelizable with global section x of F(M x R¥) for
some k. Let @ = 6° be the Levi-Civita one-form for the H® metric on L(M x RF)
associated to a metric on M. For £ > 3 and for fized s, CSy,_,(0°) = [x*TPy(0°)] €
H?*~Y(LM,R) is independent of the metric on M. In particular, the regularized WCS
class is independent of the metric.

PROOF: By Proposition 6.13, CSyy | is independent of the frame x. Let g, § be metrics
on M. For notational simplicity, we assume that M is parallelizable. We need to show
that TP} (x*0) — TP} (x*#) is exact. By the proof of Proposition 7.1 (with x; = x
for all t), specifically by (7.2), (7.3), it suffices to show ZdyTP" (A) = 0. This is
equivalent to

0=tro_1 (1 A8A) = trfo_ (%)) A o8, 4,)], (7.5)

for A; the connection one-forms for the line of metrics joining g, g. By Theorem 4.3,
o 1((Q)* ) = 0 automatically for £ > 2. Here A; can be the connection one-forms
for any family of metrics on M. U

For ¢ = 2, we know that ZdyTP(A) in (7.2) is exact for conformal families of
metrics. Since og(0;A;) = 0y00(A¢), reworking (7.4) in local coordinates gives

00(8tAt)§ = 5fazf
By (4.11),

trfo_1 () A 0o (0Ar)] = A Ouf (R, j0p — R 1ipig)da” A dzf A dat
= 4" (Ricygp — Ricyp,g)dz? A dx? A df
29" Ric,gpda? A dz? A df
21, VRic A df,
where we drop the dependence on ¢ in the notation.

If the conformal family of metrics are all Einstein, then VRic = AVg = 0. This
gives a conformally invariant class:

Proposition 7.3. Let g;,t € [0,1] be a conformal family of Finstein metrics on a
stably parallelizable manifold. Then CSy (0y) = CSy (0,) € H3*(LM,R).

Finally, for | = 1 and P} (A) = [, o tr 0_1(A), the form x*T P/ (0) € A'(LM)
has
d*TPY (0) = dTPY (x*0) = / tr o1 (Q).
5*51
By Theorem 4.4, the last expression vanishes on locally symmetric or Einstein spaces.

Proposition 7.4. The form x*T P/ () for P/V(A) = [q.q tr 0_1(A) defines a class
CSYY(0) € HY(LM,R) for locally symmetric spaces and for Einstein metrics.
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8. Nontrivial Wodzicki-Chern-Simons Classes

In this section, we find metrics on M = SO(3) x S* for which the WCS class
CSY (0%) € H3(LM,R) is nontrivial.

Since de Rham’s theorem is valid on LM [4], it suffices to find [a] € H3(LM;R)
with

(X"TP(6°),[al) #0, (8.1)
for P(Q) = P»(Q) = =25 Tr(Q?) and any frame x of LM.

o (@n)?
We first calculate the homology of L(SO(3) x S'). For 7, € QS0(3), the based

loops on SO(3), n € SO(3), 72 € QS!, and > € S define

¢ :QS0(3) x SO(3) x QS' x S' — L(SO(3) x S")
2mit 2mit (8.2)
(’71’ 72, € 0) = (77’)’1a e 0’72)'

Since LG is diffeomorphic to 2G' x G for Lie groups, ¢ is a diffeomorphism.

QS0O(3) has two diffeomorphic path components, and by [5], H2(22S0O(3),Z) has
two generators 7, 5. QS is homotopy equivalent to Z, since based loops are homo-
topic iff they have the same winding number. This gives:

Lemma 8.1. The generators for H3(LM;Z) ~ H3(Q2S0(3) x SO(3) x QS x S;7Z)
are

w? = 18[S0@)]e M el v’ =neleleh e[S,

W = eIl e[S, (8.3)

where [ - | denotes the fundamental class.
Define z, : SO(3) — QS0O(3) x SO(3) x QS* x S* by
Zn(p) = (t = IdSO(?))apa 627rt = eQm'nt’ IdSI) = (rYOap, Y1, IdSl)a (84)

where Idgo(), [ds: denote the identity maps on R?, R. By the Lemma,

[a] = (¢ 0 2,).[SO(3)] € H3(L(SO(3) x S'),Z) is nontrivial. It is represented by the
3-cycle which assigns to each point A € SO(3) the loop which goes n times around
{A} x S'. Thus CSyV(6*) is nonzero if

OCTP(B), (60 2).[SOB))) = / (60 2) X" TP(6) # 0. ®.5)

50(3)

To begin the computation, we fix exponential coordinates (z,y,z2) in T,,S3, for
np = (0,0,0,1). of S3. (“Exponential” refers to the standard metric, but we will use
these coordinates for all metrics below.) Let 7 : S — SO(3) be the double cover
map, and let S% be the standard equator in S®. The exponential coordinates are valid
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on SO(3)\7(5?), i.e. for 22 +y?+2? < (7/2)% In these coordinates, we take a metric
on SO(3) x S* of the form

F(z,y,z,a) 0 0 0

_ 0 G(z,y,2, ) 0 0
9= 0 0 H(z,y,z,a) 0 (8.6)

0 0 0 1

where F, G, and H are smooth functions of (x,y, z) and « is the angular variable on
S1. The metric extends to a metric on all of SO(3) if for all (z, y, z) with 22 +5y?+2? =

(m/2)%,
o . F(z,y,z,0) = (=1)*0F . F(—xz,—y,—2,0), (8.7)

’Ll...ik ’Ll...’ik

where the partial derivatives are in the (x,y, z) coordinates, and similarly for G, H.
For [ =2, (6.7) gives

1
X'TP(#) = 2/ Py <X*0 At Q + %(t2 —t)[x"0, X*ﬁ]) dt
0

1
= PFCOAXD) = <P (COAXONXD) (8.8)
?
= g3 Tro_1(x"0 A x* Q)] déda
Y S*g1

7
T _ * * *
s [ Tlo (oA oA YD) ded

where 6§ = 6°, Q2 = Q°. By the symbol calculus for YDOs and Theorem 4.3, we have

+

Trlo 1(X*0 A X ONX0)] =3Tr[o_1(x*0) Aoo(x*0) A oo(x*0)], (8.9)

Tr{o_1(x*0 A x* Q)] = Tr [oo(x*0) A o_1 (X" Q)] . (8.10)

As in §3.4, we may replace x*6 by w® and x*(2 by °.

First, we show that the contribution to (8.5) from (8.9) vanishes. The left hand
side of (8.8) is a global three-form on LM, as is the next to last term, the Wodzicki
residue of the YDO w?® AQ*. Therefore, the last term of (8.8) (i.e. the integral of (8.9))
can be computed in any coordinates, viz. the “symbol friendly” coordinates and frame
in Lemmas 2.3, 2.4. (Take 7, in the proof of Lemma 2.3 to be the loop in a based
at np. The chart consisting of exponential coordinates on SO(3) and the standard
exponential map on S' covers all the loops in the cycle a except for a set of measure
zero, so this chart suffices to compute (8.5). Strictly speaking, the exponential map
on S! is only a chart map to S* minus a point, but the chart computations extend to
the point.)
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FIGURE 1. The bump function used in the computations.

Computing og(w?®) in (8.9) for the metric (8.6), we get that og(w®) is the diagonal
matrix

LXO,F 0 0 0
0 LX'0.G 0 0 .
G ? ’ —
0 0 0 0

Since two of the terms in (8.9) are this diagonal matrix, it follows easily that (8.9)
vanishes on each loop in the cycle a.

This leaves the contribution of (8.10) to (8.8). Since this term is the top order
symbol of w? A €2°, it can be computed in symbol friendly coordinates. By Theorem
4.4, the —1 order symbol of the curvature is

(U—l[Q(X’ Y)])g = isé-ilXquaN’Yt (Rateq;p - Ratep;q) :

This symbol has a fairly complicated explicit expression for the metric (8.6). To
simplify the computations, we choose the following form for the diagonal elements:

F(p, 0,9, a) = /\(a) ((’”/2)3 + ﬂcymb(x)@ﬁ(y)iﬁ(z)) )
G(p,0,9.a) = pla), (8.12)
H(p,0,¢,a) = (7/2 + (@)Y (y)¥(2)) ,

where A\(a), u(«) are positive smooth periodic functions of o € [0,27], and (¢) is
the smooth bump function on the interval [0,57/12] shown in Figure 1 and given

explicitly by
1 1
t) =10 -—— —_— .
0= e (~z) e (5= 7)

In particular, F, G, H obey condition (8.7). With the help of Mathematica to compute
(8.10) and its integral in (8.5), one finds that (8.5) is a product of two integrals:
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fSO(S) g(.’L', Y, Z) and fSl f(n)(a) Here

M) () — . @)y
f™M(a)=n /\(a))\ (a), (8.13)
and g(z,y, z) has a long explicit expression in F, G, H which can be loaded as the file
FiLoTracel in the notebook http://math.bu.edu/people/sr/notebook.nb. One
can gain some sense of g(x,y, z) by computing a few slices (Figure 2).
The presence of a bump function in the metric rules out a closed form expres-
sion for |, 50(3) g(z,y, z). Within our computing limits, a numerical integration gives

f50(3) g9(z,y,z) = —3.89289 for the metric given by (8.12). (The Mathematica file

listed above includes this computation.) The key point is that the SO(3) integral is
nonzero.

Thus CS3V is nonzero if [ f () is nonzero. Figure 3 shows plots of (8.13)
for different choices of A(«), (). The number above each of the plots in the third
column is a numerical computation of [, f)(c), and [, f™(a) just multiplies this
number by n. Since these values are nonzero up to a high degree of precision, for
these (and many other) choices of A, u, v,

CSY(6) € H3(L(SO(3) x S*),R)

is almost certainly nontrivial.
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