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Abstract

In this article, we study a continuum matrix-valued Anderson-type model. Both leading
Lyapounov exponents of this model are proved to be positive and distincts for all energies
in (2, +00) except those in a discrete set, which leads to absence of absolutely continuous
spectrum in (2,400). This result is an improvement of the result proved in [3]. The
methods, based upon a result by Breuillard and Gelander [4] on generating dense Lie
subgroups in semisimple Lie groups, and a criterion by Goldsheid and Margulis [7], allow
for singular Bernoulli distributions.

1 Introduction

In this article we will study the question of separability of Lyapounov exponents for a
continuous matrix-valued Anderson-Bernoulli model of the form :

d? 0 1 wi™y (x —n) 0
Hpp(w) = ———1 +< )+ oA . 1

acting on L2(R,C?). This question is coming from a more general problem on Anderson-
Bernoulli models. Indeed, localization for Anderson models in dimension d > 2 is still
an open problem if one look for arbitrary disorder, especially for Bernoulli randomness.
A possible approach to try to understand localization for d = 2 is to discretize one di-
rection. It leads to consider one-dimensional continuous Schrédinger operators, no longer
scalar-valued, but now N x N matrix-valued. Before trying to understand how to handle
with N x N matrix-valued continuous Schrodinger operators, we start with the model (1)
corresponding to N = 2.

What is already well understood is the case of dimension one scalar-valued continuous
Schrodinger operators with arbitrary randomness including Bernoulli distributions (see [6])
and discrete matrix-valued Schrédinger operators also including the Bernoulli case (see [7]
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and [10]). We aim at combining existing techniques for these cases to prove that for our
model (1), the Lyapounov exponents are all positive and distincts for all energies except
those in a discrete set, at least for energies in (2, +00) (see 7Th. 3).

It is already proved in [3] that for model (1), the Lyapounov exponents are separable for
all energies except those in a countable set, the critical energies. But the techniques used in
[3] didn’t allow us to avoid the case of an everywhere dense countable set of critical energies.
Due to Kotani's theory (see [11]) this result will imply absence of absolutley continuous
spectrum in the interval (2, 400). But we keep in mind that we want to be able to use our
result to prove Anderson localization and not only the absence of absolutely continuous
spectrum. The separability of Lyapounov exponents can be view as a first step in order to
follow a multiscale analysis scheme. The next step would be to prove some regularity on
the integrated density of states, like local Holder-continuity and then to prove a. Wegner
estimate and an Initial Length Scale estimate to start the multiscale analysis (see [13]). To
prove the local Holder-continuity of the integrated density of states, we need to have the
separability of the Lyapounov exponents on intervals (see [5] or [6]). But, if like in [3] we
can get an everywhere dense countable set of critical energies, we will not be able to prove
local Hélder-continuity of the integrated density of states. That is why we need to improve
the result of [3].

Our approach of the separability of Lyapounov exponents is based upon an abstract cri-
terion in terms of the group generated by the random transfer matrices. This criterion has
been provided by Gol'dsheid and Margulis in [7]. It is exactly this criterion which allowed
to prove Anderson localization for discrete strips (see [10]). This criterion is also inter-
esting because it allow for singularly distributed random parameters, including Bernoulli
distributions.

We had the same approach in [3], what changes here is the way to apply the criterion
of Gol'dsheid and Margulis. To apply this criterion we have to prove that a certain group
is Zariski-dense in the symplectic group Sp,(R). In [3] we were constructing explicitely
a family of ten matrices linearly independant in the Lie algebra spy(R) of Spy(R). This
construction was only possible by considering an everywhere dense countable set of critical
energies. By using a result of group theory by Breuillard and Gelander (see [4]), we are
here able to prove that the group involved in Gol'dsheid/Margulis’s criterion is dense in
Spy(R) for all energies in (2, +-o¢), except those in a discrete set.

We start at Section 2 with a presentation of the necessary background on products of
i.i.d symplectic matrices and with a statement of the criterion of Gol'dsheid and Margulis.
We also present the result of Breuillard and Gelander in this section. Then, in Section 3
we precise the assumptions made on the model (1) and we explicit the transfer matrices
associated to this model. In Section 4 we give the proof of our main result, the Theorem 3
by following the steps given by the assumptions of Theorem 2 by Breuillard and Gelander.

We finish by mentioniong that different methods have been used to prove localization
properties for random operators on strips in [9]. They are based upon the use of spectral
averaging techniques which did not allow to handle with singular distributions of the ran-
dom parameters. So even if the methods used in [9] (which only considers discrete strips)
have potential to be applicable to continuum models, one difference between these methods
and the ones used here is that, like in [3], we handle singular distributions, in particular
Bernoulli distributions.
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2 Criterion of separability of Lyapunov exponents

We will first review some results about Lyapounov exponents and how to prove their
separability. These results hold for general sequences of i.i.d random symplectic matrices.
Even if we will only use them for symplectic matrices in M4 (R), we will write these results
for symplectic matrices in My (R) for arbitrary N.

Let N be a positive integer. Let Spy (R) denote the group of 2N x 2N real symplectic
matrices. It is the subgroup of GLyy (R) of matrices A satisfying
PMJIM = J,

0 -1

where J is the matrix of order 2N defined by J = ( I 0

). Here, / is the identity
matrix of order N.

We define the Lyapunov exponents.
Definition 1. Let (AY)nen be a sequence of i.i.d. random matrices in Spy(R) with

E(log™

A7) < .

The Lyapunov exponents v, ...,yaNn associated with (A%),en are defined inductively by

P
.1 .
Y i = lim ~E(log|| A” (A% ... A7)]]).
i=1 noeen
Here, AP(A7 ... A7) denote the p-th exterior power of the matrix (A¥ ... A?), acting on -
the p-th exterior power of R?V. For more details about these p-th exterior powers, see [2].

One has v; > ... > 425 and, due to symplecticity of the random matrices (An)nen, the
symmetry property yon—i+1 = =i, Vi € {1,..., N} (see [2] p.89, Prop 3.2).

We say that the Lyapounov exponents associated to a sequence (A¥)pen of i.i.d. random
matrices are separable when they are all distinct :

Y1 > 72 > .0 > VaN

We can now give a criterion of separability of the Lyapounov exponents. For the
definitions of L,-strong irreducibility and p-contractivity we refer to [2], definitions A.1V.3.3
and A.IV.1.1, respectively.

Let y be a probability measure on Spy(R). We denote by G, the smallest closed
subgroup of Spy (R) which contains the topological support of u, supp pu.

Now we can set forth the main result on separability of Lyapunov exponents, which is
a generalization of Furstenberg’s theorem to the case N > 1.
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Proposition 1. Let (A%),cn be a sequence of i.i.d. random symplectic matrices of order
2N and p be an integer in {1,...,N}. We denote by pu the common distribution of the As.
Suppose that G, is p-contracting and Ly-strongly irreducible and that E(log||AY|]) < oo.
Then the following holds :

(1) Yp > Ypt1

(ii) For any non zero x in Ly :

.1 P
Jim —log|| A7 A7 Al = Y.
' 1=1

A proof of this proposition can be found in [2] at proposition 3.4. As a corollary we
have that if G, is p-contracting and Ly-strongly irreducible for all p € {1,..., N} and if
E(log||AY|]) < oo, theny; > v > ... > 4Ny > 0 (using the symmetry property of Lyapunov
exponents).

For explicit models like the model (1) we study here, it can be quite difficult to check
p-contractivity and L,-strong irreducibility for all p. To avoid this difficulty, we will use the
Gol'dsheid-Margulis theory presented in [7] which gives us an algebraic criterion to verify
these assumptions. The idea is that if the group G, is large enough in an algebraic sense
then it is p-contractive and L,-strongly irreducible for all p.

We first recall the definition of the Zariski topology on Maon(R). We identify Mon(R)
to R(2N)? by viewing a matrice as its coefficients. Then for S C R[Xy,..., X(on)2], we set :

V(S)={z e RN’ | vpP e S P(x)=0}

So, V(S) is the set of common zeros of the polynomials of S. These sets V(S) are the
closed sets of a topology on R(2V )2, we call it the Zariski topology. Then, on any subset of
Mion(R) we can define the Zariski topology as the topology induced by the Zariski topology
on Mon(R). In particular we define this way the Zariski topology on Spy(R).

We can now define the Zariski closure of a subset G of Spy(R). It is the smallest closed
subset for the Zariski topology that contains G. We denote it by Clz(G). In other words,
if G is a subset of Sp(R), its Zariski closure Clz(G) is the set of the zeros of polynomials
vanishing on GG. A subset G’ C G is said to be Zariski-dense in G if Clz(G') = Clz(G), i.e.
each polynomial vanishing on G’ vanishes on G.

Being Zariski-dense is the meaning of being large enough for a subgroup of Spy (R) to
be p-contractive and L,-strongly irreducible for all p. More precisely, from the results of
Gol’dsheid and Margulis one gets :

Theorem 1 (Gol’dsheid-Margulis criterion, [7]). If G, is Zariski dense in Spy(R),
then for all p, G, is p-contractive and Ly,-strong irreducible.

Proof. It is explain in [3] how to get that criterion from the results of Gol'dhseid and
Margulis stated in [7]. a

As we can see in [3], it is not easy to check directly the Zariski-denseness of the group
G introduced there. In fact, in [3] we were reconstructing explicitely the Zariski closure
of GG,,.. But this construction was possible only for energies not in dense countable subset
of R. We will now give a way to prove more systematically the Zariski-denseness of a
subgroup of Spy(R). It is based on the following result of Breuillard and Gelander :
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Theorem 2 (Breuillard and Gelander, [4]). Let G be a semmzmple Lie group, whose
Lie algebra is g. Then there is an identity neighborhood © C G, on whichlog = exp™! is a
well defined diffeomorphism, such that gy, ...g, € O generate a dense subgroup whenever

log(g1),...log(gm) generate g.

We will use this theorem in the following to prove that the subgroup generated by the
transfer matrices associated to our operator is dense in Spy(R) and thus Zariski-dense in

Spn(R).
In the next section we will precise the assumptions on model (1) and give the statement
of our main result.

3 A matrix-valued continuum Anderson model

Let

Hip(w) = —— 5+ Vo + Z ( 1 XTo, 1] x—n) o O(w ) ) @)

nez Wy X[0,1]

be a random Schrédinger operator acting in L?(R, C2 ) X 0,1] is the characteristic function
of the interval [0,1], Vj is the constant-coefficient multiplication operator by

0 1

1 0)°
and ( )n_Z, (wz )ntZ are two sequences of i.i.d. random variables (also independent
from each other) with common distribution v such that {0,1} C supp .

This operator is a bounded perturbation of (— Fy) @ (— d—li;) and thus self-adjoint on
the Sobolev space H2(R,C?).

For the operator H4p(w) we have the following result :

Theorem 3. Let vy1(£) and vo(F) be the positive Lyapounov exponents associated to
Hap(w). It exists a discrete set Sp C R such that for all £ € (2,400) \ Sg, (L) >
v2(E) > 0. In particular, Hap(w) has no absolutely continuous spectrum in the interval
(2, +o0).

We will first precise some notations. We consider the differential system :
Hapu= Eu, I €R. (3)

For a solution u = (u1, ug) of this system we define the transfer matrices (A% "(E))nez
from n to n + 1 by the relation

ui(n+1) ug(n)
ug(n +1) RO us(n)
uj(n+1) =4 () uy(n)
uh(n+1) uh(n)
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The sequence of (A“’(")(E))n,ez is a sequence of i.i.d. random matrices in the symplectic
group Spy(R). This sequence will determine the Lyapunov exponents at energy £. In
order to use proposition 1, we need to define a measure on Spy(R) adapted to the sequence
(A“’(")(E))ntz The distribution g is given by :

(0) A5 (1) e 1))

us(T) = v({w® = W, W) € (suppr)?

for any Borel subset I' of Spy(R). This distribution is defined only by AB’(O)(E) because
the matrices A,“j(n)(b}) are i.i.d..

We then consider G, the smallest closed subgroup of Spy(R) generated by the support
of ug. As {0,1} C suppr, we also have that :

070 1 170 il 0-1 8] 1,1 N y
(AP0 (), AL (), APV (1), ALY ()} € Gy

We want to work with an explicit form of these four transfer matrices. First, we set :

(0)
w 1
A/[w(o) = ( i w(o) ) (4)
2

We begin by writing A‘(‘)’(O)(E) as an exponential. To do this we associate to the second
order differential system (3) the following first order differential system :

1 0 [2 - .
Yi= ( Mo —E 0 )) (5)

with Y € My(R). If Y is the solution with initial condition ¥ (0) = 14, then A“’ "(B) =
Y (1). If we solve the system (5), we get :

w© 0 1 s
A E) = exp (( Mo - 0 )> ()

To compute this exponential, we have to compute the successive powers of M . 'To
do this, we diagonalize the real symmetric matrix M (0 In an orthonormal basis :

(0) (0)
w 1 Au} 0 1
M 0 = ( i 0 ) = 5,0 ( 10 25 ) S o)
2

(0) )
where the matrices S, o) are orthogonal and the eigenvalues of M L0, A8 < /\” , are real.

We can (‘ompute these eigenvalues and the corresponding matrices S o for the different
values of w® € {0,1}2. We get :

.1 11 (0,0) _ (0,0) -
AS(OTO) = E ( 1 -1 ) N )\1 = 1, )\2 = 1, (()
, . IR Ly,
Sty = 810,05 /\(1 F= 9, )\é '=o, (8)
2 /B VB
, 10-2v5 10+2v5 10y 1+v5 g0 1-+5
S(1.0) = \{1+f\5f \{1ff{ A = 5 A 5 (9)

V10-2v8 /104205
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2 2 '
10-2v8 V10125 oy _1+v5 0 1-5
S(O,l) = \/1~\/5 \/1+\/5 A= 5 Ayt = B . (10)

V10-2vE  /1012v5

We also define the matrices define by blocks :

S 0
— Wi/
Rw(m N ( 0 S_u(o) )

Let £ > 2 to be larger than all eigenvalues of all M_e,. With the abbreviation r; =

ri(E, w9y = \/E — )\f(o) for ¢ = 1,2, the transfer matrices become

cos(ry) 0 % sin(ry) 0
, 0 cos(ry) 0 L sin(ry)
A3 () =R E R} . (1
5 () Oy sin(ry) 0 cos(ry) 0 wl® (1)
0 —Ty Sin(’r'g) 0 COS(‘T’Q)

We can now turn to the proof of the Theorem 3.

4 Proof of Theorem 3

We will show in a last part of this section that the Theorem 3 can be easily deduced from
the following proposition :

Proposition 2. There exists a discrete set Sg such that for all E € (2,c) \Ss. G
dense (and therefore Zariski-dense) in Spy(R).

HE is
To prove this proposition, we will follow the Theorem 2.

4.1 Elements of G, in O

To apply Theorem 2 we need to work with elements in the neighborhood @ of the identity.
We will work with the four matrices ABO’O)(E), Aél’o)(b)), Aéo‘l)(b') and Aél’l)(b‘) which
are in G,,,. We will prove that by taking a suitable power of each of these matrices we
find four matrices in G,,, which lies in an arbitrary small neighborhood of the identity and
thus in O. For this we will use a simultaneous diophantine approximation result.

Theorem 4 (Dirichlet, [12]). Let ai,...,an be real numbers and M > 1 an integer.
Then it exists y, x1,...,2n in Z such that 1 < y < M and :

Vie{l,....N}, < M- %

oYy — Xy
From this theorem we deduce the proposition :

Proposition 3. Let K € (2,400). For all w\% € {0,1}2, it exists m,, (L) € N* such that :

45" )P e o
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Proof. We fix w!? e {0,1}2. Let M > 1 be an integer. We apply Themem 4 with oy = 5+
and ag = 52 . Then it exists y € Z, 1 <y < M and 21,29 € Z such that :

1 T2 , -1
' y—r| < M2, |- y—£2’<M 2
2m 2m
which be can be written as :
1 1 ‘
|riy — 20w < 20M 72, |roy — 22om| < 27M 3 (12)
Then we have :
cos(yry) 0 % sin(yry) 0
) - 1 Gl
(AB,( )(E))y = R ' 0 cos(yra) 0 5 sin(yra) Ri(ln)
—r1sin(yry) 0 cos(yry) 0 w
—7r2 sin(yra) 0 cos(yra)
cos(yr1 — 2x17) 0 ;%—sin(yn — 22y 7) 0
- R 0 cos(yre — 2xom) 0 L sin(yry — 2zam) _
= £ (o) . ) . - ‘ 2 R ’(“)
—ry sin(yry — 2x97) 0 cos(yry — 2xqym) 0 «
0 —rg sin(yre — 2xom) 0 cos(yrg — 2xqm)

by 2m-periodicity of the functions sinus and cosinus.

Let = > 0. If we choose M large enough, A =% will be small enough to get :

cos(yry — 2xym) 0 7Tll-sin(yv‘l —2x17) 0
0 cos(yre — 2xom) 0 % sin(yre( E) — 2x9m) Il <=
—7r1 sm(y71 —2x17) 0 cos(yry — 2x1m) 0
—ro sin(yrey — 2xam) 0 cos(yry — 2wom)

We recall that the matrices S o) being orthogonals, so are the matrices R o). Then
conjugating by R ) does not change the norm :

W@ -
(A (£))Y = Laf| < ¢

As O depend only on the semisimple group Sp,(IR), we can choose = such that B(ly,s) C O.
So if we set y = m,(F), we have 1 < m,(F) < M and :

(0)

(45" (BB € 0

O

Remark. It is important to precise here that the neighborhood does not depend on E

and w(%. So the integer A > 1 does also not depend £ and w®. It will be important in

a next step of the proof to be able to say that even if the integer m,, (#) depend on £ and
w®), it is always in a an interval of integers {1,..., M} independant of £ and w(®

To apply Theorem 2, we need to show that the logarithms of the matrices ( ,45’(0" (E))me(B)
are generating a Lie algebra equal to spy(IR), the Lie algebra of Spy(R). A first difficulty is
to compute the logarithm of (A5 (£))™<(E) which is in log ©.
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4.2 Computation of the logarithm of (Ag(F))™-(E)

We fix w(® € {0,1}? and we assume that £ > 2. To compute the logarithm of (Ag (k)™ (8,
we start from its expression :

cos(my (E)ry) 0 % sin(my (E)r1) 0
(A‘é’((')(E‘))"”“(E) — R o 0 cos(me, (E)rs) 0 %Sin(ﬂ?w(E)Tg) 11“)
« —71 sin(me(E)r1) 0 cos(mw(E)r1) 0 w ™
0 —ra sin(mey (E)rs) 0 cos(my (E)re)
(13)
We can always permutate the vectors of the orthonormal basis define by the columns
of R ). So it exists a matrix £ of permtutation (and thus orthogonal) such that :
cos(my (E)ry) % sin(me, (E)rq) 0 0
w(® M (£) —r1 sin(my (E)ry) cos(my(E)r1) 0 0 1 1
A E «E) — R 0P @ PR o
(As(E)) w(® S w(®) 0 0 cos(mu(B)ra)  Lsin(my(B)rg) | @@ Tw®
0 0 —rasin(me (E)ra) cos(my (E)ra)
(14)

Recall that we can choose m,, () such that (A% (£))"<E) is arbitrary close to the
identity in Sp,(R). Particularly we can assume that :

1045 ()™ — sy < 1.
So we can use the power series of the logarithm :
w0y n\n ; -1 htl w(® v vmy ;
log((45” ()™) = Y2 EU (a5 (it g, (15)
E>1

To simplify our computations we will also use complex form for the sinus and the cosinus.

We set :
- ﬁ 0 0
1 1 0 0
Q 0 = , . (16)
“ 0 0 —% i
0 0 1 1
and so :
i?"1 1 0 0
1 —ir; 1 0 0
-1 _ 4 1
Qw(o" 9 0 0 iry 1 (17)
0 0 —iry 1
Then we have :
(146J<o‘)(E))777“V(E) _ 14 —
elma (B _ 0 0 0
0 €~im,;(E)7‘] —1 0 0 -1 ~1 p—1
Rw(o) Pw,(O)QW.(O) 0 0 einu(E)-lg -1 0 Qu(o) Pw(,o\) RW‘(O)

0 0 0 e—imu.(E)rg -1
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So by using (15) we only have to compute :

Z(

k>1

1 k+1
im:“ _ 1)

Let Ln be the main determination of the complex logarithm define on C \R_. We want to

write :
Z (_1)k+1( +ime (E)r; 1)]; = L1 +ime (E)ry 1=1.2 18
— (e - = Ln(e ), L=1, (18)
k>1 '
To do this, we have to assume that r; = /£ — )\f(o) ¢ (7 + 27Z). So we introduce the

discrete set Sy of the £ > 2 of the form K = —)\;’(0) + 7+ 2w for j € Z, 1 € {1,2} and
w® € {0,1}2. If we choose £ € (2, +00) \ S; we can write :

log((A" (1))« =

Ln(eime(E)r) 0 0 0
0 Ln(e imw(E)m) 0 0
R, F,0Q o 0 ( 0 Ln(eim‘w(E)"'L’) 0 Q (O)Pw(O)Hd(lo)
0 0 0 Ln(e~m«(E)r2)

So we are left with computing Ln(e*™«(E)1) " We can do it only for { = 1, the computation
will be the same for [ = 2. We have :

Ln(eim“’(E)“) — iAl‘g(eim“'(E)“)
= iArcsin(sin(m,(¥)r1)) (19)

- i(mw(E)frl—ﬂFl ('"—”(fL ))( PR )

where Fl in (20) is the floor function. We recall that by (12), m,,(#)r; can be choosen

arbitrary close to a multiple of 2. So we can assume that &fﬁ is arbitrary close to an
even number. It suffices to choose M such that 241~ to have that Fl ( —% + %)
is even and more precisely equal to 2z1. Thus (20) become :
. i ) my, (B)r 1
Ln(elme(Bry — <mw(E)'r1 — 7Fl (—L)—l + E)) (21)
e

And we have the corresponding equation for the conjugate logarithm :

Ln(e “m“J(E)”)i(~mw(E)r1—7rF|< M 2))( 1)“( me ) (22)

™

We have :

—--l— L img . (E)r s
71 rq . Lll(€ ) - 0 By _1- l/"l 1 _ (23)
1 0 Ln(e=imetElry [ o\ —irp 1

1 LI]( if'hv(E)I'l)+Ln(e*i’mw(E)T1) (Lll( i, ) Ll]( —in E)ﬁ))
9 ir (Lll( imu(E) :1) Ln( 1mu(E)7‘1>) Ln(/lm 71> + Ln(eﬂmw Em)
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By (21) and (22) we have :

11

Ln(eim“’(E)”)—}-Ln(e_im“’(E)Tl) = —ir (FI <E’_(£J_)I_1 + %) + FI <_L“’(.b)l 1 l)) (24)

T e 2

and :

1 it o= 1L4n 0
vz €R, Fl<x+%>+Fl<;2-—;c>:{l ifo=3+n nel

0 otherwise

But as we can assume that m—‘*(w—ﬂ

that for [ = 1,2, @’l is not of the form % +n, n € Z. So we have :
Ln(eim“’(E)Tl) + Ln(e*i'""“’(E)”) -0

and :

Ln(e™«(Ern) _ T p(e=ime(Blrny — (2mw(b')r1 -7 (FI (———mw(b)rl - %) — Fl (—

s
- i(2mw(E)m — 27Fl (L”w(b)m _ 1))
s 2

So we can set for [ = 1,2 :

my, (E) 1
€ = .L‘l(E,w) = %F| (@ _ 5)

(25)

is arbitrary close to an even number, we can assume

(26)

it 1)

(28)

By putting the expressions (26) and (27) in the matrix (23), and by doing the same for

the block corresponding to 7y, we get :

log (A5 (E)™B)) = R (o) P_0) X

0 me(k) — 24 0 0
—'mw(E)T% + 27ria 0 0 0 p-Lp-t
0 0 0 my(E) — 27;% W@ w(®
0 0 —my,(E)r2 4 21roxy 0
0 0 m (k) — Z4 0
0 0 0 m,,(E) — 2x22 -1
— R ‘ r2 R,
w @) —my,(E)rf + 2mr 2y 0 0 0 A
0 —m,(E)r 4 2nroay 0 0
We set :
LA = log((45" (£))"(") (29)

So we can summarize the computations we have done in this section. For all £ €

(2, +oc)\ S :

0 0 my(E) — 27:% 0
0 0 0 m,, () — 252 1
LA ) = R, ; 72 R
(0 w(© —my,(E)r? 4 2mriy 0 0 0 w(®
0 —my, (E)73 + 217929 0 0
(30)

We have now to prove that the four matrices LA ), for w9 € {0, 1}2, are generating

the whole Lie algebra sp,(R).
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4.3 The Lie algebra £2,(F)

For £ € (2,400) \ 81, we denote by £25(F) the Lie algebra generated by the LA, for

w® € {0,1}2. Tt is a subalgebra of spy(R). We will use the expressions of A2 and S,
computed at the section 3.

4.3.1 Notations

We set :
on(P)VE -1 1
a1 = 21(E, (0,0)) = FI ("”0’”’( j + 5)
, EYWE+1 1
ay = (K, (0,0)) = FI (”’(0@’( T) + ;2-)
m EWE - 125
bt = 21(E. (1,0)) = FI ( (1,0)( )7r 2, !
m EWE - 125 1
by == 25(1,(1,0)) = FI ( o )ﬂ — 3
and
mon(E)/E -5
c1 = 21(E, (0,1)) = FI ( 0, )7r 2, !
m EWE — 125
¢y 1= wa(k, (0,1)) = FI o )ﬂ I %)
m EYWE 1
dy =2, (E,(1,1)) = FI (———" “’“(7 WE §>

] E)yvE -2 1
dy 1= (B, (1,1)) = F (m“’”( WE -2 5)

For M € M4(RR), we will denote by M [i, j] the coefficient of M at the line i and at the
column 7. We also set :

= VE=1 . = VEF 1
ril=VE=2 | ral = VE
10 _ o1 1 +v5 10 _ 01 E_l_\/g

=71 =\ — 5 . Ty =Ty = 5

At last we set :

f / _
Di(E) = VE-IWET 1\/E— HT‘/E\/E— 1_2\/3

14+ /5 1-5
Dy(E) = \/E\/E—Q\/E— +2\/_\/E— 2‘/3
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To prove that £20,(F) = spy(R), we will build a family of 10 matrices linearly inde-

pendant in £2A5(#). First we will consider the subspace generated by the Lie brackets
[LA 0y, LA 0]

4.3.2 The subspace V| generated by the [LA, ), LA o)

A direct computation shows that the Lie bracket [LA,0), LA 0] is always of the form :

(f)‘ _9A>,A€M2(R) (31)

We denote by V; the subpsace of sp,(R) of dimension 4 of these matrices. We will
show that out of a discrete set of energies £, the four Lie brackets (LA 0y, LA o)
{LA(l 0),LA(1 1) ] [L A (0,1)s LA (0,0) ] and [LA 0,1) LA (0,0) ] are genelatmg ‘/1

Expression of [LA ), LA ). We give the expressions of the coefficients. By (31) it
suffices to give the coefﬁments corresponding to the first 2 x 2 block.

[LA(10y, LAGo)[1,1]) = —4\/311)1@) [( m(a1ry’ + agr®) + 2moor{®rd) (wby (1 + V/5)ri

—7bo(1 — V/5)rl0 — 2\/571710?"%0""50)}

Tk .
LA1,0), LA©00)][1,2] = —=—— [(b173° — bari®)(a;r® —
[ (1,0 (O,U)” ) ] 2\/3U1(E) [()lrz 2771 )(Cbl'f"g (1'2?"1 )]
T i ]
[L44(1,0),L44(0’0)”2, 1] —m [7{'(&27’?0 — 5(1,1’{'80 + 477?.007'(1)U<r80)(b17‘50 _|_ b2'7-:110)+

(alrQ agrl )(2\/—mwr1107%0—|—27rb'(blr —bzrl ))]

[LA(1,0y, LA 0)[2.2] = (biry” — bor{®) (a7’ — ayri))

2
2V5D1(E) [

Expression of [LA ), LA ). We have :

1
[LA1), LAw)[1, 1] = —.—*—.[(10\/_7”?00% ry’ = VB2 (agr® + 3a178%)) (c173® — epri®)
3001 (E)
+5(72(a1ry” — 3agr®) + 2mmoer?®rd N(errd® + eorl®)

—1()(71'77101(@1'7"2 — 3ayr] )JerQUmglllU 30) 1101"50]

1 .
LAgq1y, LAGo[1,2] = ———— [(7%(a;r — + 7K — ayr’
[ (0,1) (U.O)H 2] 2\/51)1(51) [(T (01f2 Ja2r1 ) m (al’" asry”)

+(2 + 2\/3)7rmourforgu)(q r%g — (zrl ) — /572 ((11/2 + (121“?0)(( 1r2 + (’21"%0)

+2\/3(7rmm((1.1rgu -+ n,g-rl 0y — 2n700mmr(1)urgu)r%urﬁo}
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1
20D, (B)
+\/_7r2(2E— 5)(a1r2 — agr?®)(e1ri® — cori?)

—10(wmoq (a1r3° + 3a9r0) — Amgomo;r20rd0)rily 10]

(LA LApo)[2,1] = [(572(a175” + 3aur%) — 20mmyer{®ry®) (c1ri® + cyri0)

s

[LAo1), LAp»][2,2] = 10D (B) [57(a1r9° — agr®)(e1730 4 exri®)

+2\/5( (alrz +a27"1 )+2mUUT1 rzo)(clr —czrlo)

+10mg (agrd® + agrlo)r%oréo]

Expression of [LA(; ), LA(1,1)]. We have :

[LAq,0y, LAG [, 1] {2\/—(2"7117"1 3t = m(dyryt + dort')) (birl’ — bori')

101) (E)
+5m(dyri! — dirt)(b17rd? + byri®) + 10myo(diryt — dorit)rir 0]

[LA(1,0 LAG ][, 2] = )[\/_W (dirg" = dori") (2 — 3)(byr3® — byr]®)

zou S(E
+(572(dyrd! + 3dyrit) — 20mmy i i) (byrd® + byri©)

+(40myymyoritry! — 10mmyg(dyrat + 3dori!))ri'; r3']

1

[LA(1,0), LA ][2,1] “T0D5(E)

[(2#\/5(2(127- — dyrdt) + P VEE(dyrl! — dorl))

—2mV5my i) (braY — boril) + (10mmyyritrdt — 572(dyrd! 4 dorit))

blr +b27" + (10mmyo(dyral + dyrit — 20mqymogritrd)rl0p10
2 1 172 172

1 . ,
[LA@0), LAGD][2.2] = —5— [(107“/3”?11'“%17%1 — w2V (3dyry! + Tdyr'))(biry” — byri®)
20Dy (E)

+(5’/T2(3d2‘r111 - dl"l‘:u) — 107772117’%1' 11)(1)17“‘10 + bz_,,‘l())
+(10mmuo(diryt — 3darit) + 20my mggr!trityriop 1)

Expression of [LA ), LA ,]. We have :

T v
L’14 .L/l \ 1,1 = —_—,— j.»_ll _ 1 11 10 —¢ 10
(LA LAG (L 1] VDN E) [(dirg" — dyri'y(eirl® — eori®)]
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45Dy (E)

(e1730 — cori®) + VEr(dori! — dirit(e1r3 + eori?)

+2\/§mm(d1-r211 — dgr%l)-rioréo}

[LA(O’I), LA p)[1,2] = [(ﬂ(dﬂ"%l + 3d21"%1) + QWE((llT%I — dz’f‘%l) - 4771117"%17‘211)

2

LA LA 2.1
[LAq,1), LAG1,1)][2,1] TEDNE)

(£ = 1)(diry" — dori)(erry® — corl®)]

o [
4VEDy(E)

+7r(clréo — CQT%U) - \/EW(CIT%U + 02‘1"]10))]

[LA@1y, LAGH][2,2] = (2m,11'r%1r%1 — ﬂ'(dﬂ’%l + dor ))(Zx/gmmr%o 10

We can then consider the determinant of these coefficients :

[LA(1,00 LA [1, 1] [LA@,1), LAw ][l 1] [LA(IO)aLA(l )1, 1] [LAw), LAG (L, 1]
[LA1,00: LA [1,2]  [LAo,1), LA©0)][1:2] [LA(10 (11 1,2] [LAy, LA [L,2)
[LA(10)7LA 002, 1] [LA,1, LA(U ol(2.1 [LAuw0), LAGI2,1]  [LAwq), LA 1H)[2,1]
[LA(1,00 LA©00)12,2] [LAw,), LAw)]2,2] [LA(10)’LA(1 0l[2,2] [LAw,a), LAG1H](2,2]
= f1(£) = fi(ar, a2,b1,ba, 1, ¢a,d1, dz, mgo, mo1, mg, myy, 2) (32)
where f1(z\1- ..., Xi2,Y) is polynomial in Xq,..., X5 and analytic in Y. Indeed, the

determinant (32) is a rationnal fraction in the rik which are analytic functions in £ not
vanishing on the interval (2, 4o0).

We have to precise that the coefficients ai,...,dy and mg,.. .. ,mq; depend also on £
and are not analytic in £. So f; is not ana.lytic in £. We will now explain how to avoid
this difficulty.

We recall that for all £ and w, 1 < m,(F) < M with M independant of £ and w. Thus
m,, (&) only take a finite number of values in the set {1,..., M}.

Then we consider the sequence of intervals Iy =|2,3], I3 = [3,4], and for all k > 3,
Iy = [k, k + 1]. These intervals are recovering (2, +o00). We fix k > 2 and we assume that
E € I;,. Then the integers

) my(E)/E -\ 1
T 2
are bounded by a constant depending only on Al and /. Indeed, the eigenvalues A\ are
all in the fixed interval [—2,2], m,(F) take its values in {1,.... A]} and £ € ;. So the
integers &7 (1) take only a finite number of values in a set {0,.... N;}.
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To study the zeros of the function f; on 1, we have only to study the zeros of a finite
number of analytics functions :

fipg © B fir, . opsily, . g, B)

for p; € {0,..., Ny} and [; € {1,...M}. We have to show that the functions flm are not
identically vanishing on /5. In fact, the only case were it does not hold is when all the
zy are zero. Indeed, f~ 1(0,...,0,Xo,...,X12,Y) is identically zero. But if we look at the
values of x¢’ for £ > 2 and m,,(F) > 1, we get that ag > 1. We can compute the term of
the determinant (32) involving only ay. We get :

m?o'm.glm%ﬂrQa% S ’/T2

Eri 21"

And by observing all the coefficients of the determinant (32), this term is the only one
involving £ only by this power of K + 1 = (r80)2 and no other power of the 'r;-”. So
this term cannot be canceled uniformly in # by another term of the development of the
determinant (32), whatever values taken by the integers aj,by,...,dy and mqq, ..., my.
So the only case where flm,, could identically vanish does not happen. We set :

Ji={0, . Ny x {1 NG x {0, N x {1, M

Then, as (ai,...,my;) € J; the set of zeros of f; in I, is included in the following finite
union of discrete sets :

{Beli | fik)=0yc |J {Eel| fip() =0}
(p.hye 1

T'hus this set is also discrete in I. We finally get that :

{2 €)2, oo | f(k) =0} = | J{E € Ly | f1(E) =0}
k>2

is discrete in (2, 4+00). We set :
Sy ={L € (2,+00) | fi(K) =0} (33)
Let B € (2,400)\(S1USy). As the determinant (32) is not zero, it implies that the four

matrices [LA(1,0)7 LA(O,O)]1 [LA(I.O)t LA(I,I)]7 [Lfl(g._l), L‘4(0,0)]! [LA(0.1)1 LA4(070)] are linearly
independant in the subspace Vi C sp,(R) of 4. Thus, they generate V;. We deduce that :

VE € (2,400)\ (S1USy). Vi C L£A(E) (34)

We now have to find another family of six matrices linearly independant in a supple-
mentary subspace of V| in spy(RR).
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4.3.3 Construction of the orthogonal of V; in sp,(R) |

We begin by giving the expressions of the matrices LAG10)— LAy, LA10) — LA (1,1) and
LA,y — LA(,0). Looking at the form of LA_, given by (30) we aheady know that all
these dlffelences are of the form :

) (a7b7 Cve7fvg) ERG (35)

<
S0 o
S o 0
S O

We denote by V; the subspace of spy(IR) of the matrices of the form (35). V; is of dimension
6. We have that spy(R) = V; & V,. The form (35) allows us to only compute the coefficients
[3.1], [3,2], [4,2], [1,3],[1,4] and [2,4] of the matrices LAq0)— LAy, LAy — LAy
and LA(O,I) - LA(O,O)-

Expression of LA — LA ). We have :

(LA1,0)—LA00)[3,1) = mio(1—- E)eruub—z(al% +apri®)+- \/—(blr O—byri®)+ 2 (blr O 4byri?)
, T
(LA(I,O) - LA(O,O))[:S’ 2] = mig — my + 5(0,2'7‘ — alrzo) -+ T(bN'Q — bgr )
T
(L44(1,0)—LA(0,0))[472] = (mUU—mw)E—g(alrg +a2r10)— \/_(blfrz —bz'r )+ (blrz +b2r )

7 a as T by by T [ by by
(oo EAonlt ) = mo=mort 3 (3= 5o )57 (o= )5 (7 + 7
T [ a; as T by b1
LA(0) — LAgo)[1, 4] = = (2L 923 7 (b2
(LA(1,0) = LA 0))[1,4] 2(7,30 ‘rgo)Jr\/g(T%o 50)

aj a9 s bl l)z ™ b1 b2
(LA10~]4UO)[2 —1]—]7710‘77700+2 ( 2 -+ 00) 2\/—( m)_g (@‘Fm)

Expression of LA g — LA ;). We have :

T (bl —byrl0) T (blr 04 byrl0)

(LA“‘_O)—LA(]J))[S, 1] = nlw—l—(n?ll—nlw)E—g(le%I%f(lgT%l)+2\l/g

R is
(Lfl(l._o) — L'A4(L1))[3, 2] =my+ mi1 + 5((1327’%1 — (117' ) -+ (blf‘ — b‘g'l"{o)

\/_
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(LA o)~ LA;11)[4,2] = (ml]—mw)b——(dlr +dyrl )—2—\’;—?(1)17«50421«}) Z(byri0 4 byrl?)
D

7 ( dy do T by by T [ b by
(Lo Laa ) = mo-m G (f+ )72 (- )5 (5 + )
m [ dy da T [ b bo
LA — LA ==l ——7)——=— - =
(LA ,0) ()[4 = 5 <r80 7"90) /5 (r%o T%O)

dy dy s b1 bz by bg
(LA1,0~LAG,1))[2,4]) = mig—myp+ = (700 + —?—O—>+—2 = ( 5 = 10) B ( 5 + 15

Expression of LA ) — LAgg). We have :

(LA o)y~ LAwp)3,1] = mUl—I—(’mUU—mUl)b——(a172 +(I,37"10)+ \/E(cl7'§0—02-7‘110)—|—2((1?“2 +Qr%0)

i ™
(L¢4(0,1) — LA(O,O))[3~2] = —(’1770() + 77101) + 5(@27" — CL}T‘Q ) + ——\/:((’27 - C]T‘%O)

i is i
LA, —LA 4,2] = (mgg—mogy) F — — 00 0_ coplty 2 10
(LAq,1) (0,0))[4: 2] = (Mmoo —moy) 2(01'”2 +agr] )+2\/5(01'"2 cary) 2(61'2 +eory”)

T [ a asg T co cl T [ o
LAy —LA 1,3 =mgi—mog+={ — + — | +— == - = ) (2L =2
(LA0.1=LA@0,0)[L,3] = mo Mmoo+ (_rgo + r?0)+2\/3 (7_%0 r%”) 5 (7-50 o r%())

™ aj ay ™ (6] (&3]
(LAo,1) — LA, 4]5( 0 7_‘377)_%(@_@)

1

aj a) ™ cy ] ™ (3} (&)
LA —LA 2.4] = - — —_ 4 =
( (0,1) (0.0))[2, 4] = moy ”’00+2 ( 2 + 00) 2\/3 <_r%o %0) B <T%0 + T%o)

Now we assume that £ € (2, +00)\ (S;USy). Then Vi C £24(£) and in particular the
following matrices are in £A5(F) :

10 0 0 00 0 0 01 0 0
. oo o o L, o100 . oo o o ,
4= 00 —10 %27 0o 0 |"%=] 0 o 0 0 (36)

00 0 0 00 0 -1 00 -1 0
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So we can consider the three matrices of £Ay(£), [LA1,0) = LAy, Z1], [LAq,0)
LA(1,1), Z2] and [LA g 1y — LAy 0y, Z3]. We can verify that in general the Lie bracket of an

element of V; and an element of V; is still in V5. So, to write this three matrices we will
only have to explicit six of their coefficients.

Expression of [LA( o) — LA, Z1]. We have :

™
[LA(l,O)_LA(O,O),Zl][g,1}:2777’10"‘2(”7700_‘"710)b 7T((L1’I"2 +a2r10)+7r(b17 +b27"%0)+\/_( -—bzr )

(LA(1,0) = LAy, Z1][3,2) = mig — mgo + m(agri® — a1y + \/—(bl?" — bori?)

[LA(1,00 — LA0,0y, Z1][4,2] = 0

N a a b b 7w (b by
[LA10) = LAy, £1)[1,3] = 2(moo — mio) — 7 (;(% + Tzo) t (r—l + _2> +t—7 <;‘116 - m)
: 2 2 1

T a ay T (b by
[LA(1,0) = LAy, Z1][1,4] = B (—0% - m) + = (—— — r_)

[LA(I.O) - L44(0’0), Zl”lz, 4] = 0

Expression of [LA( o) — LA ), Z2]. We have :

[LA@,0 — LA, Z2][3,1] = 0

(LA, — LA@,1), Z2)(3,2] = mig + ma + g(dzr —diry') + 7(’?% — bory” )

(LA 0)—LA (1,1)s 22)[4. 2] = 2(my1—myp) E— Zmn—"r(dlrz +d271 )+'r(bu +b27 ) \/_(blr —bgr )

[1“4(1,0) - L‘A(l.l)v Zg”l, 3] = 0

e f]g (ll T I)1 1)2
(LA — LAy, Za)[1.4) = E<_" %1)+\_/§<:%_D_W)
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‘ di | dy by b T (b by
[LA(1,0)~ LA1,1), Z9](2,4] = 2(ma1 — mag) — 7 (r—” + —‘r»“) +m (—10 + ——10> - \/E ( 110 i)
2 1 2 1 2 \T2" T

Expression of [LA 1) — LA ), Z3]. We have :

[LAw,1) — LA,0), 43][3,1] = 0

T
[LA@0,1y~LA 0,0y, Z3)[3,2] = mo1+(mgp— mm)b—z(alrg +a2r1 )—{—2(017"2 +czr10)+-2—\/g(qréo—02rf0)
2
[LA(O 1) — LAy, £3][4,2] = —2(mgo + mo1) + ﬂ'(ag?‘?o — alrgo) — —(clré — cor %O)

75

az ai 2m [ ¢ cy
[LAw,1) = LAw), Z3][1,3] = W( 700~ rgu) " <w - w)

, us ai ay s (8] c s C1 (6]
[LA(O,l) — LA(O,O).» Ag“l, 4] = mop— Ny — E (@ + r—?'o') + E (m + ;IU) - —“"2\/3 (F%O ” %0>

[LA(Q’I) —_ LA(O,O)a Zg][2, 4] e 0

It remains to verifiy that these six matrices are linearly independant, at least for all
E € (2,+00) except those in a discrete set. We denote by fuo(£) the determinant of the
6 x 6 matrix whose columns are representing the 6 matrices we just compute. Each column
is made of the 6 coefficients we compute for each matrix. We also set :

Fo(E) = falar, az, by, by, c1, ca, dy, dyg, moy, moy, mig, ma, E) (37)

where fz(Xl, ..., X12,Y) is polynomial in the coefficients X1, ..., X;» and analytic in
Y.

We define the functions fs pl as we have define the functions fi p.l- We can show that
the fz p. do not vanish identically on I. More precisely we can look at the term in the
development of the determinant (37) involving only as :

'nlO(n;Z;?;f)ﬂg(I% [nagnm(m\/ETEhs + 1P E 9B+ )21 (E+ )2+ RVE T 1E2
+

+14(E+1)3"2E72(E+1)3/2E2711(E+1)5/2E+8(E+1)‘_'/2E+26‘\/F~+_1E+8(E+1)3/2+8\/E—+1)

+masmug (10(E+1)”/2+2(E+1)”2+8(E+1)3/253+14(E+1)5"‘2E-—R(E+1)7/25

29VE +1E?> —(E+ 1)*?E+10(E+ 1)¥2E2 - ’VE 1 1E -3(E+ 1)¥2 _9yE+ 1 - 10VE T 1E°®

+romai(16E* + 32E% — 16E2 — 64E — 32)]
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This term is different from 0 for ay > 1, myy > 1, my1 > 1 and myy # mi1. But we can
always assume that these two integers are distinct. Indeed, in the proof of the proposition
3, we can choose 2myy instead of mg and we have just to also multiply by 2 the integers
21% and 1% And of course mg and 2my, cannot be both equal to m;.

We also have that the term we just compute is the only one in the development of the
determinant (37) involving exactly those powers of £ and K + 1 at the numerator and
at the denominator. So this term cannot be canceled uniformly in ¥ by another term of
the development of the determinant (37). As before, the functions fQJ,J are not identically
vanishing on /;, whenever (p,l) € Jy with :

Jo= ({0, Nk} > {L e NEY X {0, NGE) ({1, M (U, au B ) [ s = 1))

And as we have justified that (aq,.. .,mqy1) € Ja, we have :
{(Eeli| h(E)=0yC | {Eel] fapi(l) =0}
(p,t)ed2

So the zeros of f; are a discrete set in (2, 4+00). If we set :
Sz = {L €]2,+oo[ | fo(E) = 0},

S3 is discrete and for K € (2,+00) \ (S US,USs), fa(E) # 0. So for these energies,
the matrices LA(I,O) — L‘4(0,0)7 LA(I,O) — LA(l,l)’ LA(O,l) — L‘44(070), [LA(I_O) — LA(O,O)? Zl]v
[LA(1,0)= LA(1,1), Zo] and [LAg 1) — LAy, 23] are linearly independant in V4 of dimension
6. So, for all & € (2, +OO) \ (81 uUSu 83), Vo C SQ[Q(E)

We set Sp = S USUS3. We fix B € (2,+5) \ Sg. We have V| ¢ £2y(E) and
Vo C LRA5(K). As Vi@ Vo = sp,y(R), we get :

VE € (2,4+00) \ Sp, spy(R) C £A5(E)
And we have proven :

VE € (2,450) \ Sp, spo(R) = £2y(L)

This is ending our study of the Lie algebra £25(E). We have proven that for £ ¢
(2, +00)\Sp, we can apply theorem 2 to the four matrices (AE)U’O)(E))”?OO(E), (Agl’o) (E))molE),
(ALY (B)ymoiE) ang (A" (#2))m11(B) | Indeed, they are all in © and their logarithms are
generating the whole Lie algebra spy(IR). So it achieves the proof of proposition 2.

4.4 End of the proof of Theorem 3

We have to explain how we deduce Theorem 3 from proposition 2. We fix K € (2, 4+)\Sg.
By proposition 2, G, is dense in Sp,(IR) and therefore Zariski-dense in it. So, applying
Theorem 1, we get that Gy, s p-contractive and L,-strong irreducible for all p. T'hen
applying the corollary of proposition 1 we get the separability of the Lyapounov exponents
of the operator H4p(w) and the positivity of the two leading exponents. Thus we have the
first part of Theorem 3 :

VE € (2,4)\ Sp, mi(£) > Y FE) >0
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We can deduce the absence of absolutely continuous spectrum in (2,400) for Hp(w).

For this we refer to Kotani theory in [11]. We have to precise that [11] considers R-ergodic
systems, while our model is Z-ergodic. But we can use the suspension method provided
in [8] to extend Kotani-theory to Z-ergodic operators. So, non-vanishing of all lyapunov
exponents for all energies except those in a discrete set allows to conclude absence of
absolutely continuous spectrum via Theorem 7.2 of [11]. And so the second part of Theorem
3 is proved.
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