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Abstract

This paper provides a regression model in which both dependent and independent
variables are angular. The regression curve is expressed as a form of the Möbius
transformation. The angular error is assumed to follow a wrapped Cauchy or, equiv-
alently, circular Cauchy distribution. A bivariate circular distribution is proposed to
model our circular regression. Some properties of the regression regression, including
estimation and testing procedures, are obtained. The proposed methods are applied
to marine biology and wind directions data. A related multiple circular regression
model is also introduced.

Key words and phrases: bivariate circular distribution, Möbius transformation, mul-
tiple circular regression, wrapped Cauchy distribution.

1 Introduction

Some regression models in which both dependent and independent variables take values
on the circle have been proposed in the literature. Rivest (1997) provided a model for
predicting the y-direction using a rotation of the “decentred” x-angle, which was applied
to the prediction of the direction of earthquake displacement in terms of the direction of
steepest descent. Downs and Mardia (2002) proposed a regression model in which the
regression curve is expressed as a form of the Möbius transformation or tangent function,
with application to data on circadian biological rhythms and wind directions. See Fisher
(1993, p.168) for earlier works on circular–circular regression models.

The Möbius transformation is well known as a mapping which carries the unit cir-
cle onto itself. One of the earlier works in directional statistics in which the Möbius
transformation appeared was given by McCullagh (1996). In this paper he discussed the
connection between the standard Cauchy distribution and the wrapped or circular Cauchy
distribution via the Möbius transformation. The Möbius transformation was also used in
the link functions of regression models by Downs and Mardia (2002) and Downs (2003).
Minh and Farnum (2003) induced some probabilistic models on the circle by using a bi-
linear transformation which maps the real line onto the unit circle and is related to the
Möbius transformation in form. Jones (2004) proposed the Möbius distribution on the
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disc which is generated by applying the Möbius transformation to the symmetric beta or
Pearson type II distribution. A related work, McCullagh (1989), considered the transfor-
mation of the distribution on the open interval (−1, 1) via a one-to-one mapping which
maps (−1, 1) on to itself. Seshadri (1991) also used a one-to-one mapping, the Möbius
transformation on (−1, 1), to investigate the properties of the distribution on (−1, 1).

The wrapped Cauchy distribution was used as a statistical model by Mardia (1972,
p.56) and Mardia and Jupp (2000, p.51). Its distributional properties and estimation were
investigated by Kent and Tyler (1988) and McCullagh (1996). McCullagh (1996) showed
that the wrapped Cauchy distribution is obtained by applying a bilinear transformation to
the Cauchy distribution on the real line and is closed under the Möbius transformation. It
has the additive property and a central limit theorem holds for this distribution (Kolassa
and McCullagh, 1990).

In this paper we propose a new circular–circular regression model and study some
properties, including estimation and testing procedures, of this model. Its regression curve
is expressed as a form of the Möbius transformation. The angular error is distributed as
a wrapped Cauchy distribution.

In Section 2 some properties of the proposed model, including its regression curve and
the probability distribution of the angular error, are investigated. In addition, we compare
our regression model with some existing models. A bivariate circular distribution, which
could be useful for our regression model, is presented in Section 3. Next Section 4 considers
parameter estimation, the Fisher information matrix, and a test of independence for the
proposed model. In Section 5 our model is applied to marine biology and wind directions
data. A circular multiple regression model is introduced in Section 6.

2 Regression Model

2.1 Regression curve

Let u be a variable, which takes values on the unit circle in the complex plane. Suppose
β0 and β1 are complex parameters with |β0| = 1 and β1 ∈ C. Then the regression curve
of the proposed regression model is given by

v = β0
u + β1

1 + β1u
, |u| = 1, (2.1)

where the mapping with |β1| 6= 1 will be called the Möbius transformation. It is known
that the Möbius transformation is a one-to-one mapping which carries the unit circle onto
itself.

The Möbius transformation is obtained by a superposition of transformations of the
following four types:

(1) Translation: z → z + b,

(2) Rotation: z → az, |a| = 1,

(3) Homotheties: z → rz, r > 0,

(4) Inversion: z → 1/z.
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For β1 6= 0, the above follow from the identity

v = β0

(
1
β1

+
λ

β1u + 1

)
, λ = β1 − 1

β1

.

In (2.1) β0 is evidently a rotation parameter, but the interpretation of β1 is more com-
plicated. However, the following properties reveal the function of β1 in (2.1) for |β1| < 1.
Assume, without loss of generality, that β0 = 1. Then the following results are readily
established.

(a) |β1| → 0 =⇒ v → u,

(b) |β1| → 1, u 6= −β1/|β1| =⇒ v → β1/|β1|,
(c) vj = (u + β1j)/(1 + β1ju), β1j = rje

iθ, j = 1, 2, r1 > r2 ≥ 0, 0 ≤ θ < 2π

=⇒ |arg (v1)− θ| ≤ |arg (v2)− θ| ,
(d) |arg (u)− arg (β1)| ≥ |arg (v)− arg (β1)| ,
(e) u1 = β1/|β1| =⇒ v(u1) = β1/|β1|,
(f) u2 = −β1/|β1| =⇒ v(u2) = −β1/|β1|,
(g) u1 = θβ1/|β1|, u2 = θβ1/|β1|, |θ| = 1 =⇒ v(u1)θ = v(u2)θ.

From these facts, β1 can be intuitively interpreted as the parameter that attracts
the points on the circle toward β1/|β1| with the concentration of points about β1/|β1|
increasing as |β1| increases. An exception is the point u = −β1/|β1|, which is invariant
under the Möbius transformation for any |β1| < 1.

The four frames of Figure 1 exhibit the behaviour of (2.1) for selected values of β1.
Figure 1 (a) is a case in which |β1| = 0, resulting in an identity mapping v = u. Figure
1(b), (c), and (d) explicitly show that as |β1| approaches 1, v = v(u) (u 6= − exp(πi/12))
converges to a point β1/|β1| = exp(πi/12).

When |β1| = 1, the mapping (2.1) maps the unit circle onto the point β1, i.e. v = β1

for any u.
For the case of |β1| > 1, (2.1) can be expressed as

v = β0
u + β1

1 + β1u
= β0

u′ + β1
′

1 + β1
′u′

, (2.2)

where u′ = (β1/|β1|) (β1u/|β1|) and β1
′ = 1/β1. The above expression (2.2) shows that

the Möbius transformation with |β1| > 1 consists of two types of transformations, namely,
reflection and the Möbius transformation with |β′1| < 1, i.e.

u → (β1/|β1|) (β1u/|β1|) and u → β0(u + β′1)/(1 + β′1u).
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Figure 1. Plots of v for regression curve (2.1) for u = exp (2πik/12) , k =
1, . . . , 12, with β0 = 1, arg(β1) = π/12, and: (a) |β1| = 0; (b) |β1| = 0.3; (c)
|β1| = 0.6; (d) |β1| = 0.9.
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2.2 Distribution for angular error

In this subsection we introduce a probability model for the angular error and give some
known properties of the distribution.

Let z be a random variable on the unit circle in the complex plane. Then z has the
wrapped Cauchy distribution or circular Cauchy distribution when the density for z is

f(z) =
1
2π

∣∣1− |φ|2∣∣
|z − φ|2 , |z| = 1, (2.3)

where |φ| 6= 1. In this paper we extend the domain of the wrapped Cauchy distribution
and define z = φ for |φ| = 1. In the same way as McCullagh (1996), we write z ∼ C∗ (φ)
to denote the wrapped Cauchy distribution (2.3).

By transforming z into polar co-ordinates z = exp (iθ) , 0 ≤ θ < 2π, we obtain the
density of θ, which is given by

f(θ) =
1
2π

1− ρ2

1− 2ρ cos(θ − µ) + ρ2
, 0 ≤ θ < 2π,

where

µ = arg(φ) and ρ =
{ |φ|, |φ| < 1,

1/|φ|, |φ| > 1.

It is clear that θ = arg(φ) for |φ| = 1. Here µ is a mean direction and ρ a concentration
of z or θ. The distribution is unimodal and symmetric about µ. When ρ is equal to 0,
the distribution is the uniform distribution on the circle. As ρ tends to 1, the distribution
approaches a point distribution with singularity at z = φ or θ = µ.

The properties of the wrapped Cauchy distribution are investigated, for example,
by Mardia (1972) and McCullagh (1996). The following hold for the wrapped Cauchy
distribution.

(i) z ∼ C∗(φ) =⇒ β0z ∼ C∗(β0φ), |β0| = 1,

(ii) z1 ∼ C∗(φ1), z2 ∼ C∗(φ2), z1⊥z2 =⇒ z1z2 ∼ C∗(φ1φ2),

(iii) z ∼ C∗(φ) =⇒ z + β1

1 + β1z
∼ C∗

(
φ + β1

1 + β1φ

)
, β1 ∈ C.

The properties (i) and (iii) show that if z is distributed as a uniform distribution C∗(0),
then the Möbius transformation of z generates the wrapped Cauchy distribution; i.e.
β0(z + β1)/(1 + β1z) ∼ C∗ (β0β1) where |β0| = 1 and β1 ∈ C.

Note that (ii) and (iii) do not hold for the von Mises distribution.

2.3 Definition and properties of the proposed regression model

This subsection provides a circular–circular regression model and investigates some prop-
erties of the model.

Let x be an independent variable which takes values on the unit circle in the complex
plane and let y be the dependent variable. The complex parameters β0 and β1 are defined
by |β0| = 1 and β1 ∈ C. The proposed regression model is defined by

y = β0
x + β1

1 + β1x
ε, |x| = 1, (2.4)
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where ε ∼ C∗(ϕ), 0 ≤ ϕ ≤ 1. Here we suppose arg(ϕ) = 0 and ϕ ≤ 1 since the mean
direction of the angular error should be 0 and C∗(ϕ) = C∗(1/ϕ) holds for any ϕ ∈ C.
We have already discussed the interpretation of β0 and β1 in §2.1. The parameter ϕ is
the concentration or precision parameter. If ϕ = 1, then independent and dependent
variables are correlated without error. The smaller the value of ϕ the more dependent
the error variables. When ϕ = 0, the variable ε has a uniform distribution on the circle.

The conditional distribution of y given x is given by

y |x ∼ C∗
(

β0
x + β1

1 + β1x
ϕ

)
.

The following theorem holds for our regression model by applying well-known result
in complex analysis. See Rudin (1987, Theorem 11.9) for the proof.

Theorem 1 Suppose f ≡ f(s, t) is a continuous real function on the closed unit disc
satisfying ∇2f = ∂2f/∂s2 + ∂2f/∂t2 = 0 for all y = s + it in the open disc. Let g be
a function which maps the unit circle in the complex plane into the closed disc in the
complex plane. Then

y |x ∼ C∗
(

β0
x + β1

1 + β1x
ϕ

)
=⇒ E {f(y)|g(x)} = f

(
β0

g(x) + β1

1 + β1g(x)
ϕ

)
. (2.5)

Using the result we obtain the mean direction and the concentration of y |x

arg {E(y |x)} = arg
(

β0
x + β1

1 + β1x

)
= arg (β0x)− 2 arg

(
1 + β1x

)
,

|E(y |x)| = ϕ.

More generally, the kth trigonometric moment of y |x is

E
(
yk |x

)
=

(
β0

x + β1

1 + β1x
ϕ

)k

. (2.6)

Since the wrapped Cauchy distribution is closed under rotation and the Möbius transfor-
mation (see properties (i) and (iii) in Section 2.2), we obtain

γ0
y + γ1

1 + γ1y

∣∣∣∣ x ∼ C∗
{

γ0
u(x) + γ1

1 + γ1u(x)

}
, (2.7)

where |γ0| = 1, γ1 ∈ C, and u(x) = β0(x + β1)ϕ/(1 + β1x). Because of the fact that the
linear fractional transformations form a group under composition, the parameter of the
wrapped Cauchy (2.7) can also be expressed as the linear fractional transformation

γ0
u(x) + γ1

1 + γ1u(x)
=

ax + b

cx + d
,

where a = γ0(β0ϕ + γ1β1), b = γ0(γ1 + β0β1ϕ), c = β1 + γ1β0ϕ, d = 1 + γ1β0β1ϕ. Our
model is also closed for the bilinear fractional transformation of the independent variable

y

∣∣∣∣
γ00x + γ01

γ10x + γ11
∼ C∗

(
ax + b

cx + d

)
, (2.8)
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where a = β0(γ00 + β1γ10ϕ), b = β0(γ01 + β1γ11)ϕ, c = γ10 + β1γ00, d = γ11 + β1γ01, and
(

γ00 γ01

γ10 γ11

)
∈ GL(2,C).

If we assume that x is a random variable which has the wrapped Cauchy distribution
C∗(φ), then the distribution of y is given by

y ∼ C∗
(

β0
φ + β1

1 + β1φ
ϕ

)
. (2.9)

The above is obvious from properties (i), (ii) and (iii) in Section 2.2.

2.4 Comparison with existing regression models

Let y be a dependent variable and z be a complex-valued nonstochastic covariate satisfying
Im(z) 6= 0. The regression model of McCullagh (1996) is defined by

y | z ∼ C

(
β00z + β01

β10z + β11

)
,

where C(θ) is a Cauchy distribution on the real line with median Re(θ) and scale param-
eter Im(θ), and (

β00 β01

β10 β11

)
∈ SL(2,R).

Although this model looks similar to ours at first glance, their model and ours are different.
Their model is not circular–circular, but planar–linear regression model. In addition our
model is obtained neither by wrapping y | z nor by transforming y′ = (1 + iy)/(1 − iy),
which are the transformations to generate a wrapped Cauchy distribution from a Cauchy
distribution on the real line.

Our proposed regression model also has some relationship with the model of Fisher
and Lee (1992) and Downs and Mardia (2002). Fisher and Lee (1992) proposed a linear–
circular regression model in which the link function is expressed as a form of tangent
function. Tangent function is also used in the link function of the circular–circular re-
gression model of Downs and Mardia (2002). After some algebra, it is shown that our
regression curve corresponds to their link function. However our model is different from
theirs. The major distinction is the distribution for the angular error. In their model the
probability model for the angular error has the von Mises distribution, whereas in our
model we assume that the angular error is distributed as the wrapped Cauchy. Our model
has some desirable properties that their model does not have. For example, the most im-
portant property, Theorem 1, does not hold for their model. In addition, all properties
(2.6)–(2.9) do not hold for their model. These properties enable us to obtain the method
of moments estimators and simpler expression of the Fisher information matrix and so
forth. Furthermore, assuming the wrapped Cauchy as the angular error also makes it
possible to determine properties of a related bivariate circular distribution and a multiple
regression model for circular data, which will be discussed in Section 3 and Section 6.
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3 Related Bivariate Circular Distribution

To our knowledge, no bivariate angular probability distribution has been used to model
circular–circular regression. We now provide a bivariate circular distribution which could
be helpful in modelling our circular–circular regression. It has the density

f(x, y) =
1

(2π)2

∣∣1− ϕ2
∣∣

∣∣y − β0(x + β1)ϕ/(1 + β1x)
∣∣2
|1− |φ|2|
|x− φ|2 , |x| = |y| = 1, (3.1)

where |φ| 6= 1, 0 ≤ ϕ < 1, and the other parameters are defined in the same way as in
(2.4). The following properties hold for this distribution.

(1) y |x ∼ C∗
(

β0
x + β1

1 + β1x
ϕ

)
,

(2) y ∼ C∗
(

β0
φ + β1

1 + β1φ
ϕ

)
,

(3) x ∼ C∗ (φ).

Hence, the marginal and conditional distributions are wrapped Cauchy distributions. The
distribution (3.1) takes maximum value at (x, y) = (φ/|φ|, β0(x + β1)ϕ/(1 + β1x)) and
minimum value at (x, y) = (−φ/|φ|,−β0(x + β1)ϕ/(1 + β1x)). For |β1| = 1, x and y are
independently distributed as C∗(φ) and C∗(β0β1ϕ), respectively. The closer |β1| gets to
0, the more correlated x and y are. For ϕ = 0, x and y are independently distributed as
C∗(φ) and the circular uniform distribution C∗(0), respectively. The larger the value of ϕ,
the greater the correlation between x and y. See Fisher and Lee (1983) for the definition
of circular correlation.

4 Estimation and Test

4.1 Parameter estimation

Maximum likelihood estimation for the wrapped Cauchy distribution was investigated
by Kent and Tyler (1988). However we cannot apply these results to the conditional
distribution y |x directly, since the mean direction is a function of the independent variable
x. Therefore we need to obtain the maximum likelihood estimates of the wrapped Cauchy
distribution in a different manner.

Let yj |xj (j = 1, . . . , n) be a set of random samples from the wrapped Cauchy dis-
tribution C∗ {

β0(xj + β1)ϕ/(1 + β1xj)
}
. The log-likelihood function for these samples is

given by

log L = C +
n∑

j=1

{
log

∣∣1− ϕ2
∣∣− 2 log

∣∣yj − β0(xj + β1)ϕ/(1 + β1xj)
∣∣} .

Transform the independent and dependent variables by equating (xj , yj) = (eiθ1j , eiθ2j ),
and, for convenience, reparametrize β1 = reiθ (r ≥ 0, 0 ≤ θ < 2π) and β′0 = arg(β0).
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Then the log-likelihood function can be expressed as

log L = C + n log(1− ϕ2)−
n∑

j=1

log
[
1− 2ϕ cos {θ2j − µ(θ1j)}+ ϕ2

]
, (4.1)

where µ(θ1j) = β′0 + θ1j − 2 arg
{
1 + rei(θ1j−θ)

}
.

When β1 is known, the maximum likelihood estimates of β′0 and ϕ are obtained by
the recursive algorithm by Kent and Tyler (1988). The method of moments gives the
estimators of β′0 and ϕ as follows:

β̂′0 = arg (C + iS) and ϕ̂ =
1
n
|C + iS| ,

where C =
∑n

j=1 cos[θ2j−θ1j +2 arg{1+rei(θ1j−θ)}] and S =
∑n

j=1 sin[θ2j−θ1j +2 arg{1+
rei(θ1j−θ)}].

4.2 Fisher information matrix

Using the log-likelihood for (β′0, r, θ, ϕ) given by (4.1). We find that

−E

(
∂2

∂r∂ϕ
log L

)
= −E

(
∂2

∂θ∂ϕ
log L

)
= −E

(
∂2

∂β′0∂ϕ
log L

)
= 0.

Hence, ϕ and (r, θ, β′0) are orthogonal. The other elements of the Fisher information
matrix are calculated as

E

{(
∂

∂ϕ
log L

)2
}

=
2n

(1− ϕ2)2
,

E

{(
∂

∂r
log L

)(
∂

∂β′0
log L

)}
=

2ϕ2

(1− ϕ2)2

n∑

j=1

∂µj

∂r
,

E

{(
∂

∂r
log L

)(
∂

∂θ
log L

)}
=

2ϕ2

(1− ϕ2)2

n∑

j=1

∂µj

∂r

∂µj

∂θ
,

E

{(
∂

∂β′0
log L

)(
∂

∂θ
log L

)}
=

2ϕ2

(1− ϕ2)2

n∑

j=1

∂µj

∂θ
,

E

{(
∂

∂r
log L

)2
}

=
2ϕ2

(1− ϕ2)2

n∑

j=1

(
∂µj

∂r

)2

,

E

{(
∂

∂θ
log L

)2
}

=
2ϕ2

(1− ϕ2)2

n∑

j=1

(
∂µj

∂θ

)2

,

E

{(
∂

∂β′0
log L

)2
}

=
2nϕ2

(1− ϕ2)2
,

where
∂µj

∂θ
=

2r{r + cos(θ1j − θ)}
1 + 2r cos(θ1j − θ) + r2

,
∂µj

∂r
=

−2 sin(θ1j − θ)
1 + 2r cos(θ1j − θ) + r2

.
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4.3 A test of independence

To investigate if the model (2.4) provides a better fit than the independence model, we
test H0 : r = 1 against H1 : r 6= 1. The likelihood ratio test gives the test statistic as

T = −2 log
maxL0

maxL1
,

where maxL0 = maxϕ,β′0 L0 (ϕ, β′0, θ = 0) and maxL1 = maxϕ,r,θ,β′0 L1 (ϕ, r, θ, β′0) . Under
the null hypothesis, T is asymptotically distributed as a chi-square distribution with one
degree of freedom. Here maxL0 is easily obtained using the algorithm of Kent and Tyler
(1988). We reject the null hypothesis when T is large.

Other large sample theories, such as Wald test and score test, could also be useful for
inference for the proposed model.

5 Examples

Example 1. In a marine biology study by Dr. Robert R. Warner at University of
California, Santa Barbara (Lund, 1999), whether the spawning time of a particular fish
(TS) depends on the time of the low tide (TLT ) is of interest. The data were gathered in
St. Croix, the U.S. Virgin Islands. To study the dependence of TS on TLT , we converted
the period 0 to 20 hours of TLT to [0, 2π). Raw data of TS range from 11.76 to 14.98
hours, and we converted the period 11.5 to 15 hours of TS to 11.5

24 ×2π +[0, 2π) (mod 2π).
Paired TS and TLT are thus bivariate circular data, and they are plotted as circles in
Figure 2(a). In the following, we apply model (2.4) to investigate whether and how TS

depends on TLT .

Table 1. Maximum likelihood estimates of the parameters, the maximum log-
likelihood, and AIC of model (2.4).

Model β′0 r θ φ Log-likelihood AIC

(2.4) 1.77 0.552 0.506 0.397 −169.2 346.4

The maximum likelihood estimates, the maximum log-likelihood, and AIC of each
model are given in Table 1. The test of independence for model (2.4) yields the test
statistic T = −2 {(−182.0)− (−169.2)} = 25.6. This test is highly significant and the
assumption of independence is rejected.

Figure 2(b) exhibits Q-Q plot for model (2.4), which is a plot of quantiles of wrapped
Cauchy (x-axis) and quantiles of empirical distributions (y-axis). This plot seems to show
that residual is distributed as wrapped Cauchy distribution. Figure 2(c) displays the plot
of circular distance. Here the circular distance is defined by d(y, ŷ) = 1−cos(y− ŷ) where
y is a dependent variable and ŷ is a predictor in radians given by ŷ = β̂′0 + x− 2 arg{1 +
rei(x−θ̂)}. Observation numbers of outliers are marked on the plot. The figure shows that
the circular distance of most observations lie in [0, 1].

Example 2. For another illustrative example, we consider a dataset of wind directions.
The wind direction at 6 a.m. and 12 noon was measured each day at a weather station in
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Figure 2. (a) planar plot of the spawning time of certain fish and the low
tide time. Both time are converted into angles [0, 2π). (b) Q-Q plot for model
(2.4). Quantiles of wrapped Cauchy (x-axis) and quantiles of empirical distri-
butions (y-axis) are plotted. For visual clearness, angles are transformed from
[0, 2π) into [−π, π). (c) Plots of circular distance for model (2.4). Observation
numbers are marked for outliers.
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Figure 3. (a) plot of circular distance, and (b) plot of predictors and dependent
variables, in which the predictors are plotted on the smaller circle whereas the
dependent variables are marked on the larger one.

Milwaukee for 21 consecutive days. The data are taken from Table B.21 of Fisher (1993).
We use model (2.4) for regressing the wind direction at 12 noon on that at 6 a.m.

Table 2. Maximum likelihood estimates of the parameters, the maximum log-
likelihood, and AIC of model (2.4).

Model β′0 r θ φ Log-likelihood AIC

(2.4) 1.27 0.528 2.59 0.550 −32.3 72.6

Table 2 shows the maximum likelihood estimates of the parameters, maximum log-
likelihood, and AIC of the model. Judging from the AIC, model (2.4) provides a better fit
than the Downs and Mardia model, whose AIC is 74.4. The test of independence for the
model (2.4) in Section 4.3 yields the test statistic as T = −2{(−38.5)− (−32.3)} = 12.4.
This test is highly significant and the assumption of independence is rejected.

The plot of the circular distance is given in Figure 3(a). The observation numbers of
outliers are marked on the plot. This plot shows that the outliers are observed in 5, 7,
12, 17 and 20. Apart from those five outliers, model (2.4) seems to provide a satisfactory
fit to the data.

Finally, the predictors and dependent variables except for outliers are plotted by
observation numbers in Figure 3(b). The plots on the larger circle refer to the dependent
variables, while those on the smaller one are the predictors from model (2.4). The short
line between the predictor and dependent variable means good fit of the model to the
observation. Judging from Figure 3(b), our model seems to provide satisfactory fit to the
data. For the interpretation of how the dependent variables are transformed through the
Möbius transformation, see Section 2.1.
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6 Circular Multiple Regression

Downs and Mardia (2002) presented a recursive method for regressing the dependent angle
on multiple independent angles. Here we propose another method for circular multiple
regression by extending the model (2.4). Let x1, . . . , xp be independent variables on the
unit circle in the complex plane. Suppose that y is a dependent variable. The proposed
circular multiple regression is defined by

y = β0

p∏

j=1

xj + βj

1 + βjxj

ε, (6.1)

where |β0| = 1, βj ∈ C, j = 1, . . . , p are parameters. The angular error is distributed
as the wrapped Cauchy ε ∼ C∗(ϕ), where 0 ≤ ϕ < 1. The parameter ϕ works as a con-
centration or precision parameter and β0 as a rotation parameter. The other parameters
β1, . . . , βp have the same interpretation as β1 in the bivariate model. When p = 1, the
model (6.1) coincides with (2.4). The conditional distribution of y given x = (x1, . . . , xp)′

is

y |x ∼ C∗


β0

p∏

j=1

xj + βj

1 + βjxj

ϕ


 .

Many of the properties for the bivariate model (2.4) also hold for the model (6.1).
For instance, we can get the trigonometric moments of y |x by (2.5). The mean direction
and the concentration of y |x also have simple forms. The Fisher information matrix is
calculated similarly to that of model (2.4). We can easily show that ϕ and the other
parameters β0, . . . , βp are orthogonal. Estimation and inference for the model are given
in much the same way as before using numerical methods and large sample theories,
respectively.

When we assume that the xi are random samples from C∗(φi), i = 1, . . . , p, then y is
distributed as C∗[β0

∏p
j=1{(φj + βj)/(1 + βjφj)}ϕ]. This follows from properties (i), (ii)

and (iii) in Section 2.2.

7 Discussion

Circular–circular regression is useful for analyzing bivariate circular data. Among existing
regression models, the raison d’être of our model is its tractability and expandability. The
tractability derives from the theory of the Möbius transformation and the wrapped Cauchy
distribution. As discussed in Section 2.2 in this paper, the wrapped Cauchy is related to
the Möbius transformation, and thus enables us to obtain a number of desirable properties
for our model. As for the expandability, our regression model could provide some topics to
other related fields. For example, the related bivariate circular distribution and multiple
circular regression model, which are briefly discussed in Section 3 and Section 6, could be
possible fields worth carrying out further research.
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