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Abstract

We give theoretical methods of creating sports schedules where there are multiple venues
for the games, and the number of times each team uses each venue should be balanced. A
construction for leagues having 2p ≥ 8 teams was given by de Werra, Ekim and Raess. Here
we show that feasible schedules exist when the league has an arbitrary even number of teams
greater than or equal to 8.
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1 Introduction

Research on the construction of schedules for sports leagues covers a wide range of issues
and techniques [1,2,5–8]. Perhaps the most popular type of problem concerns a league
of teams having home stadiums, and the objective is to generate home-away patterns
satisfying certain criteria. Integer and constraint programming and graph theory have
been used to great effect in solving such problems.

The problem we consider here is not of this type; instead of having teams with fixed
home stadiums, we have a set of N = 2n teams and a set of n stadiums which have no
association with the various teams. The objective is to create a schedule which satisfies
the following five conditions:

(sched1) all team pairs play against each other at least once,
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(sched2) on each day, n games are simultaneously played,
(sched3) one game is played at each stadium on each day,
(sched4) each team plays 2 games at each of the n stadiums,
(sched5) each pair of team plays no more than one game at each stadium.

The resulting schedule is different from the usual round robin in that each team must
play 2n games, hence the scheduling period consists of 2n days, and for each team there
is some partner with whom it meets twice. Urban and Russell [10,9] have applied various
integer programming techniques and obtained solutions for 2n = 8 and 2n = 16. On the
theoretical side, de Werra, Ekim and Raess [3] have formulated this problem in terms
of graphs, and constructed solutions for the values 2n = 2p (p ≥ 3) by using inductive
procedures (it is easy to see that the case 2n = 4 has no solution). Their construction
is based on the idea of using two disjoint subleagues to divide the scheduling period
into days in which only games internal to the subleagues are held, and days in which
interleague games are exclusively played. They have also proved that when 2n = 6, no
schedule satisfying conditions (sched1) to (sched5) exists.

In this paper, we prove the following theorem:

Theorem Let n be any integer with n ≥ 4. Then there always exists a schedule for 2n
teams and n stadiums satisfying conditions (sched1) to (sched5).

More precisely, we prove Theorems 1 and 2 below, and combine them with the results
of [3].

Theorem 1 Let n be any odd number greater than or equal to 5. Then there always
exists a schedule for 2n teams and n stadiums satisfying conditions (sched1) to (sched5).

Theorem 2 Let n be any even number which is not a power of two. Then there always
exists a schedule for 2n teams and n stadiums satisfying conditions (sched1) to (sched5).

We break up the scheduling procedure into two parts: that of deciding for each team
pair, when they play and where they play. Using terminology that is popular in sports
scheduling, we will call the game days slots and the first part the timetabling procedure.
A timetable is considered to be the assignment of teams pairs to slots, and will be
represented by giving for each slot, the matches which are held on it. The second part
involves assigning stadiums to each match after a timetable has been fixed. By regarding
stadiums as colors, we will call this the coloring procedure in which we create a color
assignment. A color assignment will be represented by specifying which color is given
to each match. To simplify explanations in later sections, we will depart from normal
conventions and consider both slot numbers and color indices as beginning from 0.

As in [3], our construction is based on dividing the 2n teams into disjoint subleagues.
However in our case, each subleague will consist of an odd number of teams, thus the
number of subleagues is not always two; in fact, the odd numbers will be dominantly
present throughout the whole paper. In the timetabling and coloring procedures, we
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Fig. 1. Basic polygon

make great use of Kirkman’s circle method for creating round robin timetables, and
also borrow some tools from elementary number theory. In Section 2, we define math-
ematical concepts, namely basic timetables and primitive roots that will be used later.
In Section 3 we give our construction for odd n, and in Section 4, we treat even n which
are not powers of two. Concluding remarks are given in Section 5.

2 Mathematical preliminaries

In this section, we introduce basic timetables and elementary facts of number theory.

2.1 Basic timetables

In the constructions which will be described, the polygon shown in Fig. 1 will play a
central role. We consider odd n (n ≥ 3), and place n points at equal intervals along a
circle. Beginning at the top, and proceeding clockwise, we assign positions 0, 1, 2, . . . , n−
1 to the points, then produce the parallel lines which join positions 1 and n− 1, 2 and
n − 2, and so on. We then give numbers 1, 2, . . . (n − 1)/2 to the lines so that line
i (1 ≤ i ≤ (n − 1)/2) joins positions i and n − i, and say that line i has depth i. By
natural association, we will say that the two positions i and n − i also have depth i,
and for convenience, we will sometimes refer to position 0 as the position having depth
0.

This polygon is well known as the basic tool used in Kirkman’s circle method, which is
a simple and ingenious way to create round robin timetables. For a league consisting of
the n(odd) teams {0, 1, . . . , n−1}, this method allows us to create a timetable consisting
of n slots, in which of each, one team has no opponent(a bye), and the remaining n− 1
teams are paired off into (n−1)/2 matches. First, we assign team i to position i on slot
0, and schedule matches between the two teams whose positions are joined by a line
(the team assigned to position 0 has a bye). We then rotate the teams counterclockwise
along the positions so that team s is assigned to position 0 on slot s. We will call the
resulting timetable a basic timetable for n. The basic timetable for n = 5 is shown in
Fig. 2.

We will call the team which is assigned to position i on slot s the label of i on slot s and
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Fig. 2. Basic timetable for n = 5

denote it by label(i, s). We observe the following facts concerning teams and labels:

(lab1) for any team t ∈ {0, 1, . . . , n− 1} and any position i ∈ {0, 1, . . . , n− 1}, there
is a unique s ∈ {0, 1, . . . , n− 1} with label(i, s) = t,

(lab2) each team t ∈ {0, 1, . . . , n − 1} is assigned depth 0 exactly once and depth
d ∈ {1, 2, . . . , (n− 1)/2} exactly twice,

(lab3) label(i, s) ≡ i + s (mod n),
(lab4) for any slot s ∈ {0, 1, . . . , n − 1}, the sum of the two labels of depth d ∈
{1, 2, . . . , (n− 1)/2} is congruent to 2s (mod n),

(lab5) for any two distinct teams t, t′ ∈ {0, 1, . . . , n − 1}, there is a unique s ∈
{0, 1, . . . , n− 1} such that t and t′ have the same depth on slot s.

Of course, the basic timetable can be constructed for any set containing an odd number
of teams with some given ordering. For such a set T , the basic timetable for T will be
understood to be the above basic timetable with suitable adaptions, likewise, label(i, s)
will be defined as the team of T assigned to position i on slot s.

2.2 Prime numbers, primitive roots and indices

We will briefly state some facts from elementary number theory which will be used later
in the construction. For a more extensive background, see for example, the book [4].

Let p be a prime number. For any a ∈ {1, 2, . . . , p − 1}, Fermat’s theorem says that
ap−1 ≡ 1 (mod p). However, it may happen that p − 1 is not the smallest exponent δ
for which aδ ≡ 1 (mod p). For example, when p = 7 and a = 2, we have

a2 = 4, a3 = 8 ≡ 1 (mod 7).

A primitive root of p is a number r ∈ {1, 2, . . . , p − 1} such that p − 1 is indeed the
smallest exponent for which this occurs, or, equivalently, a number r such that the
numbers r, r2, . . . , rp−1 are all incongruent (mod p). For example, if p = 7 then for
r = 3, we can easily verify that

r = 3, r2 ≡ 2, r3 ≡ 6, r4 ≡ 4, r5 ≡ 5, r6 ≡ 1 (mod 7),
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Fig. 3. Indices relative to the base r = 3(p = 7)

and r = 3 is a primitive root of p = 7. The following properties of primitive roots are
well known.

Proposition 3 If p is prime, then p always has a primitive root. Moreover, if p ≥ 5,
then neither 1 nor p− 1 is a primitive root of p.

Now let r be a primitive root of p. For any a which is not divisible by p, there is always
a unique number α ∈ {0, 1, . . . , p− 2} such that a ≡ rα (mod p). (The exponent p− 1
does not appear here as rp−1 ≡ 1 = r0.) The exponent α is called the index of a relative
to the base r, and denoted by Indr a, or if there is no danger of confusion, simply as
Ind a. Fig. 3 shows the values of Indr a when p = 7 and r = 3. As may be expected,
indices exhibit behavior similar to logarithms. The following facts hold for the indices
relative to any primitive root of p.

(ind1) a ≡ b (mod p) ⇐⇒ Ind a = Ind b,

(ind2) Ind(ab) ≡ Ind a + Ind b (mod p− 1),

(ind3) Ind(am) ≡ m Ind a (mod p− 1),

(ind4) p 6= 2 =⇒ Ind(p− 1) = p−1
2

,

(ind5) p 6= 2 and a + b = p =⇒ Ind a− Ind b ≡ p−1
2

(mod p− 1).

3 The case N = 2n with n odd

In this section, we show that leagues with N = 2n for odd n ≥ 5 always allow schedules
satisfying conditions (sched1) to (sched5). The construction will be divided into three
cases: the first case will deal with the odd numbers which can be written as n = 4q +1,
the second with n = 4q +3 and n prime, and the last with n = 4q +3 and n composite.

3.1 The case n = 4q + 1 (q ≥ 1)

We divide the N = 2n teams into two subleagues whose teams we denote by {0, 1, . . . , n−1}
and {0∗, 1∗, . . . , (n−1)∗}. We will call the first group of teams the overbar teams and
the second group the starred teams. The set of colors is given by {C0, C1, . . . , Cn−1}. For
each subleague, we create the basic timetable which we will call the overbar (starred)
timetable. The polygons used will be referred to as the overbar (starred) polygons.
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Fig. 4. Solution for 10 teams

The schedule will consist of two halves, each of which will be based on the overbar and
starred timetables. Fig. 4 which shows the two halves of the schedule for 2n = 10(n = 5)
teams will serve as an example of the construction. The lefthand side represents the
first half, and the righthand side the second half. Slots proceed from top to bottom,
and the boxed numbers shown on each line are the indices of the assigned colors.

Since n = 4q + 1, we notice that the number of lines (n − 1)/2 = 2q of the basic
polygon is even. The timetable of the first half is constructed by taking the overbar
and starred timetables, then exchanging the team labels on the left positions of lines
2, 4, . . . , 2q between the overbar and starred polygons on each slot. The timetable for
the second half is constructed similarly, by flipping the labels on the left positions of
lines 1, 3, . . . , 2q− 1. In each half, the two teams with label(0, s) on slot s i.e., s and s∗,
play against each other.
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Claim 4 In the two halves constructed above, all team pairs oppose each other exactly
once, except for the pairs (0, 0∗), (1, 1∗), . . . , (n−1, (n−1)∗) which play against each other
twice.

Proof. It is obvious that the pairs (0, 0∗), (1, 1∗), . . . , (n−1, (n−1)∗) play twice. Now
consider t, t′ ∈ {0, 1, . . . , n−1} (t 6= t′). By (lab5) the teams t and t′ are assigned the
same depth on some unique slot s in the basic timetable for n. If this depth is even,
then the following two facts hold.

• The overbar teams t and t′ oppose each other in the second half but not the first.
The same can be said for the two starred teams t∗ and (t′)∗.

• The teams t and (t′)∗ oppose each other in the first half but not the second. The
same can be said for the pair t∗ and t′.

On the other hand, if the depth is odd, the above statements with the roles of first and
second halves reversed, holds. This completes the proof of the claim.

We now describe the color assignment. In both halves, each line in both the overbar and
starred polygons will be given a fixed color which remains unchanged in all slots, and in
each slot, each team is assigned the color given to the line it is incident to. For the first
half, we give the two teams at depth 0 color C0, then for d = 1, 2, . . . , 2q = (n−1)/2, we
assign to line d the color Cd in the overbar polygon, and the color C2q+d in the starred
polygon. Before describing the coloring for the second half, we make the following claim
on the color assignment for the first half.

Claim 5 The following three facts hold: (i) the colors C0, C2, C4, . . . , C4q are assigned to
all teams in both {0, 1, . . . , n−1} and {0∗, 1∗, . . . , (n−1)∗} exactly once, (ii) all overbar
teams are assigned C1, C3, . . . , C2q−1 twice, and no color from C2q+1, C2q+3, . . . , C4q−1,
and (iii) all starred teams are assigned colors C2q+1, C2q+3, . . . , C4q−1 twice and no color
from C1, C3, . . . , C2q−1.

Proof. It is obvious that each team is assigned color C0 exactly once. Moreover, (lab2)
and the way the first half was constructed assure that each overbar (starred) team is
assigned depth d exactly once in both overbar and starred polygons when d is even,
and twice in the overbar (starred) own polygon when d is odd. The claims are then
immediate from the way the colors are given to lines.

The above claim can be interpreted as saying that colors given to lines which stand for
interleague matches are assigned once each to all teams, while colors associated with
lines which correspond to matches internal to subleagues are assigned twice each to the
subleague teams. Considering the fact that in the second half, the lines with even depth
correspond to the matches internal to subleagues, we see that it is sufficient to assign
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to these lines the colors C2q+1, C2q+3, . . . , C4q−1 in the overbar polygon, and the colors
C1, C3, . . . , C2q−1 in the starred polygon. The remaining colors C0, C2, C4, . . . , C4q may
be assigned arbitrarily as long as depth 0 receives a color different from C0. A methodical
way of achieving this is to tentatively assign color C0 to the two teams with depth 0,
then give colors for lines d = 1, 2, . . . , 2q by the following scheme:

overbar polygon:





C2q+d+1 (d : odd),

C2q+d−1 (d : even),
starred polygon:





Cd+1 (d : odd),

Cd−1 (d : even),

and switch colors C0 and C4q = Cn−1 (this is the method used in Fig. 4). It is easy to
see that the color assignment for the second half satisfies the following claim.

Claim 6 The following three facts hold: (i) the colors C0, C2, C4, . . . , C4q are assigned to
all teams in both {0, 1, . . . , n−1} and {0∗, 1∗, . . . , (n−1)∗} exactly once, (ii) all overbar
teams are assigned C2q+1, C2q+3, . . . , C4q−1 twice, and no color from C1, C3, . . . , C2q−1,
and (iii) all starred teams are assigned colors C1, C3, . . . , C2q−1 twice and no color from
C2q+1, C2q+3, . . . , C4q−1.

This completes the construction for n = 4q + 1.

Note that when n = 4q + 3, the number of lines is 2q + 1 and hence an odd number.
Thus the idea of ‘pairing’ the lines that we used above will not work.

Remark 7 The procedure we have described above is still valid if we substitute con-
dition (sched5′) below, for (sched5). Indeed, the method by which we assigned colors
to lines in the second half first constructs a coloring in which the repeated matches
(0, 0∗), . . . , (n−1, (n−1)∗) are given color C0 both times.

(sched5′) each pair of teams uses exactly one stadium for their game(s).

3.2 The case n = 4q + 3 (q ≥ 1) and n is prime

As in the case n = 4q + 1, we divide the 2n teams into the overbar and starred teams,
{0, 1, . . . , n−1} and {0∗, 1∗, . . . , (n−1)∗}, and create a schedule of two halves based on
the overbar and starred timetables. However in this case, the first half will consist
exclusively of interleague matches, and the second half entirely of matches internal to
subleagues (with the exception of matches between the teams assigned to depth 0). The
schedule for 2n = 14(n = 7) which is shown in Fig. 6 provides an example. As in Fig. 4,
the lefthand side shows the first half and the righthand side the second half, with slots
proceeding from top to bottom, and the boxed numbers next to lines standing for the
colors indices. In the following part, we identify n with 0, n + 1 with 1 and so on, in
order to avoid lengthy explanations of trivial cases.
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We first explain both the timetable and color assignment for the first half. The timetable
is constructed by taking the overbar and starred timetables, then exchanging the labels
on the left positions of all lines between the overbar and starred polygons in each slot.
As before, the two teams s and s∗ play against each other on slot s. The color assignment
is again created by fixing colors to lines. We assign color Cn−1 to the two teams with
depth 0, and for line d = 1, 2, . . . , 2q + 1 = (n − 1)/2, we associate color Cd−1 in the
overbar polygon and color Cn−1−d in the starred polygon. The following claim can be
shown in a manner analogous to Claims 4 and 5.

Claim 8 In the first half, the following facts hold: (i) every pair t ∈ {0, 1, . . . , n−1}
and (t′)∗ ∈ {0∗, 1∗, . . . , (n−1)∗} of teams plays against each other exactly once, (ii)
each team is assigned each color exactly once, and (iii) in slot 0, the opponent of t is
(n−t)∗, and the color Ck assigned to the match satisfies k ≡ t − 1 (mod n) for each
t ∈ {0, 1, . . . , n−1}.

We now consider the second half. Again we take the basic overbar and starred timeta-
bles, but this time we change the team rotation on the starred polygons so that team
(n−s)∗ is assigned depth 0 for s = 0, 1, . . . , n−1 (see the righthand side of Fig. 6). The
following claim can be easily proved.

Claim 9 The timetable for the second half satisfies the following facts: (i) s and (n−s)∗

is the unique interleague match occurring on slot s, (ii) t and t′ (t 6= t′) are matched
exactly once, likewise t∗ and (t′)∗ are matched exactly once, and (iii) if teams t and t′

play against each other on slot s, then teams t∗ and (t′)∗ play against each other on slot
n−s and vice versa.

We must now provide a method of assigning colors to teams so that each team receives
each color exactly once in the second half. Clearly, the previous way of fixing colors to
lines in the basic polygons will not work; instead for each slot s and each color Ck, we
must choose one match on slot s, to which we assign color Ck. We begin by considering
the problem of choosing matches to which we assign color C0. On slot 0, we give this
color to the match (0, 0∗). If we can then choose a set of m = (n− 1)/2 line-slot pairs
{(d1, s1), (d2, s2), . . . , (dm, sm)} in the basic timetable for n such that

• each t ∈ {1, 2, . . . , n−1} appears exactly once in the set consisting of the labels of
both ends of line di on slot si for i = 1, 2, . . . , m,

• one line from each depth is chosen, i.e. {d1, d2, . . . , dm} = {1, 2, . . . , m},
• the set {s1, s2, . . . , sm} contains exactly one of the pair s and n−s for s = 1, 2, . . . , m,

then, we can use this set to color matches in the following manner. (The set {(line 3, slot 1),
(line 1, slot 2), (line 2, slot 4)} shown by thick lines in Fig. 5 satisfy the above three con-
ditions for n = 7.)

Let t1 = label(d1, s1), t2 = label(n−d1, s1), . . . , t2m−1 = label(dm, sm), t2m = label(n−dm, sm)
i.e., t2i−1 and t2i are the labels on the right and left positions of line di on slot si (in the
basic timetable), for i = 1, 2, . . . , m. Now color all pairs (t1, t2), . . . , (t2m−1, t2m) in the

9

KSTS/RR-07/003
March 16, 2007



q qq
qq

qq

1
2
3

45
6
0

q qq
qq

qq

2
3
4

56
0
1

q qq
qq

qq

3
4
5

60
1
2

q qq
qq

qq

4
5

6
01

2
3

q qq
qq

qq

5
6
0

12
3
4

q qq
qq

qq

6
0
1

23
4
5

Fig. 5. Choosing lines

overbar timetable and all pairs (t1
∗, t2∗), . . . , (t∗2m−1, t

∗
2m) in the starred timetable with

color C0. By the first condition on the line-slot pairs, all teams 1, . . . , n−1, 1∗, . . . , (n−1)∗

receive color C0 exactly once, and the third condition and fact (iii) of Claim 9 guarantee
that exactly one match in each slot is colored by C0. Thus we have successfully assigned
color C0.

We now consider color C1. We first color the pair (1, (n−1)∗), that is, the pair assigned
to depth 0 on slot 1 by C1. Then, for i = 1, . . . , m, we color the two teams of depth di

on slot si +1 in the overbar timetable, and the two teams of depth di on slot (n−si)+1
in the starred timetable with C1. Intuitively speaking, we ‘slide’ the positions which we
colored with C0 one down, as in Fig. 6. In general, for the color Ck with 1 ≤ k ≤ n−1, we
first color the pair of teams assigned to depth 0 in slot k with Ck. Then, for i = 1, . . . , m,
we color the two teams of depth di on slot si + k in the overbar timetable, and the two
teams of depth di on slot (n− si) + k in the starred timetable with Ck. The next claim
shows that the procedure described above produces a legitimate coloring.

Claim 10 In the method described above, (i) each team in {0, . . . , n−1}∪{0∗, . . . , (n−1)∗}
receives the color Ck exactly once, (ii) exactly one pair of teams in each slot is colored
by Ck, for k (1 ≤ k ≤ n − 1), (iii) each match is assigned exactly one color from
C0, C1, . . . , Cn−1, and (iv) the repetition matches (0, 0∗), (1, (n−1)∗), . . . , (n−1, 1∗) are
given a different color in the first and second halves.

Proof. Let s′i ∈ {0, 1, . . . , n−1} be the slot with s′i ≡ si + k (mod n). If t′2i−1 and t′2i

are the two labels with depth di on slot s′i in the overbar timetable, then by (lab3),
t′2i−1 and t′2i satisfy

t′2i−1 ≡ t2i−1 + k (mod n), t′2i ≡ t2i + k (mod n).

Taking the fact that the label of position 0 on slot s′i is k into account, we see that the
set of overbar teams which are colored with Ck is equal to {0, 1, . . . , n−1}. Similarly, the
labels of depth di(> 0) on slot (n−si)+k are congruent to t2i−1−k and t2i−k (mod n),
and the label of position 0 is (n− k)∗, thus it follows that each starred team is also
colored by Ck exactly once. The fact that exactly one pair of team in each slot is
colored by Ck is immediate from the choice of s1, s2, . . . , sm, and since the line depths
d1, d2, . . . , dm are all distinct and greater than 0, each match is assigned exactly one
color. Finally, we observe that match (i, (n−i)∗) is given color Ci−1 in the first half and
Ci in the second half, completing the proof of the claim.
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Fig. 6. Solution for 14 teams

It now remains to show that we can always choose a set of line-slot pairs with the
desired conditions. For this we will use the notion of primitive roots and indices.

Since n is a prime number and n ≥ 7, n has a primitive root r. From Proposition 3, r
always satisfies 1 < r < n − 1. Now, let x be the unique number in {1, 2, . . . , n − 1}
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satisfying

Indr x ≡ Indr(r − 1)− Indr(r + 1) (mod n− 1).

Such an x always exists, because r 6= 1, n − 1. For example, if n = 7 and r = 3 (see
Fig. 3), we must have Ind3 x ≡ Ind3 2 − Ind3 4 = 2 − 4 ≡ 4 (mod 6), hence x = 4.
Obviously, x 6= 1. The chosen x also satisfies x 6= n − 1, because x = n − 1 implies
Indr(r − 1) = Indr(r + 1) + Indr(n − 1) (mod n− 1), which combined with (ind1) in
turn yields r − 1 ≡ (n− 1)(r + 1) ≡ −(r + 1) (mod n), i.e. 2r ≡ 0 (mod n).

Now, for s = 1, 2, . . . , n − 1, let is be the position satisfying is ≡ sx (mod n), and
for slot s, choose the line incident to the position is in the basic timetable for n. In
rough terms, this means that we go around the basic polygon in the clockwise direction,
choosing every xth label. In Fig. 5, the boxes indicate the labels which are chosen when
n = 7 and x = 4. Note that we never arrive at depth 0, because sx is never a multiple
of n, hence we are justified in saying that we choose a line. We will show that we may
select m = (n−1)/2 line-slot pairs from the n−1 pairs described above so the required
conditions are satisfied.

Claim 11 For distinct s, s′ ∈ {1, 2, . . . , n − 1}, is and is′ have the same depth if and
only if s + s′ = n.

Proof. It is clear that is and is′ have the same depth if and only if, is = is′ or is+is′ = n.
The former condition is equivalent to sx ≡ s′x (mod n), however this can never happen
because s and s′ are distinct, and x is relatively prime to n. On the other hand, the
latter condition is equivalent to (s + s′)x ≡ 0 (mod n) which in turn is equivalent to
s + s′ ≡ 0 (mod n). Thus the claim is proved.

This claim shows that a set of m = (n− 1)/2 of the above line-slot pairs which satisfy
the third condition will always satisfy the second. Thus only the first and last conditions
will need further consideration.

We now turn our attention to the first condition, and consider properties of the labels
on either side of the chosen lines. By (lab3) we must have label(is, s) ≡ s(x+1) (mod n).
By (lab4), the label of the ‘opposite side’ of the chosen line i.e. label(n − is, s) is con-
gruent to s(n − x + 1) (mod n). Because x + 1 and n are relatively prime, all labels
label(i1, 1), . . . , label(in−1, n− 1) are distinct, and different from 0 = 0(x + 1), the same
can be said for the labels of the opposite sides. We must now consider the case when
label(n− is, s) = label(is′ , s

′) or equivalently, s(n− x + 1) ≡ s′(x + 1) (mod n) occurs.

Claim 12 For s, s′ ∈ {1, 2, . . . , n − 1}, label(n − is, s) = label(is′ , s
′) if and only if

s ≡ rs′ (mod n).
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Proof. First, note that s(n− x + 1) ≡ s′(x + 1) (mod n) is equivalent to

Ind s + Ind(n− x + 1) ≡ Ind s′ + Ind(x + 1) (mod n− 1),

by (ind1) and (ind2). By the definition of x,

Ind x ≡ Ind(r − 1)− Ind(r + 1) (mod n− 1)

⇔ (r + 1)x ≡ r − 1 (mod n)

⇔ r(n− x + 1) ≡ x + 1 (mod n)

⇔ Ind r + Ind(n− x + 1) ≡ Ind(x + 1) (mod n− 1).

The claim now follows.

We now select a set of m = (n− 1)/2 slots in which each 1, 2, . . . , n− 1 appears exactly
once as the label incident to the chosen lines, i.e., a set of line-slot pairs satisfying the
first condition. It turns out that this set will satisfy not only the first condition, but
also the third, thus completing the proof.

We consider the directed graph that has vertex set {1, 2, . . . , n − 1} and an arc from
s to s′ whenever label(n − is, s) = label(is′ , s

′). By Claim 12, this occurs whenever
Ind s ≡ Ind s′ + 1 (mod n− 1). Since r is a primitive root of p, this implies that the
directed graph consists of exactly one directed cycle on n − 1 = 4q + 2 vertices, and
is hence bipartite. Moreover, since Ind(n − s) ≡ Ind s + (n − 1)/2 (mod n− 1) by
(ind5), the distance between s and n − s in the graph is equal to (n − 1)/2 = 2q + 1,
an odd number, and s and n − s will always fall in opposite sides of the bipartition.
Thus by choosing all the (n − 1)/2 slots that comprise one side of the bipartition, we
have attained our goal. For n = 7 and x = 4 (the situation shown in Fig. 5), the cycle
is 1 → 5 → 4 → 6 → 2 → 3 → 1, by Fig. 3 and the bipartition can be written as
({1, 4, 2}, {5, 6, 3}). The thick lines shown in Fig. 5 were constructed from the first set.

Remark 13 The method described above will not work for n = 3 because the only
primitive root of 3 is 2 = n− 1, meaning that x is undefinable. It is neither applicable
when n is composite, because composite numbers do not have primitive roots possessing
the properties described in Section 2.2. In the case of prime numbers which can be
written as 4q + 1, we may compute x and choose lines on slots, however the distance
between s and n− s in the final bipartite graph will be 2q, forcing s and n− s into the
same side of the bipartition. Hence the conditions n = 4q + 3, n is prime, and n 6= 3
are all essential in our arguments.

Remark 14 As in the case n = 4q + 1, our construction can be used to produce a
schedule that satisfies condition (sched5′) instead of (sched5). To do this, we change the
color assignment in the first half by assigning color C0 to the two teams of depth 0, and
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0 1 2 3 4 5

C0 2 – 4 4 – 5 1 – 5 1 – 2 0 – 3 0 – 3

C1 3 – 5 0 – 2 2 – 3 0 – 5 1 – 4 1 – 4

C2 0 – 1 1 – 3 0 – 4 3 – 4 2 – 5 2 – 5

Fig. 7. schedule for 6 teams

for line d = 1, 2, . . . , (n − 1)/2, color Cd in the overbar polygon and color Cn−d in the
starred polygon.

3.3 The case n = 4q + 3 and n is a composite number

In this case, we decompose n into the product of two odd numbers, and create a number
of subleagues, each consisting of an odd number of teams. We then use the results of the
previous two subsections to first create a ‘subleague schedule’, then assign individual
games between subleagues.

Since n = 4q + 3 is a composite number, we can always express n as n = n1n2 with
n1 = 4q1+1 (≥ 5) and n2 = 4q2+3 (≥ 3), because (4q1+1)(4q2+1) ≡ (4q1+3)(4q2+3) ≡
1 (mod 4). Moreover, n2 may always be taken as a prime number. Using these two values,
we divide the N = 2n teams into 2n2 subleagues with n1 teams each. We will denote
these subleagues by T0, T1, . . . , T2n2−1. We also divide the 2n slots into 2n2 periods of
n1 slots each, and the n colors into n2 groups of n1 colors each. The indices of periods
and color groups will begin from 0.

We first note that we can create a schedule for 2n2 teams on 2n2 slots with n2 colors,
that satisfies conditions (sched1) to (sched4) and (sched5′). When n2 ≥ 7, we use the
results of the previous subsection (see Remark 14), and when n2 = 3 an example of such
a schedule is provided by the array in Fig. 7. (In the arrays, rows correspond to colors,
columns to slots, and entries show the competing teams.) We regard this schedule on 2n2

teams as a ‘subleague schedule’ and use it to create a timetable and coloring assignment
for the original 2n = n1 · (2n2) teams. To avoid confusion in the following part, we will
refer to teams in the above schedule as subleague indices, the slots as subleague slots,
and the colors as subleague colors. Thus, the terms ‘team’, ‘slot’, ‘period’, ‘color’ and
‘color group’ will always refer to those of the original case. Note that subleague slots
and subleague colors correspond to period and color group indices, respectively.

Let i and j be two distinct subleague indices. Then, in the subleague schedule, either i
and j oppose each other just once on subleague slot s with subleague color k, or they
play against each other twice on two distinct subleague slots s and s′, both times using
the same subleague color k. In the former case, we have the teams in subleagues Ti and
Tj play all their interleague games in period s using the colors in color group k. Since
n1 is an odd number, period s consists of n1 slots, and color group k contains n1 colors,
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this can be done by using the method employed to create the first half in Section 3.2.
In the latter case we create a schedule satisfying conditions (sched1) to (sched5) for
the 2n1 teams contained in subleagues Ti and Tj on 2n1 slots, using the n1 colors in
color group k. This can be accomplished by using the method described in Section 3.1.
We then allot the 2n1 slots equally among periods s and s′. Note that the repetition
matches will always arise in the latter case.

In the completed schedule for 2n teams, it is easily seen that each team pair plays against
each other at least once. Also, since each subleague index is assigned each subleague
color exactly twice, each team uses each color exactly twice. Finally, since the repetition
games were assigned by the procedure given in Section 3.1, we see that no pair of teams
is assigned the same color twice. Thus, we have successfully created a schedule for 2n
teams when n = 4q + 3 is a composite number.

Summing up the results of this section, we have proved the following theorem stated in
Section 1.

Theorem 1 Let n be any odd number greater than or equal to 5. Then there always
exists a schedule for 2n teams and n stadiums satisfying conditions (sched1) to (sched5).

Remark 15 As in the previous two subcases, we may substitute the condition (sched5′)
for (sched5) when n = 4q + 3 is a composite number, because the repeated games were
constructed by the method in Section 3.1 and Remark 7.

Taking the cases n = 3 and n = 1 into account, we have also proved the following
statement.

Corollary 16 Let n be any (positive) odd number. Then there always exists a schedule
for 2n teams and n stadiums satisfying conditions (sched1) to (sched4) and (sched5′).

4 The case N = 2n with n even

We now turn to the case when n is even. Since the case where 2n is equal to a power
of two has been proved in [3], we may concentrate on cases when this does not hold,
i.e., 2n may be expressed as 2n = 2qm, q ≥ 2 and m is an odd number greater than
or equal to 3. We divide this into two cases; the first when q ≥ 3 and the second when
q = 2.

4.1 The case 2n = 2qm, q ≥ 3 and m ≥ 3 is odd

In this case we combine the results of [3] with the method used in Section 3.3. First,
we divide the 2n teams into 2m subleagues of 2q−1 teams each, then create 2m periods
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and m color groups, each having 2q−1 slots and 2q−1 colors respectively.

Since m is odd, we may construct a ‘subleague schedule’ on the 2m subleague indices
satisfying conditions (sched1) to (sched4), and (sched 5′), by Corollary 16. Interleague
schedules for two subleagues can be constructed by Proposition 3 in [3] because all sub-
leagues contain 2q−1 ≥ 4 teams. Also, since the total number of teams in two subleagues
is equal to 2q ≥ 8, we can again apply the results of [3] to obtain appropriate schedules
for the subleague indices which are repetitions. This completes the case when q ≥ 3.

Unfortunately, when q = 2, each subleague will have 2 teams, and the above method
will not work. Thus, we treat this case separately in the following subsection.

4.2 The case 2n = 4m and m ≥ 3 is odd

As we have just mentioned above, this case is somewhat of an anomaly that must be
given special treatment. We have tried to give a method as simple and systematical
as possible, however there are seem to be unique difficulties which arise from the fact
that a schedule for 4 teams (with or without condition (sched5)) does not exist, and
the final procedure is somewhat complicated. We will rely a great deal on the figures
in describing the details.

We divide the 4m teams into four subleagues of m teams each, and call them a, b, c, and
d. Teams in each subleague will be specified by a number-alphabet pair. For example,
the set of teams in subleague a is {0a, 1a, . . . , (m− 1)a}. We also separate the 4m slots
into four periods of m slots each, and the 2m colors into four groups of (m−1)/2 colors
each, plus two additional colors. The periods will be numbered from 1 to 4, and slots
in each period from 0 to m− 1. Individual slots will be identified by the pair of period
and slot numbers, for example, (1, 0) will mean slot 0 of period 1. We call the four
color groups A,B,C, and D, and give the elements of each color group indices from 1
to k = (m − 1)/2; for example A = {A1, A2, . . . , Ak}. We will call the two additional
colors E and F .

The basic idea of our construction is shown in Fig. 8 (where m = 5). In each period,
we have one of the four subleagues play all its internal games, while the remaining
subleagues play interleague games. Consider period 1, and let a be the subleague playing
internal games. We create four basic timetables for m, and designate one of them to
be used for the games internal to a. In Fig 8, the four timetables are shown by four
columns which are numbered from the left as 1, 2, 3 and 4. The timetable we allot
to a is the leftmost one, column 1. In this timetable, we assign labels by the following
method: if label(i, s) = t in the basic timetable, then we replace t with ta for all positions
i = 0, 1, . . . , m− 1 and all slots s = 0, 1, . . . , m− 1.

Next, we choose three ordered pairs of the remaining subleagues b, c, and d, in which
each subleague appears once as the first element, and once as the second element. In
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Fig. 8. Basic idea for period 1

period

column

1 2 3 4

1 a (b, c) (c, d) (d, b)

2 b (d, c) (a, d) (c, a)

3 c (d, a) (a, b) (b, d)

4 d (b, a) (c, b) (a, c)

Fig. 9. Assignment for subleague pairs and columns

Fig. 8, the chosen pairs are (b, c), (c, d) and (d, b). We then assign each of the ordered
pairs to the remaining three basic timetables (in Fig. 8, pair (b, c) is assigned to column
2, pair (c, d) to column 3, and (d, b) to column 4), and give labels to positions in each
polygon. In each of the three timetables, positions to the left of each line are given labels
belonging to the first element of the assigned ordered pair, and the remaining positions
are given labels from the second element. For example, the second column in Fig. 8
was assigned the ordered pair (b, c), thus positions 3 and 4 have labels with ‘b’, and
positions 0, 1, and 2 have labels with ‘c’. Note that this second timetable corresponds
to ‘one side’ of the complete interleague timetable for subleagues b and c, constructed
by the method used for the first half in Section 3.2.
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Forgetting, for the moment, about opponents of teams assigned to position 0, we now
give a color assignment for period 1. For d = 1, 2, . . . , k = (m − 1)/2, assign color Ad

to line d in column 1, color Bd to line d in column 2, and so on. The colors E and F
will be reserved for depth 0. Then, the following claim on the timetable and coloring
assignment for period 1 holds:

Claim 17 In the first period, the following facts hold: (i) all games internal to subleague
a have been held, (ii) each team of subleague a uses each color in group A twice, (iii)
approximately half of the interleague games among subleagues b, c, and d have been
scheduled, and (iv) each team in subleague b uses the colors in groups B and D exactly
once, each team in subleague c uses the colors in groups B and C exactly once, likewise
each team in subleague d uses the colors in groups C and D exactly once.

Continuing to defer the opponents and colors of team labels with depth 0 till afterward,
we now consider timetables and color assignments for the remaining second, third, and
fourth periods (see Fig. 9). We begin by setting the subleague playing internal games
to b in period 2, c in period 3, and d in period 4. Next is the designation of ordered
pairs to columns. In order to ensure that all interleague games between, for example, b
and c are indeed held, we need to assign the ordered pair (c, b) that was not chosen in
period 1, to a column in period 4, likewise, (d, c) should appear in period 2, and (b, d)
in period 3. In fact, the essential conditions may be stated as:

• in all periods, each team that is not assigned to the first column appears once as
the first element, and once as the second element in the ordered pairs assigned to
columns 2, 3, and 4,

• both orderings of each subleague pair are assigned somewhere in the four periods,
• all subleagues are assigned twice to each column 2, 3, and 4.

The assignment given in Fig. 9 is one such example. Finally, we consider the color
assignment. If we use the same scheme of color-line association described for period
1 throughout the remaining periods, the final condition stated above guarantees that
all teams use each color in groups A, B, C, and D twice. The timetable and color
assignment constructed so far, satisfy the following claim:

Claim 18 The following facts hold: (i) all games internal to each subleague have been
scheduled, (ii) all interleague games have been scheduled with the exception of games
between two teams with the same number, i.e., games between teams in {0a, 0b, 0c, 0d},
teams in {1a, 1b, 1c, 1d} and so on, (iii) all teams use each color in groups A, B, C,
and D twice.

We now turn to the task of assigning opponents and colors to the teams at depth 0.
Note that in all periods, these will be {0a, 0b, 0c, 0d} on slot 0, {1a, 1b, 1c, 1d} on slot
1, and so on. If we could create a schedule for four teams which satisfies conditions
(sched1) to (sched5), then we would be done, unfortunately this is impossible. Instead,
what we do is generate a timetable and color assignment that satisfies the requirements
as nearly as possible for the four teams {sa, sb, sc, sd} on the four slots (1, s), (2, s),
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Fig. 10. Temporary schedule for slot 0 of periods 1, 2, 3 and 4 (m = 5)

(3, s) and (4, s) (s = 0, 1, . . . , m− 1) using colors E and F , then make adjustments. In
the following explanation we will fix s = 0, but the construction is the same for all s.

We temporarily create the timetable and color assignment for {0a, 0b, 0c, 0d} on slots
(1, 0), . . . , (4, 0) given in Fig. 10 (labels and colors on lines of depth 1 are also shown).
This schedule satisfies all conditions from (sched1) to (sched5) except for (sched4); team
0a uses color E three times, but color F only once, conversely teams 0b uses color F
three times but color E only once (teams 0c and 0d both use colors E and F twice
each). To remedy this imbalance, we perform the following switches involving colors C1

and D1 in all slots for the specified periods (see Fig. 11):

• in period 2, switch colors F and C1,
• in period 3, switch colors E and D1,
• in period 4, change color F to C1, color C1 to D1 and color D1 to F .

Claim 19 After the above switch is executed, all teams use each color exactly twice.

Proof. It is sufficient to check only the colors that appear in the switch, namely C1,
D1, E and F . We first see what happens to the colors used by 0a, 0b, 0c, and 0d. We
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depth 0 line 1

1 (a, c) : E (b, d) : F (c, d) : C1 (d, b) : D1

2 (a, b) : E (c, d) : F → C1 (a, d) : C1 → F (c, a) : D1

3 (a, d) : E→D1 (b, c) : F (a, b) : C1 (b, d) : D1 → E

4 (c, d) : E (a, b) : F → C1 (c, b) : C1 → D1 (a, c) : D1 → F

Fig. 11. Color swiches

observe that team 0a:

• loses C1 and gains F on slot (2, 1),
• loses E and gains D1 on slot (3, 0),
• loses F and gains C1 on slot (4, 0),
• loses D1 and gains F on slot (4, 1).

Thus, in total, 0a loses one instance of E and gains one instance of F . Similarly, 0b:

• loses D1 and gains E on slot (3, 1),
• loses F and gains C1 on slot (4, 0),
• loses C1 and gains D1 on slot (4,m− 1),

and in total, loses one instance of F and gains one instance of E. Now, 0c:

• loses F and gains C1 on slot (2, 0),
• loses C1 and gains D1 on slot (4, 1),
• loses D1 and gains F on slot (4,m− 1),

and 0d:

• loses F and gains C1 on slot (2, 0),
• loses C1 and gains F on slot (2,m− 1),
• loses E and gains D1 on slot (3, 0),
• loses D1 and gains E on slot (3,m− 1).

Thus there are no changes in the total usage of colors for either 0c or 0d. Similar
statements hold for all other teams, and the claim follows.

For the sake of completeness, we give the schedule for 12 teams (m = 3) in its entirety
in Fig. 12. Since all color groups consist of a single color, we omit indices.

Summarizing the results for even n, we have proved the following theorem stated in
Section 1:

Theorem 2 Let n be any even number which is not a power of two. Then there
always exists a schedule for 2n teams and n stadiums satisfying conditions (sched1) to
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Fig. 12. Schedule for 12 teams
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(sched5).

5 Concluding remarks

We have proved the existence of schedules satisfying conditions (sched1) to (sched5),
for values of n not treated in [3], thus providing a complete theoretical solution. The
construction is based on four basic cases: the case when n is a power of two, treated in
[3], the case when n = 4q + 1, the case when n = 4q + 3 and n is prime, and finally
the case when n is twice an odd number. All of these cases use different tools and
techniques. It would be nice if the construction could be simplified.
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