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Abstract Ideas from deformation quantization are applied to deform the
expression of elements of an algebra. Extending these ideas to certain
transcendental elements implies that 1

i~uv in the Weyl algebra is naturally
viewed as an indeterminate living in a discrete set N+ 1

2 or −(N+ 1
2 ) . This

may yield a more mathematical understanding of Dirac’s positron theory.
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1 Introduction

Quantum theory is treated algebraically by Weyl algebras, derived from differential calculus
via the correspondence principle. However, since the algebra is noncommutative, the so-
called ordering problem appears.
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Orderings are treated in the physics literature of quantum mechanics (cf. [1]) as the
rules of association from classical observables to quantum observables, which are supposed
to be self-adjoint operators on a Hilbert space. Typical orderings are, the normal (standard)
ordering, the anti-normal (anti-standard) ordering, the Weyl ordering, and the Wick ordering
in the case of complex variables.

However, from the mathematical viewpoint, it is better to go back to the original un-
derstanding of Weyl, which says that orderings are procedures of realization of the Weyl
algebra W~. Since the Weyl algebra is the universal enveloping algebra of the Heisenberg
Lie algebra, the Poincaré-Birkhoff-Witt theorem shows that this algebra can be viewed as an
algebra defined on a space of polynomials. As we shall show in §1, this indeed gives product
formulas on the space of polynomials which produce algebras isomorphic to W~. This gives
the unique way of expressions of elements, and as a result one can treat transcendental
elements such as exponential functions, which are necessary to solve differential equations
(cf. §2.2).

However, we encounter several anomalous phenomena, such as elements with two different
inverses (cf. §4) and elements which must be treated as double valued (cf. [16],[17]).

In this note, we treat the phenomenon which shows that 1
i~uv should be viewed as an

indeterminate living in the set N+ 1
2 or −(N+ 1

2 ). We reach this interpretation in two different
ways, by analytic continuation of inverses of z+ 1

i~uv, and by defining star gamma functions
using various ordering expressions.

The main point is that we do not use operator theory, but instead various ordering
expressions, under the leading principle that a physical object should be free from ordering
expressions (the ordering free principle), just as a geometrical object uis free of the local
coordinate expressions.

Since similar discrete pictures of elements is familiar in quantum observables, treated as
a self-adjoint operator, our observation gives for their justification for the operator theoretic
formalism of quantum theory.

However, in this note we restrict our ordering expressions to a particular subset to
avoid the multi-valued expressions. In some cases, we should be more careful about the
convergence of integrals and the continuity of the product, so the detailed computations
and the proof of continuity of the products will appear elsewhere.

2 K-ordering expressions for algebra elements

We introcuce a method to realize the Weyl algebra via a family of expressions. This leads
to a transcendental calculus in the Weyl algebra.

2.1 Fundamental product formulas and intertwiners

Let SC(n) and AC(n) be the spaces of complex symmetric matrices and skew-symmetric
matrices respectively, and MC(n)=SC(n) ⊕ AC(n). For an arbitrary fixed n×n-complex
matrix Λ∈MC(n), we define a product ∗Λ on the space of polynomials C[uuu] by the formula

f ∗Λ g = fe
i~
2 (

P←−
∂ui

Λij−→∂uj
)g =

∑

k

(i~)k

k!2k
Λi1j1· · ·Λikjk∂ui1

· · ·∂uik
f ∂uj1

· · ·∂ujk
g.(2)

It is known and not hard to prove that (C[uuu], ∗Λ) is an associative algebra.
(a) The algebraic structure of (C[uuu], ∗Λ) is determined by the skew-symmetric part of Λ (in
fact, by its conjugacy class A→ tGAG).
(b) In particular, if Λ is a symmetric matrix, (C[uuu], ∗Λ) is isomorphic to the usual polynomial
algebra.
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Set Λ=K+J , K∈SC(n), J∈AC(n). ChangingK for a fixed J will be called a deformation
of expression of elements, as the algebra remains in the same isomorphism class.

Example of computations:

ui∗Λuj=uiuj+
i~
2

Λij , ui∗Λuj∗Λuk=uiujuk +
i~
2

(Λijuk+Λikuj+Λjkui).

By computing the ∗Λ -product using the product formula (2), every element of the algebra
has a unique expression as a standard polynomial. We view these expressions of an element of
algebra as analogous to the “local coordinate expression” of a function on a manifold. Thus,
changing K corresponds to a local coordinate transformation on a manifold. In this context,
we call the product formula (2) the K-ordering expression by ignoring the fixed skew part

J . For K=0,
[

0 Im
Im 0

]
,

[
0 −Im

−Im 0

]
, the K-ordering expression is called respectively the

Weyl ordering, the normal ordering and the anti-normal ordering expressions. A intertwiner
between a K-ordering expression and a K ′-ordering expression, which we view as a local
coordinate transformation, in a concrete form :

Proposition 2.1 For symmetric matrices K,K ′ ∈ SC(n), the intertwiner is given by

I
K′

K
(f) = exp

( i~
4

∑

i,j

(K
′ij−Kij)∂ui

∂uj

)
f (= I

K′

0 (I
K

0 )−1(f)),(3)

givieng an isomorphism I
K′

K
: (C[uuu]; ∗

K+J
) → (C[uuu]; ∗

K′+J
) between algebras. Namely, for

any f, g ∈ C[uuu] :

I
K′

K
(f ∗

K+J
g) = I

K′

K
(f) ∗

K′+J
I

K′

K
(g).(4)

In the case n=2m and J=
[

0 −Im
Im 0

]
, (C[uuu], ∗Λ) is called the Weyl algebra, with iso-

morphism class denoted by W2m. In fact, if J is non-singular, then (C[uuu], ∗Λ) is isomorphic
to the Weyl algebra.

2.2 The star exponential function e
t(z+s 1

i~uk)
∗

Using the ordering expression of elements of algebra, we can treat elementary transcendental
functions. The ∗-exponential function etH

∗ is defined as the family :etH
∗ :Λ of solutions of the

evolution equations

d

dt
ft=H∗Λft, f0=1.(5)

For instance, for every z∈C, we have

:ez+s 1
i~uk

∗ :Λ=ez:es 1
i~uk
∗ :Λ=ezes2 1

4i~Kkk

es 1
i~uk .(6)

When we fix the skew part J of Λ, we often abbreviate the notation to : :
K

, ∗
K

for : :
K+J

,
∗

K+J
respectively.

Since the exponential law

:e(z+w)+(s+t) 1
i~uk

∗ :
K

=:ez+s 1
i~uk

∗ :
K
∗

K
:ew+t 1

i~uk
∗ :

K

holds for every K, it is better to write

e
(z+w)+(s+t) 1

i~uk
∗ =ez+s 1

i~uk
∗ ∗ew+t 1

i~uk
∗
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by viewing :ez+s 1
i~uk

∗ :
K

as the K-ordering expression of the (ordering free) exponential ele-

ment ez+s 1
i~uk

∗ . Under this convention, one may write for instance :ui∗uj :K =uiuj+ i~
2 (K+J)ij .

We remark that even for the simplest exponential function es 1
i~uk
∗ , formula (6) gives the

following (cf. [13]).

Proposition 2.2 If ImKkk<0, then the K-ordering expression of
∑

n∈Z e
2n 1

i~uk
∗ converges,

and :
∑

n∈Z e
2n 1

i~uk
∗ :

K
is precisely the Jacobi theta function θ3( 1

i~uk).

This shows that deformations of expressions of a fixed algebraic system are interesting
in their own right (cf. [5]). However, it should be remarked that

∑∞
n=0 e

2n 1
i~uk

∗ , and

−∑−1
n=−∞ e

2n 1
i~uk

∗ each converge to inverses of 1−e
1
i~uk
∗ . This leads to a breakdown of

associativity. Such phenomena occur very often in a transcendentally extended algebraic
system.

If ImKkk<0, then the K-ordering expression of the integral
∫
R e

t 1
i~uk
∗ dt converges, and

e
z 1

i~uk
∗ ∗

∫

R
e
t 1

i~uk
∗ dt=

∫

R
e
t 1

i~uk
∗ dt, ∀z∈C.(7)

However, we have shown in [18] that
∫
R e

t 1
i~uk
∗ dt is double valued.

3 Star exponential functions of quadratic forms

In this note we mainly deal with the Weyl algebra W2 over C. Putting u1=u, u2=v, we have
the commutation relation [u, v]=− i~, where [u, v]=u∗v−v∗u. The product formula (2) with

Λ=K+J , J=
[
0 −1
1 0

]
realizes W2.

In what follows, we use the following notations:

u∗v=v∗u−i~, uv=
1
2
(u∗v+v∗u), v∗u=uv+1

2
i~.(8)

Let K =
[
0 κ
κ 0

]
. The product ∗

κ
and the ordering expression : :

κ
stand for ∗

K
and : :

K
,

respectively. Namely, ∗0 and ∗1 correspond to the Moyal product and the standard product.
We also denote the intertwiner from the ∗

κ
-product to the ∗κ′ product by I

κ

′
κ
.

Let Hol(C2) be the set of holomorphic functions f(u, v) on the complex 2-plane C2

endowed with the topology of uniform convergence on compact subsets. Hol(C2) is viewed
as a Fréchet space.

The following fundamental lemma flollows easily from the product formula (2).

Lemma 3.1 For every polynomial p(u, v), left multiplication p(u, v)∗ (resp. right multipli-
cation ∗p(u, v) ) is a continuous linear mapping of Hol(C2) into itself.

3.1 The star exponential function e
t(z+ 1

i~uv)
∗

If ft = h(uv) in (5), then Iκ′
κ (h(uv)) is also a function of uv. ¿From here on, we mainly

concern with functions of uv alone. We set 2
i~uv=uuuA

tuuu, where uuu=(u, v) and A=
[
0 1
1 0

]
.

The intertwiner Iκ′
κ is given as follows:

Iκ′
κ (get 2

i~uv)=g
1

1−t(κ′−κ)e
t

1−t(κ′−κ)
2
i~uv(9)
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Solving the evolution equation (5) for the exponential function, we see that et 1
i~ 2uv
∗ is

given by

:et 1
i~ 2uv
∗ :0 =

1
cosh t

e
1
i~ 2uv tanh t(10)

in the Weyl ordering expression (cf. [16]), and by

:et 1
i~ 2uv
∗ :

I
= ete

1
i~ (e2t−1)uv(11)

in the normal ordering expression (cf.[14]).

Since :et 2
i~uv
∗ :κ = Iκ

0 ( 1
cosh te

1
i~ 2uv tanh t), we see that

:et 1
i~ 2uv
∗ :κ=

2
(1−κ)et+(1+κ)e−t

exp
( et−e−t

(1−κ)et+(1+κ)e−t

1
i~

2uv
)
.(12)

Let K =
[
0 κ
κ τ

]
. The product ∗(κ,τ) and the ordering expression : :(κ,τ) stand for ∗

K

and : :
K

, respectively.
It is not hard to obtain the (κ, τ)-ordering expression:

:et 1
i~ 2uv
∗ :(κ,τ)=

2
∆

exp
(
(
et−e−t

∆
)2τ

1
i~
u2+

et−e−t

∆
1
i~

2uv
)
, ∆=(et+e−t)−κ(et−e−t),(13)

where ∆=(et+e−t)−κ(et−e−t). The general ordering expression is a little more complicated
involving the squre root in the amplitude.

Note that (1−κ)et+(1+κ)e−t=0 if and only if e2t=κ+1
κ−1 . Hence, :et 1

i~ 2uv
∗ :(κ,τ) has a

singular point at 2t= log κ+1
κ−1+2πiZ. However, if κ= ± 1, then :et 1

i~ 2uv
∗ :(±1,τ) are entire

functions with respect to t. In general we have the following:

Lemma 3.2 If κ∈C−{κ≥1}∪{κ≤−1}, then the (κ, τ)-

ordering expression :et 2
i~uv
∗ :(κ,τ) is real analytic and

rapidly decreasing with respect to t∈R.

• •0

Formula (13) gives also the following:

Proposition 3.1 Suppose κ 6=0, z∈C. Then the (κ, τ)-ordering expression
: sin∗ π(z+ 1

i~uv):(κ,τ) is holomorphic in (z, uv), and vanishes on z∈Z+ 1
2 .

Proof By (13), :eπi 1
i~ 2uv

∗ :(κ,τ)+1=0. Although the Weyl ordering expression (the case κ=0)

of e±πi 1
i~uv

∗ diverges by (10), other ordering expressions exist, e.g. (in normal ordering)

:eπi 1
i~uv

∗ :1=ie−
1
i~ 2uv, :e−πi 1

i~uv
∗ :1=− ie−

1
i~ 2uv.

Thus, we have

0=e−πi 1
i~uv

∗ ∗(eπi 1
i~ 2uv

∗ +1)=eπi 1
i~uv

∗ +e−πi 1
i~uv

∗ =2 cos∗(π
1
i~
uv).

The desired result follows from the the exponential law.

Lemma 3.3 If sin∗ π(z+ 1
i~uv)∗f(uv) is defined on some domain containing z= 1

2 , then
sin∗ π( 1

2+ 1
i~uv)∗f(uv)=0.
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These observations lead to viewing 1
2+ 1

i~uv is an indeterminate in the set of integers Z,
that is, 1

i~v∗u behaves as if it were an indeterminate in Z. However, we have to keep in
mind the following remark:
Remark 1 There are two definitions of the product ez 1

i~uv
∗ ∗f(u, v). The first is to define as

the real analytic solution of

d

dt
ft=

1
i~
uv∗ft, f0=f(u, v),

if a real analytic solution exist. The second is to define

e
z 1

i~uv
∗ ∗f(u, v)= lim

n→∞
e
z 1

i~uv
∗ ∗fn(u, v), if f(u, v)= lim

n
fn(u, v),

where fn are polynomials. These two definitions do not agree in general, since the multipli-
cation ez 1

i~uv
∗ ∗ is not a continuous linear mapping of Hol(C2) into itself (cf.(17)).

3.2 Several estimates

We have already known that :et 1
i~uv
∗ :κ∈Hol(C2) for every fixed t whenever defined. By

(12), we see also that if κ∈C−{κ≥1} ∪ {κ≤−1}, then :et 1
i~uv
∗ :κ is rapidly decreasing with

respect to t.
In this section, we first show that

∫∞
−∞ e

t 1
i~uv
∗ dt∈Hol(C2) in the Weyl ordering expression.

The Weyl ordering expression of et 1
i~uv
∗ is :et 1

i~uv
∗ :0= 1

cosh t
2
e(tanh t

2 ) 1
i~ 2uv. Hence

:
∫

R
e
t 1

i~uv
∗ dt:0 =

∫ ∞
−∞

1
cosh t

2

e(tanh t
2 ) 1

i~ 2uvdt.

By setting cos s=tanh t
2 , −2 sin sds=sin2 sdt, the integral on the right hand side becomes

into

2
∫ 0

−π

e(cos s) 1
i~ 2uvds=

∫ π

−π

e(cos s) 1
i~ 2uvds.

By the Hansen-Bessel formula, we have

:
∫ ∞
−∞

e
t 1

i~uv
∗ dt :0=

√
π

2
J0(

2
~
uv),(14)

where J0 is Bessel function of eigen value 0.
Since g(s) = e(cos s) 1

i~uv is a continuous curve in Hol(C2), its integral (14) on a compact
domain belongs to Hol(C2).

Applying the intertwiner Iκ
0 for (14), we see that :

∫
R e

t 1
i~uv
∗ dt:κ =

∫ π

−π
:e(cos s) 1

i~ 2uv:κds.
Since

:e(cos s) 1
i~ 2uv:κ=

2
(1−κ)e 1

2 cos s+(1+κ)e
1
2 cos s

exp
( ecos s−1
(1−κ)ecos s+(1+κ)

1
i~

2uv
)
,

we have the following:

Proposition 3.2 For every κ∈C−{κ≥1}∪{κ≤−1}, the κ-ordering expression of the inte-

gral :
∫∞
−∞ e

t 1
i~uv
∗ dt:κ is contained in the space Hol(C2). Furthermore, integration by parts

gives d
dθ

∫∞
−∞ e

eiθt 1
i~uv

∗ eiθdt=0 whenever defined.
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The ∗-delta function is defined by the following integral:
∫ ∞
−∞

e
t 1

i~uv
∗ dt=

∫

R
e
−it 1

~uv
∗ dt=δ∗(

1
~
uv).

Note that cos s=tanh t
2 implies t= log 1+ cos s

1− cos s . Hence, we have

Lemma 3.4 If f(t) is a continuous function such that f(log 1+ cos s
1− cos s ) is continuous on

[−π, 0], then
∫∞
−∞ f(t)et 1

i~uv
∗ dt is in Hol(C2) in the κ-ordering expression such that for every

κ∈C−{κ≥1}∪{κ≤−1}.

Applying Lemma3.4 to the function f(t)=e−at (a>0) and e−et

, we have :
∫
R e
−ate

t 1
i~uv
∗ dt:κ

and :
∫
R e
−et

e
t 1

i~uv
∗ dt:κ are elements of Hol(C2). We denote the second integral by

∫

R
e−et

e
t 1

i~uv
∗ dt=Γ∗(

1
i~
uv) (cf. §6).

Since v∗u=uv+ 1
2 i~, (13) also gives the existence of the limit

lim
t→∞

:et 1
i~ 2v∗u
∗ :(κ,τ)=

2
1−κe

1
i~

1
1−κ (2uv+ τ

1−κ u2),

lim
t→−∞

:et 1
i~ 2u∗v
∗ :(κ,τ)=

2
1+κ

e−
1
i~

1
1+κ (2uv− τ

1+κ u2),

lim
t→−∞

:et 1
i~ 2v∗u
∗ :(κ,τ)=0, lim

t→∞
:et 1

i~ 2u∗v
∗ :(κ,τ)=0.

(15)

We call
$00= lim

t→−∞
e
t 1

i~ 2u∗v
∗ , $00= lim

t→∞
e
t 1

i~ 2u∗v
∗

vacuums. The exponential law gives

$00∗0$00=$00, $00∗0$00=$00.

However, we easily see

Theorem 3.1 The product $00∗0$00 diverges in any ordering expression.

The existence of the limit (15) gives also

u∗v∗$00 = 0 = $00∗u∗v.

But the “bumping identity” v∗f(u∗v)=f(v∗u)∗v give the following:

Lemma 3.5 v∗$00=0=$00∗u.

Proof Using the continuity of v∗, we see that v∗ limt→−∞ e
t 1

i~ 2u∗v
∗ = limt→−∞ v∗et 1

i~ 2u∗v
∗ .

Hence, the bumping identity (proved by the uniqueness of the real analytic solution for

linear differential equations) gives limt→−∞ e
t 1

i~ 2v∗u
∗ ∗v=0 by using (15).

However, we note that associativity is not easily ensured. The following is the simplest
condition which ensures associativity for certain calculations:

Proposition 3.3 For every polynomial and for every entire function f∈Hol(C2), the prod-
ucts p∗f and f∗p are defined as elements of Hol(C2), and associativity (f∗g)∗h=f∗(g∗h)
holds whenever two of f, g, h are polynomials.

7
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In general (f∗g)∗h=f∗(g∗h) does not hold even if g is a polynomial.
Example 1 By Lemma 3.2, 1

i~uv has two different inverses

( 1
i~
uv

)−1

+
=

∫ 0

−∞
e
t 1

i~uv
∗ dt,

( 1
i~
uv

)−1

− =−
∫ ∞

0

e
t 1

i~uv
∗ dt

as elements of Hol(C2). Hence, we see the failure of associativity :
(
(

1
i~
uv)−1

+ ∗( 1
i~
uv)

)
∗( 1
i~
uv)−1
− 6= (

1
i~
uv)−1

+ ∗
(
(

1
i~
uv)∗( 1

i~
uv)−1
−

)
,

and indeed ( 1
i~uv)

−1
+ ∗( 1

i~uv)
−1
− diverges in any ordering expression. In what follows, we use

the notation

δ∗(
1
~
uv)=(

1
i~
uv)−1

+ −(
1
i~
uv)−1
− .(16)

In spite of theis general failure of associativity, we have another primitive criterion for
associativity. We remark that if all terms are considered as formal power series in i~ in the
product formula (2), then the product is always defined, and it is easy to show associativity,
as it holds for polynomials (cf. [14] for details). Applying these remarks carefully, we give
the following:

Lemma 3.6 $00∗(up∗$00)=0, and ($00∗vp)∗$00=0.

Proof By taking the formal power series expansion with respect to i~ for esu∗v
∗ , associa-

tivity holds, and the following computation is permitted by the bumping identity:

esu∗v
∗ ∗(up∗etu∗v

∗ )=(esu∗v
∗ ∗up)∗etu∗v

∗ =up∗e(s+t)u∗v+i~ps
∗ .

The right hand side of the above equality is continuous in s, t. In particular,

lim
t→a

esu∗v
∗ ∗(up∗etu∗v

∗ )=esu∗v
∗ ∗ lim

t→a
(up∗etu∗v

∗ ).

Using the bumping identity, we have

esu∗v
∗ ∗(up∗ lim

t→−∞
etu∗v
∗ )=esu∗v

∗ ∗ lim
t→−∞

up∗etu∗v
∗ = lim

t→−∞
up∗e(s+t)u∗v+i~ps

∗

=up∗ lim
t→−∞

e
(s+t)u∗v+i~ps
∗ =upei~ps∗$00.

It follows that

$00∗(up∗$00)= lim
s→−∞

e
s 1

i~u∗v
∗ ∗( lim

t→−∞
up∗et 1

i~u∗v
∗ )= lim

s→−∞
upeps∗$00=0.

Similarly, we also have ($00∗vp)∗$00=0.

Lemma 3.7 For every polynomial f(u, v)=
∑
aiju

i∗vj,

$00∗(f(u, v)∗$00)=f(0, 0)$00=($00∗f(u, v))∗$00.

Consequently, associativity holds for $00∗p(u, v)∗$00 for a polynomial p(u, v) .

A similar computation gives the following associativity

($00∗vq)∗(up∗$00)=δp,qp!(i~)p=$00∗(vq∗up∗$00)=($00∗vq∗up)∗$00.

Since
$00∗vq∗up∗$00=δp,qp!(i~)p$00,

we have the following:

8
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Proposition 3.4 1√
p!q!(i~)p+q

up∗$00∗vq is the (p, q)-matrix element.

As mentioned in Remark 1 in § 3.1, we have two definitions of ez 1
i~uv
∗ ∗f(u, v). However

both definitions give the formula

e
z 1

i~uv
∗ ∗$00=e−

1
2 z∗$00.(17)

On the other hand, since 1
i~uv∗δ∗( 1

~uv)=0, we must set et 1
i~uv
∗ ∗δ∗( 1

~uv)=δ∗(
1
~uv) as the

real analytic solution of d
dtft= 1

i~uv∗ft.
However, computing

lim
N→∞

e
t 1

i~uv
∗ ∗

∫ N

−N

e
s 1

i~uv
∗ ds = lim

N→∞

∫ N

−N

e
(t+s) 1

i~uv
∗ ds

gives the following:

e
(x+iy) 1

~uv
∗ ∗δ∗( 1

~
uv)=eiy 1

~uv
∗ ∗δ∗( 1

~
uv).(18)

Hence (17) is holomorphic with respect to z, while (18) is only continuous, that is, there is
no real analyticity with respect to z = x+iy.

4 Inverses and their analytic continuation

Formula (6) and the exponential law give in particular

:et(z+ 1
i~v)

∗ :(κ,τ)=e
1

4i~ t2τet(z+ 1
i~v).

It follows that if Im τ < 0, then e
1

4i~ t2τ is rapidly decreasing in t and the integrals

:
∫ 0

−∞
e
t(z+ 1

i~v)
∗ dt:(κ,τ), −:

∫ ∞
0

e
t(z+ 1

i~v)
∗ dt:(κ,τ).(19)

converge. Both integrals are respectively inverses of z+ 1
i~v, and are denoted (z+ 1

i~v)
−1
+∗,

(z+ 1
i~v)

−1
−∗, respectively, with the subscript (κ, τ) ommitted.

Proposition 4.1 If Im τ < 0, then the (κ, τ)-ordering expression of the difference of the
two inverses is given by

:(z+
1
i~
v)−1

+∗−(z+
1
i~
v)−1
−∗:(κ,τ)=

∫ ∞
−∞

e
1

4i~ t2τet(z+ 1
i~v)dt.

This difference is holomorphic in z.

Similarly, by formula (10), we have the convergence of the two integrals

:
∫ 0

−∞
etze

t 1
i~uv
∗ dt:0 =

∫ 0

−∞

e
1
2 tz

cosh 1
2 t
e

1
i~ 2uv tanh 1

2 tdt, Re z > −1
2
,(20)

:−
∫ ∞

0

etze
t 1

i~uv
∗ dt:0 = −

∫ ∞
0

e
1
2 tz

cosh 1
2 t
e

1
i~ 2uv tanh 1

2 tdt, Re z <
1
2
.(21)

Both (20) and (21) give inverses of z+ 1
i~uv. By a similar computation, there are two inverses

for every (κ, τ) such that κ∈C−{κ≥1}∪{κ≤−1}, which will be denoted by (z+ 1
i~uv)

−1
+∗,

(z+ 1
i~uv)

−1
−∗.

The following may be viewed as a Sato hyperfunction:
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Proposition 4.2 If − 1
2 < Re z < 1

2 , then the difference of the two inverses is given by

(z+
1
i~
uv)−1

+∗−(z+
1
i~
uv)−1
−∗=

∫ ∞
−∞

e
t(z+ 1

i~uv)
∗ dt.(22)

Its (κ, τ)-ordering expression is holomorphic on this strip.

One can see the right hand side more closely. For − 1
2 < Re z ≤ 0, the change of variables

tanh 1
2 t=cos s from forms the right hand side of (22) into

2
∫ 0

−π

(
1+ cos s
1− cos s

)ze(cos s) 1
i~ 2uvds.

For 0 ≤ Re z< 1
2 and for − cos s=tanh t

2 , 2 sin sds=sin2 sdt, the right hand side of (22)
transforms into

2
∫ π

0

(
1+ cos s
1− cos s

)−ze(cos s) 1
i~uvds.

Hence, Lemma 3.4 gives that
∫∞
−∞ e

t(z+ 1
i~uv)

∗ dt is an element of Hol(C2).

On the other hand, note that a chang of variables gives

((−z)+ 1
i~
uv)−1
−∗=−

∫ ∞
0

e
−t(z− 1

i~uv)
∗ dt=−

∫ 0

−∞
e
(z− 1

i~uv)
∗ dt.

Thus, we see that

(z− 1
i~
uv)−1
−∗=−((−z)+ 1

i~
uv)−1
−∗.(23)

This is holomorphic on the domain Re z> − 1
2 , which is also the holomorphic domain for

(z+ 1
i~uv)

−1
−∗.

All of these results are easily proved for the Weyl ordering expression. However, if
κ∈C−{κ≥1}∪{κ≤−1}, then :et 1

i~uv
∗ :κ is rapidly decreasing in t, and the same computation

gives the following:

Proposition 4.3 For every z such that Re z > − 1
2 , the two inverses (z+ 1

i~uv)
−1
+∗ and

(z− 1
i~uv)

−1
−∗ are defined in the κ-ordering expression for κ∈C−{κ≥1} ∪ {κ≤−1}.

Note that (z+ 1
i~uv)

−1
+∗∗(−z− 1

i~uv)
−1
−∗ diverges for any ordering expression. However, the

standard resolvent formula gives the following:

Proposition 4.4 If z+w 6=0, then

1
z+w

(
(z+

1
i~
uv)−1

+∗+(w− 1
i~
uv)−1
−∗

)

is an inverse of (z+ 1
i~uv)∗(w− 1

i~uv). In particular, for every positive integer n, and for
every complex number z such that Re z>− (n+ 1

2 ),

1
2n

(
(1+

1
n

(z+
1
i~
uv))−1

∗++(1− 1
n

(z+
1
i~
uv))−1

∗−
)

is an inverse of 1− 1
n2 (z+ 1

i~uv)
2
∗ in the κ-ordering expression for κ∈C−{κ≥1}∪{κ≤−1}.
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4.1 Analytic continuation of inverses

Recall that (z± 1
i~uv)

−1
±∗ are holomorphic on the domain Re z > − 1

2 . It is natural to
expect that (z± 1

i~uv)
−1
±∗=C(C(z± 1

i~uv))
−1
±∗ for any non-zero constant C. To confirm this,

we set C=eiθ and consider the θ-derivative

eiθ

∫ 0

−∞
e
eiθt(z± 1

i~uv)
∗ dt.

In the (κ, τ)-ordering expression, the phase part of the integrand is bounded in t and the
amplitude is given by

2eiθtz

(1−κ)eeiθt/2 + (1+κ)e−eiθt/2
, κ 6=1.

Hence, the integral converges whenever Re eiθ(z± 1
2 ) > 0, and by integration by parts this

convergence does not depend on θ. It follows that (z± 1
i~uv)

−1
±∗ are holomorphic on the

domain C−{t;−∞<t<− 1
2}.

Next, it is natural to expect that the bumping identity (uv)∗v=v∗(uv−i~) gives the
following “sliding identities”

v−1
+ ∗(z+ 1

i~
uv)−1

+∗∗v=(z−1+
1
i~
uv)−1

+∗, v−1
+ ∗(z− 1

i~
uv)−1
−∗∗v=(z+1− 1

i~
uv)−1
−∗

whenever one can use the inverse of v in a suitable ordering expression. In this section,
analytic continuation will be produced via these sliding identities.

In this note, we state the sliding identity by using, instead of v−1, the left inverse v◦ of
v given below. First of all, we remark that formula (10) also gives

(u∗v)−1
−∗=− 1

i~

∫ ∞
0

e
t 1

i~u∗v
∗ dt, (v∗u)−1

+∗=
1
i~

∫ 0

−∞
e
t 1

i~v∗u
∗ dt.

These gives left/right inverses of u, v

v◦=u∗(v∗u)−1
+∗, u•=v∗(u∗v)−1

−∗,

for it is easy to see that

v∗v◦=1, v◦∗v=1−$00, u∗u•=1, u•∗u=1−$00.

The bumping identity gives

v∗(z+ 1
i~
uv)∗v◦=z+1+

1
i~
uv, v◦∗(z+ 1

i~
uv)∗v=(1−$00)∗(z−1+

1
i~
uv).

The successive use of the bumping identity alos gives the following useful formula:

(u∗(v∗u)−1
+∗)

n∗$00=
1
n!

(
1
i~
u)n∗$00.(24)

Using v◦ instead of v−1, we can give the analytic continuation of inverses. However, we
have to be careful about the continuity of the ∗-product. We compute
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v◦∗(z+ 1
i~
uv)−1

+∗=u ∗
∫ 0

−∞
e
t( 1

i~uv+ 1
2 )

∗ dt ∗
∫ 0

−∞
e
s(z+ 1

i~uv)
∗ ds

=u ∗
∫ 0

−∞

∫ 0

−∞
e
t( 1

i~uv+ 1
2 )

∗ ∗es(z+ 1
i~uv)

∗ dtds

=
∫ 0

−∞

∫ 0

−∞
et 1

2+szu∗e(t+s) 1
i~uv

∗ dtds

=
∫ 0

−∞

∫ 0

−∞
et 1

2+sz−(t+s)e
(t+s) 1

i~uv
∗ ∗udtds.

Hence, we have the identity whenever both sides are defined:

(v◦∗(z+ 1
i~
uv)−1

+∗)∗v=
∫ 0

−∞

∫ 0

−∞
e−t 1

2+s(z−1)e
(t+s) 1

i~uv
∗ ∗(u∗v)dtds

=
∫ 0

−∞
(u∗v)∗et 1

i~u∗v
∗ dt ∗

∫ 0

−∞
e
s(z−1+ 1

i~uv)
∗ ds

=(1−$00)∗(z−1+
1
i~
uv)−1
∗+.

Remarking that

$00∗(z−1+
1
i~
uv)−1
∗+=(z−1

2
)−1$00,

whenever (z−1+ 1
i~uv)

−1
∗+ is defined, we have

(
v◦∗(z+ 1

i~
uv)−1

+∗
)∗v−(z−1

2
)−1$00 =

(
z−1+

1
i~
uv

)−1

∗+.(25)

Since (z− 1
2 )−1$00 is always defined, we see that (25) gives the formula for analytic contin-

uation. Using this , we have the following (see [12] and [14] for more details):

Theorem 4.1 The inverses (z+ 1
i~uv)

−1
+∗, (z− 1

i~uv)
−1
−∗ extend to holomorphic functions in

z on C−{−(N+ 1
2 )}. In particular, (z2−( 1

i~uv)
2)−1
±∗ extend to holomorphic functions of z on

this domain.

The product (z+ 1
i~uv)

−1
+∗∗(w+ 1

i~uv)
−1
+∗ is naturally defined, but the formula in Theorem

4.1 looks strange at the first glance, because z+ 1
i~uv is not zero at z=n+ 1

2 and (z+ 1
i~uv)

−1
+∗

is singular at z=n+ 1
2 , but (z+ 1

i~uv)∗(z+ 1
i~uv)

−1
+∗=1 for z 6∈−(N+ 1

2 ).
Note that ∫ 0

−∞
(z+

1
i~
uv)∗et(z+ 1

i~uv)
∗ dt=

{
1 Re z > − 1

2
1−$00 z=− 1

2

,

∫ 0

−∞
(z− 1

i~
uv)∗et(z− 1

i~uv)
∗ dt=

{
1 Re z > − 1

2
1−$00 z=− 1

2

.

As suggested by these formulas, we extend the definition of the ∗-product as follows: For
every polynomial p(u, v) or p(u, v)=es 1

i~uv
∗ ,

p(u, v)∗(z± 1
i~
uv)−1

+∗= lim
N→∞

p(u, v) ∗
∫ 0

−N

e
t(z± 1

i~uv)
∗ dt.(26)

Using formula (24), we have the following:
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Theorem 4.2 If we use definition (26) for the ∗-product, then

(z+
1
i~
uv)∗(z+ 1

i~
uv)−1

+∗=
{

1 z 6∈−(N+ 1
2 )

1− 1
n! (

1
i~u)

n∗$00∗vn z=−(n+ 1
2 ) ,(27)

(z− 1
i~
uv)∗(z− 1

i~
uv)−1
−∗=

{
1 z 6∈−(N+ 1

2 )
1− 1

n! (
1
i~v)

n∗$00∗un z=−(n+ 1
2 ) .(28)

For arbitrary n ∈ N.
Although z=−(n+ 1

2 ) are all removable singularities for (27) and (28).
as a function of z, it is better to retain these singular points.
Fix n ∈ N. These formulas give in particular for every fixed integer m

(1+
1
m

(z+
1
i~
uv))∗(1+

1
m

(z+
1
i~
uv))−1

+∗=
{

1 z 6∈−(N+n+ 1
2 )

1− 1
k! (

1
i~u)

k∗$00∗vk z=−(k+m+ 1
2 )(29)

for arbitrary k ∈ N. We state the following identity for later use:

$00∗vn∗(−n−1
2
+

1
i~
uv)=$00∗( 1

i~
u∗v)∗vn=0.(30)

5 An infinite product formula

Recall the classical formula sinπx=πx
∏∞

k=1(1−x2

k2 ). Rewrite this as follows:

∞∏

k=1

(1−x
2

k2
)=

1
2i

∫
χ[−π,π](t)eitxdt= lim

n→∞

∫ n∏

k=1

(1+
1
k2
∂2

t )δ(t)eitxdt,

where χ[−π,π](t) is the characteristic function of the interval [−π, π]. It follows that

χ[−π,π](t)=2i lim
n→∞

n∏

k=1

(1+
1
k2
∂2

t )δ(t)

in the space of distributions.
For κ uch that |κ+1

κ−1 |6=1 , so that :eit 1
i~uv
∗ :κ is not singular on t ∈ R, we compute as

follows: ∫
χ[−π,π](t):e

it(z± 1
i~uv)

∗ :κdt=
∫
χ[−π,π](t)eitz:e±it 1

i~uv)
∗ :κdt.

Fixing a cut-off function ψ(t) of compact support such that ψ=1 on [−π, π], we see that

∫
χ[−π,π](t):e

t(z± 1
i~uv)

∗ :κdt=2i lim
n→∞

∫ n∏

k=1

(1+
1
k2
∂2

t )δ(t)ψ(t)etz:e±it 1
i~uv

∗ :κdt.

Integration by parts gives

lim
n→∞

∫
δ(t)

n∏

k=1

(1+
1
k2
∂2

t )ψ(t)etz:e±it 1
i~uv

∗ :κdt= lim
n→∞

n∏

k=1

:(1+
1
k2
∂2

t )et(z± 1
i~uv)

∗ :κ.

Hence we have in the κ-ordering expression that

∫
χ[−π,π](t)e

it(z± 1
i~uv)

∗ dt=2i lim
n→∞

n∏

k=1

(1− 1
k2

(z± 1
i~
uv)2)∗.
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Noting that

sin∗ π(z± 1
i~
uv)=π(z± 1

i~
uv)∗

∫
χ[−π,π](t)e

it(z± 1
i~uv)

∗ dt ∈ Hol(C2),

we have

sin∗ π(z± 1
i~
uv)=π(z± 1

i~
uv)∗ lim

n→∞
∗

n∏

k=1

(1− 1
k2

(z± 1
i~
uv)2)∗(31)

in Hol(C2). In particular, we have

Proposition 5.1 In the κ-ordering expression with |κ+1
κ−1 |6=1, we have

sin∗ π(z+
1
i~
uv)=π(z+

1
i~
uv)∗ lim

n→∞

n∏

k=1

∗(1− 1
k2

(z+
1
i~
uv)2).

This is identically zero on the set z∈Z+ 1
2 .

The formula in Proposition 5.1 may be rewritten as

sin∗ π(z+
1
i~
uv)=

(32)

π(z+
1
i~
uv)∗ lim

n→∞

n∏

k=1

∗(1−1
k

(z+
1
i~
uv))∗e

1
k (z+ 1

i~uv)
∗ ∗

n∏

k=1

∗(1+
1
k

(z+
1
i~
uv))∗e−

1
k (z+ 1

i~uv)
∗ .

(33)

In §6, we will define a star gamma function via the two different inverses mentioned
previously and give an infinite product formula for the star gamma function.

5.1 The product with (z+ 1
i~uv)−1

∗+ and with
(
1+ 1

m
(z+ 1

i~uv)
)−1

∗+

First we consider the product (z+ 1
i~uv)

−1
∗±∗ sin∗ π(z+ 1

i~uv) in two different ways. One way
is by defining:

(z+
1
i~
uv)−1
∗±∗ sin∗ π(z+

1
i~
uv)

= lim
n→∞

(z+
1
i~
uv)−1
∗±∗

(
(z+

1
i~
uv)∗

n∏

k=1

∗(1− 1
k2

(z+
1
i~
uv)2)

)
.

(34)

Since (z+ 1
i~uv)∗

∏n
k=1 ∗(1− 1

k2 (z+ 1
i~uv)

2) is a polynomial, Proposition 3.3, (27) and (30)
give

(z+
1
i~
uv)−1
∗±∗ sin∗ π(z± 1

i~
uv)=

∞∏

k=1

∗(1− 1
k2

(z± 1
i~
uv)2).(35)

The second way is by defining

(z+
1
i~
uv)−1
∗±∗ sin∗ π(z+

1
i~
uv)= lim

N→∞

∫ 0

−N

e
t(z+ 1

i~uv)
∗ ∗ sin∗ π(z+

1
i~
uv).(36)
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This may be written as the complex integral

1
2i

∫ 0+πi

−∞+πi

e
t(z+ 1

i~uv)
∗ dt− 1

2i

∫ 0−πi

−∞−πi

e
t(z+ 1

i~uv)
∗ dt.

Adding − 1
2

∫ π

−π
eit(z+ 1

i~uv)dt to this expressions gives the clockwise contour integral along
the boundary of the domain

D={z∈C; Re z<0,−π<Im z<π}.

¾
D −D

Lemma 5.1 :ez 1
i~uv
∗ :κ has at most one sin-

gular point in the domain D ∪ (−D). If
Reκ>0, then there is no singular point in D.

Proof :ez 1
i~uv
∗ :κ= 2

(1−κ)e
z
2 +(1+κ)e−

z
2

exp e
z
2−e−

z
2

(1−κ)e
z
2 +(1+κ)e−

z
2

2
i~uv. Thus, the singular points

are given by (1−κ)e z
2 +(1+κ)e−

z
2 =0. This gives ez=κ+1

κ−1 . If κ 6=± 1, then z= log κ+1
κ−1+2πni.

Thus, the domain D ∪ (−D) contains at most one singular point.
If Reκ>0, then |κ+1

κ−1 | > 1 and the singular point (if it exists) z= log κ+1
κ−1+2πni has a

positive real part.

Proposition 5.2 Suppose Reκ>0 and κ∈C−{κ≥1}∪{κ≤−1}. Then in the κ-ordering ex-
pression, we have

lim
N→∞

∫ 0

−N

e
t(z+ 1

i~uv)
∗ ∗ sin∗ π(z+

1
i~
uv)=

1
2

∫ π

−π

e
it(z+ 1

i~uv)
∗ dt.

By (31) this integration gives the same result as (35), namely
∏∞

1 ∗(1− 1
k2 (z+ 1

i~uv)
2).

Proposition 5.3 Suppose Reκ>0 and κ∈C−{κ≥1}∪{κ≤−1}. Then in the κ-ordering ex-
pression, the product sin∗ π(z+ 1

i~uv)∗(z+ 1
i~uv)

−1
∗+ is an entire function of z. Namely, all

singularities of (z+ 1
i~uv)

−1
∗+ at −(N+ 1

2 ) are cancelled out in formulas (29) and (30).

By a proof similar to that of Proposition 5.3, we obtain

Proposition 5.4 Suppose Reκ>0, and κ∈C−{κ≥1}∪{κ≤−1} Then in the κ-ordering ex-
pression,

sin∗ π(z− 1
i~
uv)∗(z− 1

i~
uv)−1
∗−

is a well defined entire function of z.
In particular, sin∗ π(z+ 1

i~uv)∗(z2−( 1
i~uv)

2)−1
±∗ is a holomorphic function of z in C.

Consider next the product (1+ 1
m (z+ 1

i~uv))
−1
∗+∗ sin∗ π(z+ 1

i~uv). Since

(1+
1
m

(z+
1
i~
uv))−1

∗+=m(m+z+
1
i~
uv)−1
∗+,

and sin∗ π(z+m+ 1
i~uv)=(−1)m sin∗ π(z+ 1

i~uv) by the exponential law, the product formula
is essentially the same as above. Hence we see the following:

Proposition 5.5 Suppose Reκ>0, and κ∈C−{κ≥1}∪{κ≤−1}. Then in the κ-ordering
expression, the product sin∗ π(z+ 1

i~uv)∗(1+ 1
m (z+ 1

i~uv))
−1
∗+ is an entire function of z with

no removable singularity.
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Remark 2 Suppose Reκ<0, and κ∈C−{κ≥1}∪{κ≤−1}. Then the residue of et(z+ 1
i~uv)

∗
at the singular point t= log κ+1

κ−1+2πni in D gives the difference between the twosides of the
equality in Proposition 5.3.

This observation shows that continuity does not hold for κ-ordering expressions.
Lemma 5.1 and formula (12) show that the integral 1

2πi

∫
∂D

e
t(z+ 1

i~uv)
∗ dt gives the residue

at the singular point in D. This residue will be computed in the last section.

6 Star gamma functions

We first recall the ordinary gamma function and beta function:

Γ (z)=
∫ ∞

0

e−ttz−1dt, B(x, y)=
∫ 1

0

tx−1(1−t)y−1dt.

Substituting t = es gives

Γ (z) =
∫ ∞
−∞

e−es

eszds, B(x, y)=
∫ 0

−∞
esx(1−es)y−1ds.

The star gamma function and the star beta function may be defined by replacing x with
z ± uv

i~ :

Γ∗(z ± uv

i~
) =

∫ ∞
−∞

e−eτ

e
τ(z±uv

i~ )
∗ dτ,

B∗(z ± uv

~i
, y) =

∫ 0

−∞
e
τ(z±uv

i~ )
∗ (1−eτ )y−1dτ.

(37)

The Weyl ordering expressions of these orderings are

:Γ∗(z ± uv

i~
):0 =

∫ ∞
−∞

e−eτ+zτ

cosh 1
2τ
e±

1
i~uv tanh 1

2 τdτ,

: B∗(z ± uv

i~
, y) :0=

∫ 0

−∞

(1−eτ )y−1eτz

cosh 1
2τ

e±
1
i~uv tanh 1

2 τdτ.

The κ-ordering expressions are obtained by applying the intertwiner Iκ
0 for κ∈C−{κ≥1}∪{κ≤−1}.

: Γ∗(z ± uv

~i
) :κ= lim

N,N ′→∞

∫ N ′

−N

e−eτ+zτ

cosh 1
2τ
Iκ
0 (e±

1
~i uv tanh 1

2 τ )dτ.(38)

The right hand side converges on a dense open domain of κ.

Proposition 6.1 For every uv ∈ C, and for every z ∈ C such that Re z > − 1
2 , the right

hand side of (38) converges and is holomorphic with respect to z . However, Γ∗(− 1
2 ± uv

~i )
is singular.

Throughout this section, ordering expressions are always restricted to κ∈C−{κ≥1}∪{κ≤−1}.

6.1 Analytic continuation of Γ∗(z ± uv
~i )

As with the usual gamma function, integration by parts gives the identity

Γ∗(z+1± uv

~i
)=(z ± uv

~i
)∗Γ∗(z ± uv

~i
).(39)
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Using
Γ∗(z ± uv

~i
)=(z ± uv

~i
)−1
±∗∗Γ∗(z+1± uv

~i
),

and careful treating continuity inssues, we have

Proposition 6.2 Γ∗(z ± uv
~i ) extends to a holomorphic function on z ∈ C−{−(N+ 1

2 )}.

Since eτ(z±uv
~i )

∗ ∗$00=(z± 1
2 )−1$00, we see the following remarkable feature of these star

functions

Γ∗(z ± uv

~i
)∗$00 ≡ lim

N→∞

∫ N

−N

e−eτ

e
τ(z±uv

~i )
∗ dτ∗$00 = Γ (z ± 1

2 )$00

B∗(z ± uv

~i
, y)∗$00 ≡ lim

N→∞

∫ N

−N

e
τ(z±uv

~i )
∗ (1−eτ )y−1dτ∗$00 = B(z ± 1

2 , y)$00

(40)

6.2 An infinite product formula

We see in the same notation as above

B∗(z±uv~i , 1) =
∫ 0

−∞
e
τ(z±uv

~i )
∗ dτ =

(
z+

uv

i~
)−1

∗±, Re z > −1
2
.(41)

We now compute

Γ∗(z ± uv

~i
)Γ (y) =

∫∫

R2
e
τ(z±uv

~i )
∗ eσye−(eτ+eσ)dτdσ.

We change variables by setting

τ = t+s, eσ = et(1−es), where −∞ < t <∞, −∞ < s < 0.

Since eτ+eσ = et, this gives a diffeomorphism of R × R− onto R2. The Jacobian is given
by dτdσ = 1

1−es dtds. Hence we have the fundamental relation between the gamma function
and the beta function

Γ∗(z ± uv

~i
)Γ (y) =

∫ ∞
−∞

∫ 0

−∞
e
t(y+z±uv

~i )
∗ e−et∗es(z±uv

~i )
∗ (1−es)y−1dtds

=Γ∗(y+z ± uv

~i
)∗B∗(z ± uv

~i
, y).

(42)

Integration by parts gives

(z ± uv

~i
)∗B∗(z ± uv

~i
, y+1) = yB∗(1+z ± uv

~i
, y+1).

To prove this, note that

d

dτ
e
τ(z±uv

~i )
∗ = (z ± uv

~i
)∗eτ(z±uv

~i )
∗ ,

d

dτ
e−eτ

= −eτe−eτ

,

lim
τ→±∞

e−eτ+zτe
±τ uv

~i∗ = 0 for Re z > −1
2
.

Since B∗(z ± uv
~i , y+1) = B∗(z ± uv

~i , y)−B(1+z ± uv
~i , y), we have the functional equation

B∗(z ± uv

~i
, y) =

y+z ± uv
~i

y
∗B∗(z ± uv

~i
, y+1).(43)
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Iterate (43) to obtain

B∗(z ± uv

~i
, y) =

(y+z ± uv
~i )∗(y+1+z ± uv

~i )
y(y+1)

∗B∗(z ± uv

~i
, y+2).

Using the notation

(a)n = a(a+1) · · · (a+n−1), {A}∗n = A∗(A+1)∗ · · · ∗(A+n−1),

we have

B∗(z ± uv

~i
, y) =

{y+z ± uv
~i }∗n

(y)n
∗B∗(z ± uv

~i
, y+n).(44)

Similarly, integration by parts gives the formula

Γ∗(1+z ± uv

~i
) = (z ± uv

~i
)∗Γ∗(z ± uv

~i
), for Re z > −1

2
.(45)

Iterate (45) to obtain

Γ∗(n+1+z ± uv

~i
) = Γ∗(z ± uv

~i
)∗{z ± uv

~i
}
∗n.(46)

Lemma 6.1 B∗(z ± uv
~i , n+1) = n!

∏n
k=0 ∗(k+z ± uv

~i )−1
± .

Proof The right hand side of the above equality will be denoted by n!

{z±uv
~i }

(±)
∗n+1

.

The case n = 0 is given by (41). Suppose the formula holds for n. For the case n+1, we
see that

B∗(z ± uv

~i
, n+2) =

∫ 0

−∞
e
τ(z±uv

~i )
∗ (1−eτ )(1−eτ )ndτ =

n!

{z ± uv
~i }

(±)
∗n+1

− n!

{1+z ± uv
~i }

(±)
∗n+1

.

It follows that

B∗(z ± uv

~i
, n+2) =

(n+1)!

{z ± uv
~i }

(±)
∗n+2

.

In this subsection, we give an infinite product formula for the ∗-gamma function. By
Lemma6.1, we see that

∫ 0

−∞
e
τ(z±uv

~i )
∗ (1− eτ )ndτ =

n!

{z ± uv
~i }

(±)
∗n+1

, Re z > −1
2
.

Replacing eτ by 1
ne

τ ′ , namely setting τ = τ ′ − log n in the left hand side, and multiplying

both side by e(log n)(z±uv
~i )

∗ , we have
∫ log n

−∞
e
τ ′(z±uv

~i )
∗ (1− 1

n
eτ ′)ndτ ′ =

n!

{z ± uv
~i }

(±)
∗n+1

∗e(log n)(z±uv
~i )

∗ .(47)

Lemma 6.2 The Weyl ordering expression of the left hand side of (47) converges as n→∞
to

∫∞
−∞ e

τ ′(z±uv
~i )

∗ e−eτ′
dτ ′ in Hol(C2).

Proof Obviously, limn→∞(1− 1
ne

τ ′)n=e−eτ′
uniformly on each compact subset as a function

of τ ′. In the Weyl ordering expression, it is easy to show that

lim
n→∞

∫ log n

−∞
e
τ ′(z±uv

~i )
∗ e−eτ′

dτ ′=
∫ ∞
−∞

e
τ ′(z±uv

~i )
∗ e−eτ′

dτ ′
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in Hol(C2). Thus it is enough to show that

lim
n→∞

∫ log n

−∞
e
τ ′(z±uv

~i )
∗ (e−eτ′−(1− 1

n
eτ ′)n)dτ ′=0

in Hol(C2). This is easy in the Weyl ordering. Applying the intertwiner gives the desired
result.

The right hand side of (47) equals

e
(log n−(1+ 1

2+···+ 1
n ))(z±uv

~i )
∗ ∗(z ± uv

~i
)−1
∗±∗

n∏

k=1

((
1+

z ± uv
~i

k

)−1

∗±∗e
z±uv

~i
k∗

)
, Re z > −1

2
.

The left hand side converges, and limn→∞ e
(log n−(1+ 1

2+···+ 1
n ))(z±uv

~i )
∗ = e

−γ(z±uv
~i )

∗ obviously,
where γ is Euler’s constant. By the continuity of the ∗-multiplication e

s uv
~i∗ ∗, we have the

convergence in Hol(C2) of

lim
n→∞

n∏

k=1

∗
((

1+
1
k

(z ± uv

~i
)
)−1

∗±∗e
1
k (z±uv

~i )
∗

)
.

Hence we have the convergence in Hol(C2) of the infinite product formula

Γ∗(z+
uv

~i
) = e

−γ(z+ uv
~i )

∗ ∗(z+uv

~i
)−1
∗+∗

∞∏

k=1

∗
((

1+
1
k

(z+
1
i~
uv)

)−1

∗+∗e
1
k (z+ 1

i~uv)
∗

)
(48)

Fix m∈N. Multiplying both side by (1+ 1
m (z+uv

~i )e−
1
m (z+ uv

~i )
∗ , and using the abbreviated

notation ∏

k 6=m

(z=a) =
∏

k 6=m

∗
((

1+
1
k

(a+
1
i~
uv)

)−1

∗+∗e
1
k (a+ 1

i~uv)
∗

)

we have

(1+
1
m

(z+
uv

i~
))∗e−

1
m (z+ uv

~i )
∗ ∗Γ∗(z+uv

~i
)

=
{ ∏

k 6=m(z=z) z 6=− (n+m+ 1
2 )∏

k 6=m(z=−n−m− 1
2 )∗(1− 1

m! (
1
i~u)

m∗$00∗vm
)

z=− (n+m+ 1
2 )

(49)

where n∈N. As opposited to the case that (1+ 1
m (z+uv

i~ ))−1
∗+∗ sin∗ π(z+ 1

i~uv) is entire func-
tion (cf. Proposition 5.5), there are removable singularities with respect to z.

Multiplying
∏∞

k=1,k 6=m

(
1+ 1

k (z+uv
~i )

)
e
− 1

k (z+ uv
~i )

∗ to both sides of (49) and using (29), we
have

lim
n→∞

n∏

k=1,k 6=m

∗
((

1+
1
k

(z+
1
i~
uv)

)∗e−
1
k (z+ 1

i~uv)
∗

)

∗
(
(1+

1
m

(z+
uv

i~
))∗e−

1
m (z+ uv

~i )
∗ ∗Γ∗(z+ 1

i~
uv)

)

=
{

1 z 6=− (m+ 1
2 )

1−∑m
k=0

1
k! (

1
i~u)

k∗$00∗vk z=− (m+ 1
2 )

in Hol(C2).

19

KSTS/RR-06/008
August 30, 2006



7 Products with sin∗ π(z+ 1
i~uv)

In this section we show that sin∗ π(z+ 1
i~uv)∗Γ∗(z+ 1

i~uv) is well defined as an entire func-
tion of z. By recalling Euler’s reflection formula, this product may be understood as

1
Γ∗(1−(z+ 1

i~uv))
. We define the product by the integral

2i sin∗ π(z+
1
i~
uv)∗Γ∗(z+ 1

i~
uv)

= lim
T,T ′→∞

∫ T ′

−T

(eπi(z+ 1
i~uv)

∗ −e−πi(z+ 1
i~uv)

∗ )∗e−eτ

e
τ(z+ uv

i~ )
∗ dτ

=
∫ ∞
−∞

e−eτ

(e(τ+πi)(z+ uv
i~ )

∗ −e(τ−πi)(z+ uv
i~ )

∗ )dτ.

(50)

The κ-ordering expression of (50) is given as follows:

:(50):κ =
∫ ∞+πi

−∞+πi

e−eτ−πi

e
τ(z+ uv

i~ )
∗ dτ−

∫ ∞−πi

−∞−πi

e−eτ+πi

e
τ(z+ uv

i~ )
∗ dτ.

By using e−eτ−πi

=e−eτ+πi

, this is given by the integral

(
∫ ∞+πi

−∞+πi

−
∫ ∞−πi

−∞−πi

)eeτ

e
τ(z+ uv

i~ )
∗ dτ.

Note this is not a contour integral, but is defined for κ∈C−{κ≥1}∪{κ≤−1}.
The following is our main result:

Theorem 7.1 sin∗ π(z+ 1
i~uv)∗Γ∗(z+ 1

i~uv) is defined as an entire function of z, vanishing
at z∈N+ 1

2 in any κ-ordering expression such that Reκ<0, and κ∈C−{κ≥1}∪{κ≤−1}.
After careful argument about associativity, (50) can be expressed as an infinite product

sin∗ π(z+
1
i~
uv)∗Γ∗(z+ 1

i~
uv)=

∞∏

k=1

∗
((

1−1
k

(z+
uv

~i
)
)
∗∗e

1
k (z+ uv

~i )
∗

)
.(51)

Recalling the reflection formula, we define
1
Γ∗

(1−(z+
1
i~
uv))= sin∗ π(z+

1
i~
uv)∗Γ∗(z+ 1

i~
uv).

By this we see that
1
Γ ∗

(1−(z+
1
i~
uv))

∣∣∣
z= 1

2

= 0.

This supports the interpretation that (1
2+ 1

i~uv)) is an indeterminate living in the set of
positive integers N={1, 2, 3, · · · }.

We can form the product 1
Γ ∗(1−(z+ 1

i~uv))∗(1− 1
n (z+ 1

i~uv))
−1
∗−∗e−

1
n (z+ 1

i~uv)
∗ . At first

glance, this looks like ∏

k 6=n

∗(1−1
k

(z+
1
i~
uv))∗e

1
n (z+ 1

i~uv)
∗

and hence as an entire function with respect to z.
However, note that (1− 1

n (z+ 1
i~uv))

−1
∗− is singular at n−z ∈ −N− 1

2 , i.e. z∈k+ 1
2 for

k ≥ −n, and the same calculation as in (49) shows that

sin∗ π(z+
1
i~
uv)∗(Γ∗(z+ 1

i~
uv)∗(1− 1

n
(z+

1
i~
uv))−1

∗−
)

is not defined as an entire function, whose singularities are all removable, since some matrix
elements appear in the formula.
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7.1 Additional support for the discrete interpretation

We give another formula to support the discrete interpretation for 1
~iuv. Recall Hankel’s

g

formula

1
Γ (s)

=
1

2πi

∫

C

ett−sdt, (cf. [19] p. 244)

where C is taken to be a line from −∞ to −δ, then a
circle of radius δ in the positive direction, and finally a
line from −δ to −∞.

Setting s= 1
2− 1

i~uv=− 1
i~u∗v, we want to prove

∫
C
ett

1
~i u∗v
∗ dt = 0 as additional support

for the discrete interpretation.

By setting t = eτ+πi, it is easy to see that the Weyl ordering expression of this integral
is equal to

:
∫ 0

−∞
ett

( 1
~i uv)
∗ dt:0 =:

∫ ∞
−∞

eeτ+πi

e
(τ+πi)(1+ 1

~i uv)
∗ dτ :0

=
∫ ∞
−∞

eeτ+πi eτ+πi

cosh(τ+πi)
e

1
~i uv tanh(τ+πi)dτ.

Hence the integral

:
∫ 0

−∞
ett

1
~i uv
∗ dt:0 =

∫ ∞
−∞

e−eτ eτ

cosh(τ)
e

1
~i uv tanh(τ)dτ

exists and vanishes on the axis part of C. Thus, setting t = eτeiθ, we consider for a fixed
real τ << 0

: A∗(
uv

~i
) :0=

1
2π

∫ 2π

0

:eeτ eiθ+(τ+iθ)e
(τ+iθ)( 1

~i uv)
∗ :0dθ.

This can be written as

1
2π

∫ 2π

0

eeτ eiθ eτ+iθ

cosh(τ+iθ)
e

1
~i uv tanh(τ+iθ)dθ.

We easily see the following

Lemma 7.1 limτ→−∞ 1
2π

∫ 2π

0
eeτ eiθ+(τ+iθ)e

(τ+iθ)( 2
~i uv)

∗ dθ = 0.

Lemma7.1 suggests that we write 1
Γ∗

(z+u∗v
~i )

∣∣∣
z=0

= 0, although this is not rigorous.

7.2 The residue of e
t(z+ 1

i~uv)
∗

We first use the Weyl ordering expression. The κ-ordering expression is obtained via the
intertwiner.

Lemma 7.2 Let Ck be a small circle of radius π
4 with the center at ζ = iπ(k+ 1

2 ). Then

the contour integral 1
2πi

∫
Ck

:eζ(z+ 1
i~ 2uv)

∗ :0dζ gives the residue of ett
1
~i uv
∗ and this is an entire

function of X = (z, 1
i~2uv).
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The continuity of the multiplication (z+ 1
i~2uv)∗ requires that this function must satisfy

the equation

(z+
1
i~

2uv)∗0
∫

Ck

:eζ(z+ 1
i~ 2uv)

∗ :0dζ = 0,(52)

since (52) equals
∫

Ck

d
dζ e

ζ(z+ 1
i~ 2uv)

∗ dζ. For simplicity, we set

w =
1
~
2uv, Φk(z, w) =

1
2πi

∫

Ck

:eζ(z+ 1
i~ 2uv)

∗ :0dζ.

Equation (52) is (iz+w)∗0Φk(z, w) = 0. Hence by the Moyal product formula, Φk(z, w)
must satisfy the equation

(iz+w)f(x)+f(w)′+wf(w)′′ = 0,(53)

independent of k. It is not difficult to see that equation (53) has the unique holomorphic
solution f with initial condition f(0) = 1.

For f(w) = eawg(bw), (53) can be rewritten as

b2wg′′(bw)+(2abw+b)g′(bw)+((a2+1)w+a+iz)g(bw) = 0.

Thus g(w) must satisfy the equation

wg′′(w)+(1+
2a
b
w)g′(w)+(

a2+1
b2

w+
a+iz
b

)g(w) = 0.(54)

Setting a = − 1
2b = ±i, we have a Laguerre equation

wg′′(w)+(1−w)g′(w)+
1
2
(∓z−1)g(w) = 0,(55)

where solution is known to be an entire function of exponential growth with respect to w.
Equation (55) gives two expressions for the solutions of (53) using the Laguerre functions

L
(0)
ν (2iw):

Ψz(w) = e−iwL
(0)
1
2 (z−1)

(2iw), Ψz(w) = eiwL
(0)

− 1
2 (z+1)

(−2iw),

where

L(0)
ν (w) =

∞∑
n=0

(−ν)n

(n!)2
wn, ν =

1
2
(∓z−1).

Here we use the notation

(a)n = a(a+1) · · · (a+n−1), (a)0 = 1.

By this observation, we see that Φk(z, x) = ckΨz(x), but the constant ck is not fixed by
this method. To fix the constant we remark that Ψz(x) is also analytic in the variable z.
The constant ck is fixed by investigating the case z = 0.

The residue of et 1
i~uv
∗ is obtained in the Weyl ordering by the contour integral

∫ ∞
−∞

(e(t−πi) 1
i~uv

∗ −e(t+πi) 1
i~uv

∗ )dt.

Since e(t−πi) 1
i~uv

∗ =−e(t+πi) 1
i~uv

∗ , this is given by (14).

Lemma 7.3 The residue of 1
cosh ζ e

( 1
i~ tanh ζ)2uv at ζ = iπ(k+ 1

2 ) is

(−1)k(−i)
√

2πJ0(
2
~
uv),

where J0 is the Bessel function with the eigenvalue 0.

Comparing these we know the residue of et(z+ 1
i~uv)

∗ .
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[18] H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Geometric objects in an approach to
quantum geometry, to appear.

[19] E. T. Whittaker,G. N. Watson,A course of modern analysis. Cambridge Press
1940.

23

KSTS/RR-06/008
August 30, 2006



Department of Mathematics 
Faculty of Science and Technology 

Keio University 
 

Research Report 
 
2006 
[06/001] N. Kumasaka, R. Shibata, High dimensional data visualisation: Textile plot,  

KSTS/RR-06/001, February 13, 2006 
[06/002] H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Geometric objects in an approach  

to quantum geometry, KSTS/RR-06/002, March 15, 2006 
[06/003] M. Nakasuji, Prime geodesic theorem for higher dimensional hyperbolic  

manifold, KSTS/RR-06/003, March 15, 2006 
[06/004] T. Kawazoe, Uncertainty principle for the Fourier-Jacobi transform,  

KSTS/RR-06/004, April 11, 2006 
[06/005] K. Kikuchi, S. Ishikawa, Regression analysis, Kalman filter and measurement  

error model in measurement theory, KSTS/RR-06/005, April 19, 2006 
[06/006] S. Kato, K. Shimizu, G. S. Shieh, A circular-circular regression model,  

KSTS/RR-06/006, May 24, 2006 
[06/007] G. Dito, P. Schapira, An algebra of deformation quantization for  

star-exponentials on complex symplectic manifolds,  
KSTS/RR-06/007, July 9, 2006 

[06/008] H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Expressions of algebra elements  
and transcendental noncommutative calculus, KSTS/RR-06/008, August 30, 2006 

 


	List_2006.pdf
	Keio University
	Research Report

	RR06008.pdf
	Hideki Omori, Yoshiaki Maeda,


