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error model in measurement theory

Kohshi KIKUCHI
Shiro ISHIKAWA

Keio University, Yokohama, Japan

Abstract
Recently we propose “measurement theory”, which includes measurements in

classical and quantum systems and is constructed in terms of a C∗-algebra. The
purpose of this paper is to study (1): “regression analysis” (2): “Kalman filter”
(3): “measurement error model” in measurement theory. And, we show that this
approach is applicable to very general situations.

1 Introduction

Recently in Ishikawa (1997), Ishikawa (2000),
(
or see Ishikawa’s papers in the ref-

erences in Ishikawa (2001)
)
, one of the authors proposed “measurement theory”, which

includes measurements in classical and quantum systems and is constructed within the

framework of a C∗-algebra. This theory is characterized as a kind of generalization of von

Neumann’s theory proposed in his book: “The mathematical foundation of quantum me-

chanics”(cf. von Neumann (1932)), in which quantum mechanics is completely described

in terms of mathematics
(
i.e., the theory of Hilbert space (cf. Prugovečki (1981))

)
. There-

fore, the quantum part of measurement theory is essentially the same as von Neumann’s

theory, and thus, it is well-authorized. On the other hand, the classical part has not

been developed yet. Therefore, we are interested in the classical part of this measurement

theory rather. Of course, we believe that the classical part is as profound as the quantum

part (i.e., von Neumann’s theory).

In Section 2, we introduce measurement theory (with Axioms 1 and 2, Proclaim 1),

which includes measurements in classical and quantum systems and is constructed within

the framework of a C∗-algebra. The purpose of this paper is to study (1): “regression

analysis” in Section 3, (2): “Kalman filter” in Section 5, (3): “measurement error model”

in Section 6. And, we show that this approach is applicable to very general situations.
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2 Measurement theory

Measurement theory (=MT) can be classified two subjects, i.e., “(pure) measurement

theory (= PMT)” and “statistical measurement theory (= SMT)”. That is,

MT (=“measurement theory”)


PMT (=“(pure) measurement theory”),

SMT (=“statistical measurement theory”).

PMT is essential and it is represented in the framework of the mathematical theory of

C∗-algebra and is summarized in the following scheme:

PMT
((pure) measurement theory)

= measurement
(Axiom 1)

+ the relation among systems
(Axiom 2)

, (2.1)

which includes classical and quantum measurements. PMT is introduced as a kind of

generalization of quantum mechanics, i.e.,

quantum mechanics = Born’s quantum measurement + Schrödinger equation.
(= Heisenberg kinetic equation)

(2.2)

Also, it should be noted that the classical part of MT includes the following conventional

dynamical system theory (= DST):

DST =

{
dx(t)
dt

= f(x(t), u1(t), t), x(0) = x0 · · · (state equation),
y(t) = g(x(t), u2(t), t) · · · (measurement equation),

(2.3)

where u1 and u2 are external forces.

In PMT, the initial state (e.g., x0 in (2.3)) is composed of one point (of the state

space) and not distributed on the state space. However, if an initial distributed state is

permitted, we can propose SMT (= statistical measurement theory) as follows.

SMT = PMT
(Axioms 1 and 2 )

+ “statistical state”
(the probabilistic interpretation of distributed state)

in C∗-algebra. (2.4)

Thus, if we define Proclaim 1 by

“Proclaim 1” = “Axiom 1” + “statistical state”.
(the probabilistic interpretation of distributed state)

(2.5)

we see that SMT is formulated as follows.

SMT = statistical measurement
(Proclaim 1)

+ the relation among systems
(Axiom 2)

in C∗-algebra. (2.6)

Thus, we say that PMT is more fundamental than SMT. That is, we see that there is no

SMT without PMT.
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It is generally considered that the system theory (= DST) is a kind of epistemology

called “the mechanical world view”, namely, an epistemology to understand and analyze

every phenomenon (that appears in our usual life) — economics, psychology, engineering

and so on — by an analogy of mechanics. Therefore, we also consider that MT is just

“the mathematical representation of the mechanical world view”. Since MT is regarded

as a kind of generalization of “DST (2.3)”, MT is also called “general system theory (=

GST)”, i.e., GST = MT. In this paper we use the term “measurement theory (= MT)”.

2.1 Measurements (Axiom 1 in PMT (2.1) and Proclaim 1 in SMT(2.6))

We intend that this paper is essentially self-contained. And further, the mathemat-

ical deep knowledge will never be required. Let A be a C∗-algebra (cf. Sakai (1971)),

that is, a Banach algebra with the involution “∗” and the norm ‖ · ‖ satisfying the

C∗-condition: ‖F ∗F‖ = ‖F‖2 (∀F ∈ A). For simplicity, in this paper we always as-

sume that A is unital, i.e., A has the identity 1A. The complex-valued linear func-

tional ρ(F ) on A is denoted by A∗ 〈ρ, F 〉A , where ρ ∈ A∗ (
the dual Banach space, i.e.,

A∗ = {ρ | ρ is a continuous linear functional on A}
)

and F ∈ A. An element F (∈ A)

is said to be self-adjoint if it holds that F = F ∗. Also, a self-adjoint element F is

called a positive element, denoted by F ≥ 0, if F = F ∗
0F0 holds for some F0 (∈ A).

Define the mixed state class (or, distributed state class) Sm(A∗) by {ρ ∈ A∗ | ‖ρ‖A∗(≡
supF∈A,‖F‖A≤1 |ρ(F )|) = 1 and ρ(F ) ≥ 0 for all F ≥ 0}. A mixed state ρ (∈ Sm(A∗)) is

called a pure state if it satisfies that “ρ = θρ1 + (1− θ)ρ2 for some ρ1, ρ2 (∈ Sm(A∗)) and

0 < θ < 1” implies “ρ = ρ1 = ρ2”. Define Sp(A∗) ≡ {ρp ∈ Sm(A∗) | ρp is a pure state },
which is called a state space (or, pure state space). Note that Sp(A∗) and Sm(A∗) are

compact Hausdorff spaces in the sense of the weak∗-topology τ(A∗,A).

A C∗-algebra A is said to be commutative if it holds that F1F2 = F2F1 for all

F1, F2 ∈ A. Gelfand theorem (cf. Sakai (1971)) says that any commutative C∗-algebra

A can be identified with some C(Ω), the algebra composed of all complex valued con-

tinuous functions f on a compact Hausdorff space Ω. Here, the norm is defined by

‖f‖ = supω∈Ω |f(ω)|. Riesz representation theorem (cf. Yosida (1980)) reads that C(Ω)∗,

the dual Banach space of C(Ω), can be identified with M(Ω), where M(Ω) is the Ba-

nach space composed of all regular complex-valued measures ρ on Ω with the norm

‖ρ‖M(Ω) = sup‖f‖C(Ω)≤1

∫
Ω
f(ω)ρ(dω). The identification of C(Ω)∗ with M(Ω) is pre-
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scribed in the following: there exists an isometric, linear, and bijective operator Ψ :

M(Ω) → C(Ω)∗ such that Ψ(ρ)(f) =
∫

Ω
f(ω)ρ(dω) (∀f ∈ C(Ω), ∀ρ ∈ M(Ω)). We see

and denote that Sm(C(Ω)∗) = {ρm ∈ M(Ω) | ρm ≥ 0, ‖ρm‖M(Ω) = 1} ≡ Mm
+1(Ω),

and Sp(C(Ω)∗) =
{
δω ∈ M(Ω) | δω is a point measure at ω ∈ Ω, i.e., M(Ω)

〈δω, f〉C(Ω)
=

f(ω) (∀f ∈ C(Ω),∀ω ∈ Ω)
}
≡ Mp

+1(Ω). Under the identification: Ω 3 ω ←→ δω ∈
Mp

+1(Ω) (that is, Ω ≈ Mp
+1(Ω)), the Ω is also called a state space. Also, note that the

state space Ω is called a parameter space in the conventional formulation of statistics.

As a typical non-commutative C∗-algebra, we know the B(V ), that is,

B(V ) = {T | T is a continuous linear operator from a Hilbert space V into itself}.
(2.7)

Although this B(V ) is essential to quantum mechanics, we omit to mention the elemen-

tary knowledge of the B(V ). That is because our concern is concentrated on classical

measurements in this paper.

As a natural generalization of Davies’ idea (cf. Davies (1976) and Holevo (1973)) in

quantum mechanics, we define “observable” as follows. A triple O ≡ (X,F , F ) is called

an observable (or precisely, C∗-observable) formulated in a C∗-algebra A, if it satisfies

that

(i) [field]. X is a set (called a “measured value set” or “label set”), and F is the subfield

of the power set P(X)(≡ {Ξ | Ξ ⊆ X}),

(ii) for every Ξ ∈ F , F (Ξ) is a positive element in A such that F (∅) = 0 and F (X) = IA

(where 0 is the 0-element in A),

(iii) for any countable decomposition {Ξ1,Ξ2,Ξ3, ...} of Ξ,
(
i.e., Ξ,Ξi ∈ F (i = 1, 2, 3, ...),

∪∞
n=1Ξn = Ξ, Ξn ∩ Ξm = ∅ (if n 6= m)

)
, it holds that

ρ
(
F (Ξ)

)
= lim

N→∞
ρ
( N∑
n=1

F (Ξn)
)

(∀ρ ∈ Sm(A∗)).

Also, if F (Ξ) is a projection for every Ξ (∈ F), a C∗-observable (X,F , F ) in A is called

a crisp C∗-observable or, crisp observable in A.

Remark 2.1. When we want to stress that X is finite, we write (X, 2X , F ) instead

of (X,F , F ). In this paper we usually assume that X is finite, even when we can do well

without the assumption that X is finite.
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Example 2.2. ((i). Gaussian observable in C(Ω)). Put Ω = [−L,L] (⊆ R, the

real line). And let σ be a fixed positive real number. Define the normal observable (or,

Gaussian observable) OGσ ≡ (R,BR, G
σ) in C(Ω) such that

[Gσ(Ξ)](ω) =
1√

2πσ2

∫
Ξ

e−
(x−ω)2

2σ2 dx (∀Ξ ∈ BR,∀ω ∈ Ω).

[(ii).Discrete Gaussian observable] Under the condition that X is finite, the definition of

“Gaussian observable” is somewhat complicated as follows.
(
For the ordinary Gaussian

observable (i.e., X (= R) is infinite), see Ishikawa (2000).
)

Put Ω ≡ [a, b] (⊆ R, the real

line), the closed interval. Let σ2 be a variance. And let N be a sufficiently large fixed

positive integer. Put XN ≡ { kN | k = 0,±1,±2, ...,±N2}. And define a discrete Gaussian

observable Oσ,N ≡ (XN , 2
XN , Fσ,N) in the commutative C∗-algebra C([a, b]) such that

[Fσ,N({k/N})](ω)

=


1√

2πσ2

∫ ∞
N− 1

2N
exp[− (x−ω)2

2σ2 ]dx (k = N2, ∀ω ∈ [a, b]),

1√
2πσ2

∫ k
N

+ 1
2N

k
N
− 1

2N

exp[− (x−ω)2

2σ2 ]dx (∀k = 0,±1,±2, ...,±(N2 − 1), ∀ω ∈ [a, b]),

1√
2πσ2

∫ −N+ 1
2N

−∞ exp[− (x−ω)2

2σ2 ]dx (k = −N2,∀ω ∈ [a, b]).

(2.7)

And thus, for any Ξ (∈ 2XN ), we define [Fσ,N(Ξ)](ω) =
∑

k
N
∈Ξ[Fσ,N({k/N})](ω). This

Oσ,N is the most useful observable in classical measurements.

With any system S, a C∗-algebra A can be associated in which measurement theory

of that system can be formulated. A state of the system S is represented by a pure state

ρp (∈ Sp(A∗)), an observable is represented by a C∗-observable O ≡ (X,F , F ) formulated

in the C∗-algebra A. Also, a measurement of the observable O for the system S with the

state ρp is denoted by MA(O ≡ (X,F , F ), S[ρp])
(
or in short, MA(O, S[ρp])

)
. We can

obtain a measured value x (∈ X) by the measurement MA(O, S[ρp]).

The axiom presented below is analogous to (or, a kind of generalization of) Born’s

probabilistic interpretation of quantum mechanics (cf. von Neumann (1932)).

AXIOM 1. (Measurement). Consider a measurement MA(O ≡ (X,F , F ), S[ρp]) formu-

lated in a C∗-algebra A. Then, the probability that a measured value x (∈ X) obtained

by the measurement MA(O, S[ρp]) belongs to a set Ξ (∈ F) is given by ρp(F (Ξ)) =

A∗ 〈ρp, F (Ξ)〉A .

Thus, the measurement MA(O ≡ (X,F , F ), S[ρp]) induces the probability space (X,F ,
ρp(F (·))), which is called a sample space.
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We introduce the following classification in measurement theory:

measurement theory


classical measurement theory (for classical systems)

quantum measurement theory (for quantum systems)
(i.e., von Neumann’s theory, cf. (1932))

(2.8)

where a C∗-algebra A is commutative or non-commutative.

For each k = 1, 2, ..., n, we consider an observable Ok ≡ (Xk, 2
Xk , Fk) in a C∗-algebra

A. An observable O ≡ (
∏n

k=1Xk, 2
Πn

k=1Xk , F ) in A is called a quasi-product observable of

{Ok | k = 1, 2, ..., n} if it satisfies (i)
∏n

k=1Xk is the product set, (ii) it holds that

F (X1 × · · · ×Xk−1 × Ξk ×Xk+1 × · · · ×Xn) = Fk(Ξk) (∀Ξk ∈ 2Xk ,∀k = 1, ..., n).
(2.9)

The quasi-product observable O [resp. the F ] is denoted by
qp

×××××××××k∈{1,2,...,n}Ok [resp.
qp

×××××××××k∈{1,2,...,n}
Fk]. Note that the existence and the uniqueness of the quasi-product observable O ≡
(
∏n

k=1Xk, 2Πn
k=1Xk , F ) of {Ok | k = 1, 2, ..., n} are not guaranteed in general. If Ok (k =

1, 2, ..., n) is commutative, i.e., Fk(Ξk)Fk′(Ξk′) = Fk′(Ξk′)Fk(Ξk) (∀Ξk ∈ 2Xk ,∀Ξ′
k ∈

2X
′
k , k 6= k′), the quasi-product observable of {Ok | k = 1, 2, ..., n} always exists. For

example, it suffices to define F such that

F (Ξ1 × Ξ2 × · · · × Ξn) = F1(Ξ1)F2(Ξ2) · · ·Fn(Ξn) (∀Ξk ∈ 2Xk ,∀k = 1, 2, ..., n). (2.10)

The quasi-product observable which satisfies (2.10) is called a product observable of {Ok | k =

1, 2, ..., n} and denoted by ×××××××××nk=1Ok [resp. ×nk=1Fk].

Example 2.3. (1. Product discrete Gaussian observable. (Continued from Example

2.2)). The product discrete Gaussian observable Oσ,N×××××××××Oσ,N = (XN×XN , 2
XN×XN , Fσ,N×

Fσ,N) = O2
σ,N = (X2

N , 2
X2

N , F 2
σ,N) in the commutative C∗-algebra C([a, b]) is defined by

[F 2
σ,N(Ξ1 × Ξ2)](ω) =

∑
k1
N

∈Ξ1,
k2
N

∈Ξ2

[Fσ,N({k1

N
})](ω) · [Fσ,N({k2

N
})](ω) (∀ω ∈ [a, b]).

Let ω0 ∈ [a, b]. Then, Axiom 1 says that the probability that the measured value

(k1
N
, k2
N

) (∈ X2
N) is obtained by the measurement MC([a,b])(O

2
σ,N , S[δω0 ]) is given by [F 2

σ,N

({(k1
N
, k2
N

)})](ω0).

(2. Null observable). Define the observable O(nl) ≡ ({0, 1}, 2{0,1}, F (nl)) in A such that

F (nl)(∅) ≡ 0, F (nl)({0}) ≡ 0, F (nl)({1}) ≡ 1A, F (nl)({0, 1}) ≡ 1A,

which may be called a null observable (or, existence observable). Then, we have a mea-

surement MA(O(nl), S[ρp]). Note that

6
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(]) the probability that the measured value by MA(O(nl), S[ρp]) is equal to 1 (∈ {0, 1})
is given by 1. That is, the measured value is always equal to 1 (∈ {0, 1}).

Thus, we consider that “to take the measurement MA(O(nl), S[ρp])” is the same as “to

take no measurement”, or more precisely, “to assure the existence of the system”.

Remark 2.4. (Simultaneous measurement). The quasi-product observable (or, the

product observable) is used to represent the measurement of more than one observables as

follows. For example, consider a measurement of O1 and O2 for the system with the state

ρp (∈ Sp(A∗)). If the quasi-product observable O1

qp

×××××××××O2 of O1 and O2 exists, the measure-

ment is represented by MA(O1

qp

×××××××××O2, S[ρp])
(
and not “MA(O1, S[ρp]) + MA(O2, S[ρp])”

)
.

If the quasi-product observable O1

qp

×××××××××O2 does not exist, the measurement also does not

exist. That is, the symbol “MA(O1, S[ρp]) + MA(O2, S[ρp])” is non-sense. Thus we can

say that

(]) only one measurement is permitted to be conducted even in the classical measure-

ment theory.

which is the well-known fact in quantum mechanics. The measurement MA
(
O1

qp

×××××××××O2, S[ρp]

)
is sometimes called a simultaneous measurement of two observables O1 and O2.

The following example will promote the better understanding of Axiom 1.

Example 2.5. (The urn problem). There are two urns ω1 and ω2. The urn ω1

[resp. ω2] contains 8 red and 2 blue balls [resp. 4 red and 6 blue balls]. That is,

red balls blue balls

urn ω1 8 2
urn ω2 4 6 (2.11)

Here, consider the following measurement M1:

M1 := “Pick out one ball from the urn ω1, and recognize the color of the ball”.

The measurement M1 is formulated as follows. Put Ω = {ω1, ω2}. And define the observ-

able O = ({r, b}, 2{r,b}, F ) in C(Ω) such that

F (∅)(ω1) = 0, F ({r})(ω1) = 0.8, F ({b})(ω1) = 0.2, F ({r, b})(ω1) = 1.0,

F (∅)(ω2) = 0, F ({r})(ω2) = 0.4, F ({b})(ω2) = 0.6, F ({r, b})(ω2) = 1.0. (2.12)
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Then, we see that

M1 = MC(Ω)(O, S[δω1 ]). (2.13)

The probability that a measured value r [resp. b] is obtained is, by Axiom 1, given by

F ({r})(ω1) = 0.8, [resp. F ({b})(ω1) = 0.2]. (2.14)

The following example will promote the better understanding of Proclaim 1, mentioned

latter.

Example 2.6. (Coin-tossing and urn problem). Under the same situation of Example

2.5, consider the following procedures (P1) and (P2).

(P1) One of the two urns (i.e., ω1 or ω2) is chosen by an unfair tossed coin (Cp,1−p), i.e.,

Head (100p%)→ ω1, Tail (100(1− p)%)→ ω2 (0 ≤ p ≤ 1). (2.15)

The chosen urn is denoted by [∗] (∈ {ω1, ω2}). Note, for completeness, that we

do not know whether [∗] is ω1 or ω2 since the two can not be distinguished in

appearance. Here define the mixed state ν0 (∈ Mm
+1(Ω)) such that ν0({ω1}) = p,

ν0({ω2}) = 1 − p, which is considered to be “the distribution of [∗]”. Thus we call

the ν0 a statistical state.

(P2) Take one ball, at random, out of the urn chosen by the procedure (P1). That is, we

take the measurement MC(Ω)(O, S[∗]).

Note that

(i) the probability that [∗] = δω1

[
resp. [∗] = δω2

]
is given by p

[
resp. 1− p

]
.

(ii) If [∗] = δω1

[
resp. if [∗] = δω2

]
, the probability that the measured value obtained by

MC(Ω)(O, S[∗]) is equal to x (∈ {r, b}) is, by Axiom 1, given by

M(Ω)
〈δω1 , F ({x})〉

C(Ω)
= 0.8 (if x = r), = 0.2 (if x = b),[

resp. M(Ω)
〈δω2 , F ({x})〉

C(Ω)
= 0.4 (if x = r), = 0.6 (if x = b)

]
. (2.16)
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Thus, under the condition (P1), the probability that the measured value obtained by the

measurement MC(Ω)(O, S[∗]) is equal to x (∈ {r, b}) is given by

P ({x}) =

∫
Ω

M(Ω)
〈δω, F ({x})〉

C(Ω)
ν0(dω) = M(Ω)

〈ν0, F ({x})〉
C(Ω)

=

{
0.8p+ 0.4(1− p) (if x = r)
0.2p+ 0.6(1− p) (if x = b)

Therefore, we see;

(]) There is a reason that the measurement MC(Ω)(O, S[∗]) in (P2) under the condition

(P1) is denoted by MC(Ω)(O, S[∗](ν0)), and called a “statistical measurement”. Here

the mixed state ν0 (∈ Mm
+1(Ω)) is called a “statistical state”, which represents the

distribution of [∗]. And, the probability that the measured value x (∈ {r, b}) is

obtained by the measurement MC(Ω)(O, S[∗](ν0)), is given by

C(Ω)∗ 〈ν0, F ({x})〉
C(Ω)
≡

∫
Ω

C(Ω)∗ 〈δω, F ({x})〉
C(Ω)

ν0(dω).

That is, the statistical state ν0 is the mixed state with probabilistic interpretation.

Summing up, we have the following proclaim:

PROCLAIM 1. (The probabilistic interpretation of mixed states). Consider a statistical

measurement MA(O ≡ (X,F , F ), S[∗](ρ
m)) formulated in a C∗-algebra A. Then, the

probability that x (∈ X), the measured value obtained by the statistical measurement

MA(O, S[∗](ρ
m)), belongs to a set Ξ (∈ F) is given by

ρm(F (Ξ)) ≡ A∗ 〈ρm, F (Ξ)〉A .

The statistical measurement MA(O, S[∗](ρ
m)) is sometimes denoted by MA(O, S(ρm)).

Thus, we see that Proclaim 1 is characterized as follows.

“Proclaim 1” = “Axiom 1” + “statistical state”
(the probabilistic interpretation of distributed state)

(2.17)

2.2 The relation among systems (Axiom 2 in PMT (2.1) and SMT (2.6))

In this section we devote ourselves to the “relation among systems (i.e., Axiom 2)” in

PMT (2.1) and SMT (2.6).

Let A1 and A2 be C∗-algebras. A continuous linear operator Φ1,2 : A2 → A1 is called

a Markov operator, if it satisfies

9
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(i) Φ1,2(F2) ≥ 0 for any positive element F2 in A2,

(ii) Φ1,2(12) = 11, where 1k is the identity in Ak (k = 1, 2).

Let O2 = (X2, 2
X2 , F2) be an observable in A2. Put (Φ1,2F2)(Ξ2) = Φ1,2(F2(Ξ2)) (∀Ξ2 ∈

2X2). Then, the (X2, 2
X2 ,Φ1,2F2) is an observable in A1, which is denoted by Φ1,2O2.

A Markov operator Φ1,2 : A2 → A1 is called a homomorphism (or precisely, a C∗-

algebraic homomorphism), if it holds that

(i) Φ1,2(F2)Φ1,2(G2) = Φ1,2(F2G2) for any F2 and G2 in A2,

(ii) (Φ1,2F2)
∗ = Φ1,2(F

∗
2 ) for any F2 in A2 (where ∗ is the involution in A).

Let Φ∗
1,2 : A∗

1 → A∗
2 be the dual operator of a Markov operator Φ1,2 : A2 → A1. Then,

the following mathematical results are well known (cf. Sakai (1971)):

(i) Φ∗
1,2(S

m(A∗
1)) ⊆ Sm(A∗

2),

(ii) Φ∗
1,2(S

p(A∗
1)) ⊆ Sp(A∗

2), if Φ1,2 : A2 → A1 is homomorphic.

Suppose that A1 and A2 are commutative C∗-algebras, i.e., A1 = C(Ω1) and A2 = C(Ω2)

with compact Hausdorff spaces Ωi (i = 1, 2). Under the identification that Sp(A∗
1) =

Mp
+1(Ω1) ≈ Ω1 and Sm(A∗

2) = Mm
+1(Ω2), the above property (i) implies that the dual

operator Φ∗
1,2 of a Markov operator Φ1,2 can be identified with a transition probability rule

P (ω1, B2) (ω1 ∈ Ω1, B2 ∈ BΩ2 ; Borel field on Ω2) such that M(ω1, B2) = (Φ∗
1,2(δω1))(B2).

Also, under the identification that Mp
+1(Ω1) ≈ Ω1 and Mp

+1(Ω2) ≈ Ω2, the above

property (ii) implies that the dual operator Φ∗
1,2 of a homomorphism Φ1,2 is identified

with a continuous map φ1,2 from Ω1 into Ω2 defined by (Φ1,2f2)(ω1) = f2(φ1,2(ω1))

(∀ω1 ∈ Ω1, ∀f2 ∈ C(Ω2)) in the following sense:

Φ∗
1,2(δω1) = δφ1,2(ω1) (∀ω1 ∈ Ω1). (2.18)

Let (T,≤) be a tree-like partial ordered set, i.e., a partial ordered set such that “t1 ≤ t3

and t2 ≤ t3” implies “t1 ≤ t2 or t2 ≤ t1”. Put T 2
≤ = {(t1, t2) ∈ T × T | t1 ≤ t2}. An

element t0 ∈ T is called a root if t0 ≤ t (∀t ∈ T ) holds. In this paper, we always assume,

for simplicity, that T is finite (cf. Remark 2.1).
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Definition 2.7. (General system). The pair S[ρp
t0

] ≡ [S[ρp
t0

]; {At2
Φt1,t2→ At1}(t1,t2)∈T 2

≤
][

resp. S(ρmt0) ≡ [S(ρmt0); {At2
Φt1,t2→ At1}(t1,t2)∈T 2

≤
]
]

is called a general system with an initial

state ρpt0 (∈ Sp(A∗
t0
))

[
resp. general system with an initial statistical state ρmt0 (∈ Sm(A∗

t0
))

]
if it satisfies the following conditions (i)∼(iii).

(i) With each t (∈ T ), a C∗-algebra At is associated.

(ii) The t0 (∈ T ) is the root of T . And, assume that a system S has the state ρpt0 at t0[
resp. the statistical state ρmt0 at t0

]
, that is, the initial state is equal to ρpt0

[
resp. ρmt0

]
(iii) For every (t1, t2) ∈ T 2

≤, a Markov operator Φt1,t2 : At2 → At1 is defined such that

Φt1,t2Φt2,t3 = Φt1,t3 : At3 → At1 holds for all (t1, t2), (t2, t3) ∈ T 2
≤, where Φt,t : At →

At is the identity map.

The family {At2
Φt1,t2→ At1}(t1,t2)∈T 2

≤
is also called a Markov relation among systems. Let

an observable Ot ≡ (Xt, 2
Xt , Ft) in a C∗-algebra At be given for each t ∈ T . The pair

[{Ot}t∈T ; {At2
Φt1,t2→ At1}(t1,t2)∈T 2

≤
] is called a sequential observable.

Before we propose Axiom 2, we make some preparations. Let T = {0, 1, ..., N} be a

tree with the root 0. Define the parent map π : T \ {0} → T such that π(t) = max{s ∈
T | s < t}. It is clear that the tree (T ≡ {0, 1, ..., N},≤) can be identified with the pair

(T ≡ {0, 1, ..., N}, π : T \ {0} → T ). The Markov relation {At2
Φt1,t2→ At1}(t1,t2)∈T 2

≤
is also

denoted by {At
Φπ(t),t→ Aπ(t)}t∈T\{0}.

The following example will promote the better understanding of Axiom 2 mentioned

later.

Example 2.8. (A simple general system, Heisenberg picture). Suppose that a tree

(T ≡ {0, 1, ..., 7}, π) has an ordered structure such that π(1) = π(6) = π(7) = 0, π(2) =

π(5) = 1, π(3) = π(4) = 2.
(
See the figure (2.19).

)
Consider a general system S[ρp

0] ≡

[S[ρp
0]; {At

Φπ(t),t→ Aπ(t)}t∈T\{0}] with the initial system S[ρp
0]

[
resp. a general statistical system

S(ρm0 ) ≡ [S(ρm0 ); {At
Φπ(t),t→ Aπ(t)}t∈T\{0}] with the initial system S(ρm0 )

]
.

A0

A1

A2 A3

A4

A5A6

A7

������)
�

PPPPPPi

������)

PPPPPPi

�

PPPPPPi

Φ0,6

Φ0,1

Φ0,7

Φ1,2

Φ1,5

Φ2,3

Φ2,4

(2.19)

11

KSTS/RR-06/005
April 19, 2006



Also, for each t (∈ {0, 1, ..., 6, 7}), consider an observable Ot ≡ (Xt, 2
Xt , Ft) in a C∗-

algebra At. Now we want to consider the following “measurement”,

(]) for a system S[ρp
0]

[
resp. a statistical system S(ρm0 )

]
, take a measurement of a “se-

quential observable [{Ot}t∈T ; {At
Φπ(t),t→ Aπ(t)}t∈T\{0}]”, i.e., take a measurement of

an observable O0 at 0 (∈ T ), and next, take a measurement of an observable O1 at

1 (∈ T ), · · · · · · , and finally take a measurement of an observable O7 at 7 (∈ T ),

which is symbolized by M({Ot}t∈T ,S[ρp
0])

[
resp. M({Ot}t∈T ,S(ρm0 ))

]
. Note that the M

({Ot}t∈T ,S[ρp
0])

[
resp. M({Ot}t∈T ,S(ρm0 ))

]
is merely a symbol since the above (]) is a

rough statement which seems to include “many measurements”
(
in spite of the spirit that

only one measurement is permitted in measurement theory (cf. Remark 2.4)
)
. In what

follows let us describe the above (]) (= M({Ot}t∈T ,S[ρp
0]))

[
resp. (= M({Ot}t∈T ,S(ρm0 ))

]
precisely. Put

Õt = Ot and thus F̃t = Ft (t = 3, 4, 5, 6, 7).

First we construct the quasi-product observable Õ2 in A2 such as

Õ2 = (X2 ×X3 ×X4, 2
X2×X3×X4 , F̃2) where F̃2 = F2

qp

××××××××× (
qp

×××××××××t=3,4Φ2,tF̃t), (2.20)

if it exists. Iteratively, we construct the following:

A0
Φ0,1←−−− A1

Φ1,2←−−− A2

F0

qp

××××××××× Φ0,6F̃6

qp

××××××××× Φ0,7F̃7 F1

qp

××××××××× Φ1,5F̃5y y
F̃0

(F0

qp
×××××××××Φ0,6

eF6

qp
×××××××××Φ0,7

eF7

qp
×××××××××Φ0,1

eF1)

Φ0,1←−−− F̃1

(F1

qp
×××××××××Φ1,5

eF5

qp
×××××××××Φ1,2

eF2)

Φ1,2←−−− F̃2

(F2

qp
×××××××××Φ2,3

eF3

qp
×××××××××Φ2,4

eF4)

(2.21)

That is, we get the quasi-product observable Õ1 ≡ (
∏5

t=1Xt, 2
Π5

t=1Xt , F̃1) of O1, Φ1,2Õ2

and Φ1,5Õ5, and finally, the quasi-product observable Õ0 ≡ (
∏7

t=0Xt, 2
Π7

t=0Xt , F̃0) of O0,

Φ0,1Õ1, Φ0,6Õ6 and Φ0,7Õ7, if it exists. Here, Õ0 is called the realization (or, Heisenberg

picture representation) of a sequential observable [{Ot}t∈T ; {At
Φπ(t),t→ Aπ(t)}t∈T\{0}]. Then,

we have the measurement
[
resp. the statistical measurement

]
:

MA0(Õ0, S[ρp
0])

[
resp. MA0(Õ0, S(ρm0 ))

]
(2.22)

which is called the realization (or, Heisenberg picture representation) of the symbol M

({Ot}t∈T ,S[ρp
0])

[
resp. M({Ot}t∈T ,S(ρm0 ))

]
.
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Now, we can propose Axiom 2, which corresponds to “the rule of the relation among

systems” in PMT (2.1) and SMT(2.6).

Examining Example 2.8, we see as follows. Let (T ≡ {0, 1, ..., N}, π : T \ {0} → T ) be

a tree with root 0 and let S[ρp
0] ≡ [S[ρp

0]; {At
Φπ(t),t→ Aπ(t)}t∈T\{0}] be a general system with

the initial system S[ρp
0]. And, let an observable Ot ≡ (Xt, 2

Xt , Ft) in a C∗-algebra At be

given for each t ∈ T . And further, for any s (∈ T ), put Ts ≡ {t ∈ T | s ≤ t}. For each

s (∈ T ), define the observable Õs ≡ (
∏

t∈Ts
Xt, 2

Πt∈TsXt , F̃s) in As such that

Õs =

{
Os (if s ∈ T \ π(T ))

Os

qp

×××××××××(
qp

×××××××××t∈π−1({s})Φπ(t),tÕt) (if s ∈ π(T )),
(2.23)

if possible (i.e., if the existence of the quasi-product observable Õs is guaranteed). Then, if

an observable Õ0

(
i.e., the Heisenberg picture representation of the sequential observable

[{Ot}t∈T ; {At
Φπ(t),t→ Aπ(t)}t∈T\{0}]

)
in A0 exists (such as in Example 2.8), we have the

measurement

MA0(Õ0, S[ρp
0]),

[
resp. MA0(Õ0, S(ρm0 ))

]
(2.24)

which is called the Heisenberg picture representation of the symbol M({Ot}t∈T ,S[ρp
0])[

resp. M({Ot}t∈T ,S(ρm0 ))
]
.

Summing up the essential part of the above argument, we can propose the following

axiom, which corresponds to “the rule of the relation among systems” in MT.

AXIOM 2. (The Markov relation among systems, the Heisenberg picture). The relation

among systems is represented by a Markov relation {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
. Let

Ot (≡ (Xt, 2
Xt , Ft)) be an observable in At for each t (∈ T ). If the procedure (2.23) is

possible, a sequential observable [OT ] ≡ [{Ot}t∈T ; {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
] can be

realized as the observable Õ0 ≡ (
∏

t∈T Xt, 2
Πt∈TXt , F̃0) in A0.

Also, we must add the following statement, which explains the relation between Axiom

1 [resp. Proclaim 1] and Axiom 2:

• Let S[ρp
0] ≡ [S[ρp

0]; {At
Φπ(t),t→ Aπ(t)}t∈T\{0}]

[
resp. S(ρm0 ) ≡ [S(ρm0 ); {At

Φπ(t),t→ A

π(t)}t∈T\{0}]
]

be a general system with an initial state ρp0 (∈ Sp(A∗))
[
resp. with

an initial statistical state ρm0 (∈ Sm(A∗))
]
. And, a measurement represented by the

symbol M({Ot}t∈T ,S[ρp
0])

[
resp. M({Ot}t∈T ,S(ρm0 ))

]
can be realized by MA0(Õ0 ≡

(
∏

t∈T Xt, 2
Πt∈TXt , F̃0), S[ρp

0])
[
resp. MA0(Õ0 ≡ (

∏
t∈T Xt, 2

Πt∈TXt , F̃0), S(ρm0 ))
]
, if Õ0

exists.
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In physics, T always represents the time axis, and therefore, {At2
Φt1,t2→ At1}(t1,t2)∈T 2

≤

represents the time revolution of the mechanical system.

Now we have two measurement theories (i.e., PMT and SMT) as follows.
PMT = measurement

(Axiom 1)
+ the relation among systems

(Axiom 2)

,

SMT = statistical measurement
(Proclaim 1)

+ the relation among systems
(Axiom 2)

Here, it should be noted that Axiom 2 is common to PMT(2.1) and SMT(2.6).

Summing up the above argument in Example 2.8, we can mention the following theo-

rem.

Theorem 2.9. (The measurability of a general system). Let (T ≡ {0, 1, ..., N}, π :

T \ {0} → T ) be a tree with root 0 and let S[ρp
0] ≡ [S[ρp

0]; {At
Φπ(t),t→ Aπ(t)}t∈T\{0}][

resp. S(ρm0 ) ≡ [S(ρm0 ); {At
Φπ(t),t→ Aπ(t)}t∈T\{0}]

]
be a general system with the initial

system S[ρp
0]

[
resp. S(ρm0 )

]
. And, let an observable Ot ≡ (Xt, 2

Xt , Ft) in a C∗-algebra At
be given for each t ∈ T . Then, if an observable Õ0 ≡ (

∏
t∈T Xt, 2

Πt∈TXt , F̃0) in A0 exists

(cf. the formulation (2.23)), we have the measurement

MA0(Õ0, S[ρp
0])

[
resp. MA0(Õ0, S(ρm0 ))

]
. (2.25)

If the system is classical, i.e., At ≡ C(Ωt) (∀t ∈ T ), then the measurement (2.25) always

exists, while the uniqueness is not always guaranteed. Also, it should be noted, by (2.23),

that, for each s (∈ T \ {0}), it holds that Φπ(s),sF̃s(
∏

t∈Ts
Ξt) = F̃π(s)

(
(
∏

t∈Tπ(s)\Ts
Xt) ×

(
∏

t∈Ts
Ξt)

)
(∀Ξt ∈ 2Xt (∀t ∈ Ts)).

Proof. It suffices to prove it in classical measurements. However, it is clear since, in

classical measurements, the product observable of any observables always exists (cf. the

formula (2.10)). Therefore the construction mentioned in Example 2.8 is always possible

in classical systems.

3 Regression analysis in PMT (2.1)

In this section, we study regression analysis in PMT, i.e., Axioms 1 and 2.
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3.1 Our motivation

In order to explain our main assertion, let us begin with the following example (the

conventional argument of regression analysis in Fisher’s maximum likelihood method),

which is not only well known but also located in the central point of statistics.

Example 3.1. (The conventional argument of regression analysis in Fisher’s method).

We have a water tank of rectangular shape filled with some water. Assume that the height

of water at time t is given by the following function h(t):

h(t) = α0 + β0t, (3.1)

where α0 and β0 are unknown fixed parameters such that α0 is the height of water filling

the tank at the beginning and β0 is the increasing height of water per a unit time. The

measured height hm(t) of water at time t is assumed to be represented by

hm(t) = α0 + β0t+ e(t), (3.2)

where e(t) represents a noise (or more precisely, a measurement error) with some suitable

conditions. And assume that we obtained the measured data of the heights of water at

t = 1, 2, 3 as follows:

hm(1) = 1.9, hm(2) = 3.0, hm(3) = 4.7. (3.3)

Under this setting, we consider the following problem.

(i) Infer the true value h(2) of the water height at t = 2 from the measured data (3.3).

This problem (i) is usually solved as follows. From the theoretical point of view, we can

infer, by Fisher’s maximum likelihood method and regression analysis, that

(α0, β0) = (0.4, 1.4). (3.4)(
For the derivation of (3.4) from (3.3), see Example 3.6 later.

)
And next, we can infer

that

h(2) = 3.2, (3.5)

by the calculation: h(2) = 0.4 + 1.4× 2 = 3.2. This is the answer to the problem (i).
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The above argument in Example 3.1 is, of course, well known and adopted as the usual

regression analysis. Thus all statisticians may think that there is no serious problem in

regression analysis. However, it is not true. For example, we have the basic problem in

the argument of Example 3.1 as follows.

(ii) What kinds of axioms are hidden behind the argument in Example 3.1? And more-

over, justify the argument in Example 3.1 under the axioms.

It is important. If we have no answer to the question: “What kinds of rules are permitted

to be used in statistics?”, we can not prove (or, justify) that the argument in Example 3.1

is true (or not). That is because there is no justification without an axiomatic formulation.

In this sense, we believe that the above (ii) is the most important problem in theoretical

statistics. Also, if someone knows the great success of the axiomatic formulation in physics

(e.g., the three laws in Newtonian mechanics, or von Neumann’s formulation of quantum

mechanics, cf. von Neumann (1932)), it is a matter of course that he wants to understand

statistics axiomatically.

Trying to solve the problem (ii), some may consider as follows.

(iii) Firstly, Fisher’s maximum likelihood method should be declared as an axiom. Also,

the derivation of (3.5) from (3.4) should be justified under some axioms. That is, it

must not be accepted as a common sense.

This opinion (iii) may not be far from our assertion proposed in this paper. However, in

order to describe the above (iii) precisely, we must make vast preparations.

It should be noted that theoretical statistics already has the mathematical formula-

tion, called “Kolmogorov’s probability theoretical formulation” (cf. Kolmogorov (1950)).

Nevertheless, the problem (ii) has not be solved yet. This is, of course, due to the fact

that “the mathematical formulation” does not always mean “the axiomatic formulation”.

However, we may expect that the reverse is true, that is, “the axiomatic formulation”

always implies “the mathematical formulation”. That is because, in the great history of

physics, we always see that the true axiomatic formulation (of physics) is not only de-

scribed in terms of mathematics but also accepted as the true mathematical formulation.

3.2 Fisher’s maximum likelihood method

Consider a measurement MA(O ≡ (X, 2X , F ), S[ρp]) formulated in a C∗-algebra A.
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In most measurements, it is usual to consider that the state ρp (∈ Sp(A∗)) is unknown.

That is because the measurement MA(O, S[ρp]) may be taken in order to know the state

ρp. Thus, under the condition that we do not know the state ρp, the measurement

MA(O, S[ρp]) is often denoted by MA(O, S[∗]). By using this notation, we can say our

present problem as follows:

(I) Infer the unknown state [∗] (∈ Sp(A∗)) from the measured data obtained by the

measurement MA(O ≡ (X, 2X , F ), S[∗]).

In order to answer this problem, in Ishikawa (2000) we introduced Fisher’s method (pre-

cisely, Fisher’s maximum likelihood method) as follows.
(
Strictly speaking, Theorem 3.2

should not be called “theorem” but “assertion”, since it is not a purely mathematical

result but a consequence of Axiom 1.
)

Theorem 3.2. (Fisher’s maximum likelihood method in classical and quantum mea-

surements). Consider a measurement MA(O ≡ (X, 2X , F ), S[∗]) in A. When we know

that the measured value obtained by the measurement MA(O, S[∗]) belongs to Ξ (∈ 2X),

there is a reason to infer that the state [∗] of the system S is equal to ρp0 (∈ Sp(A∗)) such

that

A∗ 〈ρp0, F (Ξ)〉A = max
ρp∈Sp(A∗)

A∗ 〈ρp, F (Ξ)〉A . (3.6)

Here, note, for completeness, that the state [∗] (in MA(O, S[∗])) is the state before the

measurement MA(O, S[∗]).
(
Cf. Corollary 3.4 later.

)
Proof. See Ishikawa (2000). To make it self-contained, we add the proof (presented

in Ishikawa (2000)) as follows. Let ρp1 and ρp2 be elements in Sp(A∗). Assume that

ρp1(F (Ξ)) < ρp2(F (Ξ)). Then, Axiom 1 says that the fact that the measured value obtained

by the MA(O, S[ρp
1]) belongs to Ξ happens more rarely than the fact that the measured

value obtained by the MA(O, S[ρp
2]) belongs to Ξ happens. Since ρp(F (Ξ)) ≤ ρp0(F (Ξ))

(∀ρp ∈ Sp(A∗)), there is a reason to regard the unknown state [∗] as the state ρp0. Exam-

ining this proof, we can easily see that the state [∗] (in MA(O, S[∗])) is the state before

the measurement MA(O, S[∗]). This completes the proof.

The following corollary is a direct consequence of Theorem 3.2.
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Corollary 3.3. (The conditional probability representation of Fisher’s method).

Let O ≡ (X, 2X , F ) and O′ ≡ (Y, 2Y , G) be observables in A. Let Ô be a quasi-product

observable of O and O′, that is, Ô ≡ O
qp

×××××××××O′ = (X × Y, 2X×Y , F
qp

×××××××××G). Assume that we

know that the measured value (x, y) (∈ X × Y ) obtained by a measurement MA(Ô, S[∗])

belongs to Ξ× Y (∈ 2X×Y ). Then, there is a reason to infer that the unknown measured

value y (∈ Y ) is distributed under the conditional probability PΞ(·):

PΞ(Γ) = A∗ 〈ρp0, F (Ξ)
qp

×××××××××G(Γ)〉A
A∗ 〈ρp0, F (Ξ)〉A

≡ ρp0(F (Ξ)
qp

×××××××××G(Γ))

ρp0(F (Ξ))

 (∀Γ ∈ 2Y ), (3.7)

where ρp0 (∈ Sp(A∗)) is defined by

A∗ 〈ρp0, F (Ξ)〉A = max
ρp∈Sp(A∗)

A∗ 〈ρp, F (Ξ)〉A . (3.8)

Proof. Since we know that the measured value (x, y) (∈ X × Y ) obtained by a

measurement MA(Ô, S[∗]) belongs to Ξ × Y (∈ 2X×Y ), we can infer, by Theorem 3.2

(Fisher’s method) and the equality F (Ξ) = F (Ξ)
qp

×××××××××G(Y ), that the unknown state [∗] (in

MA(Ô, S[∗])) is equal to ρp0 (∈ Sp(A∗)). Thus, the conditional probability PΞ(·) under

the condition that we know that (x, y) ∈ Ξ× Y is given by

PΞ(Γ) =
ρp0(F (Ξ)

qp

×××××××××G(Γ))

ρp0(F (Ξ)
qp

×××××××××G(Y ))
=
ρp0(F (Ξ)

qp

×××××××××G(Γ))

ρp0(F (Ξ))
(∀Γ ∈ 2Y ). (3.10)

This completes the proof.

The following corollary is essential in classical measurements. That is because what

we want to infer is usually “the state after the measurement” (or precisely, “the S-state

after the measurement”, cf. Definition 3.9) and not “the state before the measurement”.

Corollary 3.4. (Fisher’s maximum likelihood method in classical measurements).

Let MC(Ω)(O ≡ (X, 2X , F ), S[∗]) be a measurement formulated in a commutative C∗-

algebra C(Ω). Assume that we know that the measured value obtained by the measure-

ment MC(Ω)(O, S[∗]) belongs to Ξ (∈ 2X). Then, we see that

(i) there is a reason to infer that the state [∗] of the system S
(
i.e., “the state before

the measurement MC(Ω)(O, S[∗])”
)

is equal to δω0 (∈Mp
+1(Ω)), where

[F (Ξ)](ω0) = max
ω∈Ω

[F (Ξ)](ω), (3.10)
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and,

(ii) there is a reason to infer that the state after the measurement MC(Ω)(O, S[∗]) is also

regarded as the same δω0 (∈Mp
+1(Ω)).

Summing up the above (i) and (ii), we see that

(iii) there is a reason to infer that

[∗] = “the state after the measurement MC(Ω)(O, S[∗])” = δω0 . (3.11)

Proof. (i) is the special case of Theorem 3.2 (Fisher’s method), i.e., A = C(Ω).

Thus it suffices to prove (ii) as follows.
(
This (ii) will be again proved in Remark 3.14 as

a special case of Lemma 3.13 later. Thus, the proof presented below may be somewhat

temporary.
)

Let O′ ≡ (Y, 2Y , G) be any observable in C(Ω). Let Ô be the product

observable of O and O′, that is, Ô ≡ O××××××××× O′ = (X × Y, 2X×Y , F × G). Consider a

measurement MC(Ω)(Ô ≡ (X × Y, 2X×Y , F ×G), S[∗]). And assume

(A) we know that the measured value (x, y) (∈ X × Y ) obtained by the measurement

MC(Ω)(Ô ≡ (X × Y, 2X×Y , F ×G), S[∗]) belongs to Ξ× Y .

Then, Corollary 3.3 says that there is a reason to infer that the unknown measured value

y (∈ Y ) is distributed under the conditional probability PΞ(·), where

PΞ(Γ) =
[F (Ξ)×G(Γ)](ω0)

[F (Ξ)](ω0)
= [G(Γ)](ω0) (∀Γ ∈ 2Y ), (3.12)

where ω0 (∈ Ω) is defined in (3.10). Also note that the above (A) can be represented by

the following two steps (A1) and (A2)
(
i.e., (A) = (A1) + (A2)

)
:

(A1) we know that the measured value by a measurement MC(Ω)(O ≡ (X, 2X , F ), S[∗])

belongs to Ξ (∈ 2X),

and

(A2) And successively, we take a measurement of the observable O′ ≡ (Y, 2Y , G), and get

a measured value y (∈ Y ).
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(
The above

(
i.e., (A) = (A1) + (A2)

)
is somewhat metaphorical since “two measurements”

seem to appear in (A1) and (A2). (Cf. Remarks 2.4 and 3.14.)
)

Comparing (A) and “(A1)

+ (A2)”, we see, by (3.12), that

“the probability that the measured value y belongs to Γ (∈ 2Y ) in (A2)” = [G(Γ)](ω0)
(3.13)

That is, we get the sample space (Y, 2Y , [G(·)](ω0)) in (A2). Since O′ ≡ (Y, 2Y , G) is

arbitrary, we say that

(B) the state after (A1)
(
i.e., the state after the measurement MC(Ω)(O, S[∗])

)
is equal to

δω0

(
since the measurement MC(Ω)(O

′, S[δω0 ]) induces the sample space (Y, 2Y , [G(·)]

(ω0))
)
.

This completes the proof.
(
This corollary does not hold in quantum measurements, since

the product observable Ô ≡ O×××××××××O′ = (X ×Y, 2X×Y , F ×G) does not always exist. That

is, the concept of “the state after a measurement” is not always meaningful in quantum

theory.
)

The “Bayes operator (in the following remark)” is hidden in the above proof. This will

be more completely clarified in Remark 3.14 later. Although Corollary 3.4 and Remark

3.5 may be temporary, we believe that they promote a better understanding of Remark

3.14.

Remark 3.5. (1. Bayes operator). Let O ≡ (X, 2X , F ) be an observable in C(Ω).

For each Ξ (∈ 2X), define the continuous linear operator B
(0,0)
Ξ : C(Ω)→ C(Ω) such that

B
(0,0)
Ξ (g) = F (Ξ) · g (∀g ∈ C(Ω)), (3.14)

which is called the Bayes operator (or, simplest Bayes operator). Note that it clearly holds

that

(i) for any observable O′ ≡ (Y, 2Y , G), there exists an observable Ô ≡ (X×Y, 2X×Y , F̂ )

in C(Ω) such that

F̂ (Ξ× Γ) = B
(0,0)
Ξ (G(Γ)) (∀Ξ ∈ 2X ,∀Γ ∈ 2Y ). (3.15)
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That is because it suffices to define the Ô by the product observable O××××××××× O′ in C(Ω).

Define the map R
(0,0)
Ξ :Mm

+1(Ω)→Mm
+1(Ω) (which may be called “normalized dual Bayes

operator”) such that

R
(0,0)
Ξ (ν) =

(B
(0,0)
Ξ )∗(ν)

‖(B(0,0)
Ξ )∗(ν)‖M(Ω)

(∀ν ∈Mm
+1(Ω)), (3.16)

where (B
(0,0)
Ξ )∗ : M(Ω) → M(Ω)

(
i.e., C(Ω)∗ → C(Ω)∗

)
is the adjoint operator of

B
(0,0)
Ξ , that is, it holds that

C(Ω)∗ 〈(B
(0,0)
Ξ )∗(ν), g〉

C(Ω)
=

C(Ω)∗ 〈ν,B
(0,0)
Ξ (g)〉

C(Ω)
(∀ν ∈ C(Ω)∗ ≡

M(Ω),∀g ∈ C(Ω)). Using it, we can describe the well known Bayes theorem (cf. Ishikawa

(2000)) such as

Mm
+1(Ω) 3 ν (= a priori state) 7→ (posterior state =) R

(0,0)
Ξ (ν) ∈Mm

+1(Ω). (3.17)

Note that (3.17) says that (i)⇒(ii) in Corollary 3.4, since a simple calculation shows that

R
(0,0)
Ξ (δω0) = δω0 in the case of Corollary 3.4. In Section 3.4, readers will again study the

Bayes operator in more general situations.

(2. “Before” and “after”). The term “before” [or, “after”] in “the state before the

measurement” [or, “the state after the measurement”] is somewhat metaphorical. Note

that the concept of “time” is not included in Axioms 1 and 2. The tree T does not always

represent “time” in MT.

3.3 Regression analysis I (the conventional form)

From here onward, we always devote ourselves to the classical cases, that is, A = C(Ω).

Under the preparations in the previous sections, we can propose that

“Regression Analysis I (the conventional regression analysis)”

= “Theorem 2.9 (measurability)”
(in the case: A = C(Ω))

+ “Corollary 3.4 (classical Fisher’s method)” .

(3.18)

That is, we can assert:

REGRESSION ANALYSIS I. (The conventional form). Let (T ≡ {0, 1, ..., N}, π :

T \{0} → T ) be a tree with root 0, and let S[∗] ≡ [S[∗]; {Φπ(t),t : C(Ωt)→ C(Ωπ(t))}t∈T\{0}]
be a general system with the initial system S[∗]. And, let an observable Ot ≡ (Xt, 2

Xt , Ft)

in C(Ωt) be given for each t ∈ T . Then, we have a measurement

MC(Ω0)(Õ0 ≡ (
∏
t∈T

Xt, 2
Q

t∈T Xt , F̃0), S[∗]). (Cf. Theorem 2.9). (3.19)

21

KSTS/RR-06/005
April 19, 2006



Assume that the measured value by the measurement MC(Ω0)(Õ0, S[∗]) belongs to
∏

t∈T Ξt

(∈ 2
Q

t∈T Xt). Then, there is a reason to infer that the state [∗] of the system S
(
i.e.,

the state before the measurement MC(Ω0)(Õ0, S[∗])
)
, the state after the measurement

MC(Ω0)(Õ0, S[∗]) and the δω0 (∈Mp
+1(Ω)) (defined by (3.21)) are equal. That is, Corollary

3.4 says that there is a reason to infer that

[∗] = “the state after the measurement MC(Ω0)(Õ0, S[∗])” = δω0 . (3.20)

Here the δω0 (∈Mp
+1(Ω0)) is defined by

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (3.21)

Now we shall review Example 3.1 in the light of Regression Analysis I.

Example 3.6. (Continued from Example 3.1, the conventional argument of regres-

sion analysis in Fisher’s method). Put Ω0 = [0, 1.0] × [0, 2.0], and put Ω1 = Ω2 = Ω3 =

[0, 10.0]. For each t (∈ {1, 2, 3}), define a continuous map φ0,t : Ω0 → Ωt such that

Ω0(≡ [0, 1.0]× [0, 2.0]) 3 ω ≡ (α, β)
φ0,t7→ α+ βt ∈ Ωt(≡ [0, 10.0]). (3.22)

Thus, for each t (∈ {1, 2, 3}), we have a homomorphism Φ0,t : C(Ωt)→ C(Ω0) such that

[Φ0,tft](ω) = ft(φ0,t(ω)) (∀ω ∈ Ω0, ∀ft ∈ C(Ωt)). (3.23)

It is usual to assume that regression analysis is applied to the system with a parallel

structure such as in the figure (3.24).
(
From the peculiarity of this problem, we can also

assume that this system has a series structure. However, we are not concerned with it.
)

C(Ω2)

C(Ω1)

C(Ω0)

C(Ω3)

�

�
�

�+

Q
Q

Qk
Φ0,2

Φ0,1

Φ0,3

(3.24)

For each t ∈ {1, 2, 3}, consider the discrete Gaussian observable Oσ,N ≡ (XN , 2
XN , Fσ,N)

in C(Ωt), cf. Example 2.2. Here, we define the observable Õ0 ≡ (X3
N , 2

X3
N , F̃0) in C(Ω0)
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such that

[F̃0(Ξ1 × Ξ2 × Ξ3)](ω) = [Φ0,1Fσ,N(Ξ1)](ω) · [Φ0,2Fσ,N(Ξ2)](ω) · [Φ0,3Fσ,N(Ξ3)](ω)

=[Fσ,N(Ξ1)](φ0,1(ω)) · [Fσ,N(Ξ2)](φ0,2(ω)) · [Fσ,N(Ξ3)](φ0,3(ω))

(∀Ξ1,Ξ2,Ξ3 ∈ 2XN , ∀ω = (α, β) ∈ Ω0 = [0, 1.0]× [0, 2.0]). (3.25)

Then, we have the measurement MC(Ω0)(Õ0, S[∗]). The data (3.3) says that the measured

value obtained by the measurement MC(Ω0)(Õ0, S[∗]) is equal to

(1.9, 3.0, 4.7) (∈ X3
N). (3.26)

Here, Fisher’s method (Corollary 3.4) says that it suffices to solve the problem

“Find (α0, β0) such as max(α,β)∈Ω0 [F̃0({1.9} × {3.0} × {4.7})](α, β)”. (3.27)

Putting

Ξ1 = [1.9− 1

2N
, 1.9 +

1

2N
], Ξ2 = [3.0− 1

2N
, 3.0 +

1

2N
], Ξ3 = [4.7− 1

2N
, 4.7 +

1

2N
],

we see, under the assumption that N is sufficiently large, that

(3.27)⇒ max
(α,β)∈Ω0

1
√

2πσ2
3

∫ ∫ ∫
Ξ1×Ξ2×Ξ3

e[−
(x1−(α+β))2+(x2−(α+2β))2+(x3−(α+3β))2

2σ2 ]dx1dx2dx3

⇒ max
(α,β)∈Ω0

exp
[
− [(1.9− (α+ β))2 + (3.0− (α+ 2β))2 + (4.7− (α+ 3β))2]/(2σ2)

]
⇒ min

(α,β)∈Ω0

[(1.9− (α+ β))2 + (3.0− (α+ 2β))2 + (4.7− (α+ 3β))2]

(by the least squares method)

⇒
{

(1.9− (α+ β)) + (3.0− (α+ 2β)) + (4.7− (α+ 3β)) = 0
(1.9− (α+ β)) + 2(3.0− (α+ 2β)) + 3(4.7− (α+ 3β)) = 0

⇒ (α0, β0) = (0.4, 1.4). (3.28)

This is the conclusion of Regression Analysis I. Also, using the notations in Regression

Analysis I, we remark that

(R) the measurement MC(Ω0)(Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), S[∗]) is hidden behind the

inference (3.28)
(
= (3.4) in Example 3.1

)
.

This fact will be important in Section 3.5.
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The above may be the standard argument of the conventional regression analysis in

measurement theory. However, our problem (i) in Example 3.1 is not to infer the (α0, β0)

but h(2). In this sense the above regression analysis I is not sufficient. As the answer

of the problem (i) in Example 3.1, we usually consider that it suffices to calculate h(2)(
≡ φ0,2(0.4, 1.4)

)
in the following:

h(2) = 0.4 + 1.4× 2 = 3.2. (3.29)

However, this is doubtful.
(
In fact, this (3.29) is not always true in general situations.

(Cf. Regression analysis II (3.59) and (3.60) later).
)

Recall that our purpose of this paper

is to propose “an axiomatic understanding of statistics”. Thus we should not rely on “a

common sense” but Axioms 1 and 2. That is, we must solve the problem:

• How can the above (3.29)
(
= (3.5) in Example 3.1

)
be deduced from Axioms 1 and

2?

In order to do this, we will make some preparations in the next section.

3.4 Bayes operator, Schrödinger picture and S-states

In order to improve Regression Analysis I (introduced in Section 3.3), in this section

we make some preparations (i.e., Bayes operator, Schrödinger picture, S-state, etc.). Our

main assertion (Regression Analysis II) will be proposed in Section 3.5. We begin with

the following definition, which is a general form of “Bayes operator” in Remark 3.5.

Definition 3.7. (Bayes operator). Let (T ≡ {0, 1, ..., N}, π : T \ {0} → T ) be a

tree with root 0 and let S[∗] ≡ [S[∗]; {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈T\{0}] be a general system

with the initial system S[∗]. And, let an observable Ot ≡ (Xt, 2
Xt , Ft) in C(Ωt) be given

for each t ∈ T . Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0) be as in Theorem 2.9 in the case

At = C(Ωt) (∀t ∈ T ). That is, Õ0 is the Heisenberg picture representation of the

sequential observable [{Ot}t∈T ; {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈T\{0}]. Let τ be any element in

T . If a positive bounded linear operator B
(0,τ)
Πt∈T Ξt

: C(Ωτ )→ C(Ω0) satisfies the following

condition (BO), we call {B(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈ T )} [resp. B
(0,τ)
Πt∈T Ξt

] a family of Bayes

operators [resp. a Bayes operator]:

(BO) for any observable O′
τ ≡ (Yτ , 2

Yτ , Gτ ) in C(Ωτ ), there exists an observable Ô0 ≡(
(
∏

t∈T Xt)× Yτ , 2(
Q

t∈T Xt)×Yτ , F̂0

)
in C(Ω0) such that
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(i) Ô0 is the Heisenberg picture representation (cf. Theorem 2.9) of [{Ot}t∈T ; {C(Ωt)
Φπ(t),t→

C(Ωπ(t))} t∈T\{0}], where Ot = Ot (if t 6= τ), = Oτ ×××××××××O′
τ (if t = τ),

(ii) F̂0((
∏

t∈T Ξt)× Γτ ) = B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ )) (∀Ξt ∈ 2Xt (∀t ∈ T ), ∀Γτ ∈ 2Yτ ),

(iii) F̂0((
∏

t∈T Ξt)×Yτ ) = F̃0(
∏

t∈T Ξt)
(
≡ B

(0,τ)
Πt∈T Ξt

(1τ )
)
, (∀Ξt ∈ 2Xt (∀t ∈ T )), where 1τ

is the identity in C(Ωτ ).

Also, define the map R
(0,τ)
Πt∈T Ξt

:Mm
+1(Ω0)→Mm

+1(Ωτ ) such that

R
(0,τ)
Πt∈T Ξt

(ν) =
(B

(0,τ)
Πt∈T Ξt

)∗(ν)

‖(B(0,τ)
Πt∈T Ξt

)∗(ν)‖M(Ωτ )

(∀ν ∈Mm
+1(Ω0)) (3.30)

where (B
(0,τ)
Πt∈T Ξt

)∗ : C(Ω0)
∗ → C(Ωτ )

∗ is the adjoint operator of B
(0,τ)
Πt∈T Ξt

: C(Ωτ )→ C(Ω0).

The map R
(0,τ)
Πt∈T Ξt

may be called a “normalized dual Bayes operator”.

It holds that

B
(0,τ)
Πt∈T Ξt

(gτ ) ≤ Φ0,τgτ (∀gτ ∈ C(Ωτ ) such that gτ ≥ 0), (3.31)

because it holds, for any observable O′
τ ≡ (Yτ , 2

Yτ , Gτ ) in C(Ωτ ),

B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ )) = F̂0((
∏
t∈T

Ξt)× Γτ ) ≤ F̂0((
∏
t∈T

Xt)× Γτ )

= Φ0,τGτ (Γτ )
(

= B
(0,τ)
Πt∈TXt

(Gτ (Γτ ))
)

(∀Γτ ∈ 2Xτ ). (3.32)

The following theorem is essential to Regression Analysis II later.

Theorem 3.8. (The existence theorem of the Bayes operator (cf. Ishikawa (2001))).

Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0) be as in Theorem 2.9 in the case At = C(Ωt) (∀t ∈ T ).

And, for any s (∈ T ), put Ts ≡ {t ∈ T | s ≤ t}. Assume that, for each s (∈ T ), there exists

an observable Õs ≡ (
∏

t∈Ts
Xt, 2

Q
t∈Ts

Xt , F̃s) in C(Ωs) such that Φπ(s),sF̃s(
∏

t∈Ts
Ξt) =

F̃π(s)

(
(
∏

t∈Tπ(s)\Ts
Xt)×(

∏
t∈Ts

Ξt)
)

(∀Ξt ∈ 2Xt (∀t ∈ T )), (cf. Theorem 2.9). Let τ be any

element in T . Then, there exists a family of Bayes operators {B(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈ T )}.

Proof. See Theorem 3.4 in Ishikawa (2001). The proof in Ishikawa (2001) is essen-

tially true, but it is not complete. That is because the definition of “Bayes operator” (i.e.,

Definition 3.7) was not mentioned in Ishikawa (2001). Thus, we add the complete proof

in Section 6 (Appendix).
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Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), O′
τ ≡ (Yτ , 2

Yτ , Gτ ), {B(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈ T )},
Ô0 ≡ ((

∏
t∈T Xt) × Yτ , 2

(
Q

t∈T Xt)×Yτ , F̂0) and {R(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈ T )} be as in

Definition 3.7. Assume that

(C1) we know that the measured value (xt)t∈T (∈ (
∏

t∈T Xt)) obtained by MC(Ω0)(Õ0, S[δω0 ])

belongs to
∏

t∈T Ξt.

Note that this (C1) is the same as the following (C2).

(C2) we know that the measured value ((xt)t∈T , y) (∈ (
∏

t∈T Xt)×Yτ ) obtained by MC(Ω0)

(Ô0, S[δω0 ]) belongs to (
∏

t∈T Ξt)× Yτ .

Thus we see that

(C3) the probability distribution of unknown y
(
under the assumption (C2)

(
=(C1)

))
,

i.e., the probability that y (∈ Yτ ) belongs to Γτ , is represented by

C(Ω0)∗ 〈δω0 , F̂0((
∏

t∈T Ξt)× Γτ )〉C(Ω0)

C(Ω0)∗ 〈δω0 , F̂0((
∏

t∈T Ξt)× Yτ )〉C(Ω0)

(
≡ C(Ω0)∗ 〈δω0 , B

(0,τ)
Πt∈T Ξt

(Gτ (Γτ ))〉C(Ω0)

C(Ω0)∗ 〈δω0 , B
(0,τ)
Πt∈T Ξt

(1τ )〉C(Ω0)

)
. (3.33)

A simple calculation shows:

(3.33) =
C(Ωτ )∗ 〈

(B
(0,τ)
Πt∈T Ξt

)∗(δω0)

‖(B(0,τ)
Πt∈T Ξt

)∗(δω0)‖M(Ωτ )

, Gτ (Γτ )〉C(Ωτ )
=

C(Ωτ )∗ 〈R
(0,τ)
Πt∈T Ξt

(δω0), Gτ (Γτ )〉C(Ωτ )
.

Therefore, we say that

(C4) the probability distribution of unknown y
(
under (C2)

(
=(C1)

))
is represented by

C(Ωτ )∗ 〈R
(0,τ)
Πt∈T Ξt

(δω0), Gτ (Γτ )〉C(Ωτ )
. (3.34)

Let this (C4) be, as an abbreviation, denoted by

(C5) the S-state
(
after the measurement MC(Ω0)(Õ0, S[δω0 ])

)
at τ in T is equal to R

(0,τ)
Πt∈T Ξt

(δω0).

For completeness, again note that (C4) = (C5), i.e., (C5) is an abbreviation for (C4). Note

that the concept of “S-state” and that of “state” are completely different. In measurement

theory, as seen in Axiom 1, the state always appears as the ρp in MA(O, S[ρp]). That is,

the state is always fixed and never moves. In this sense it may be called a “real state”.

On the other hand, the “S-state” is used in the abbreviation (C5) of (C4).

Summing up the above argument, we have the following definition.
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Definition 3.9. (S-state, Schrödinger picture). Assume the above situation. If the

above statement (C4) holds, then we say “(C5) holds”, i.e., “the S-state
(
after the mea-

surement MC(Ω0)(Õ0, S[δω0 ])
)

at τ (∈ T ) is equal to R
(0,τ)
Πt∈T Ξt

(δω0)”. The representation

using “S-state” is called the Schrödinger picture representation. The S-state is also called

a Schrödinger state or imaginary state.

As seen in the above argument, we must note that the Bayes operator is always hidden

behind the Scrödinger picture representation.

We sum up the above argument
(
i.e., (C1)⇒(C5)

)
as the following lemma.

Lemma 3.10. (S-state). Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), {B(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈
T )} and {R(0,τ)

Πt∈T Ξt
| Ξt ∈ 2Xt (∀t ∈ T )} be as in Definition 3.7. Assume that

(]) we know that the measured value (xt)t∈T (∈
∏

t∈T Xt) obtained by MC(Ω0)(Õ0, S[δω0 ])

belongs to
∏

t∈T Ξt.

Then, we can say

([) the S-state
(
after the measurement MC(Ω0)(Õ0, S[δω0 ])

)
at τ in T is equal to R

(0,τ)
Πt∈T Ξt

(δω0).

The following lemma will be used in Section 3.5 (Theorem 3.15).

Lemma 3.11. (Inference and S-state). Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), {B(0,τ)
Πt∈T Ξt

|
Ξt ∈ 2Xt (∀t ∈ T )} and {R(0,τ)

Πt∈T Ξt
| Ξt ∈ 2Xt (∀t ∈ T )} be as in Definition 3.7. Assume

that

(]) we know that the measured value (xt)t∈T (∈
∏

t∈T Xt) obtained by MC(Ω0)(Õ0, S[∗])

belongs to
∏

t∈T Ξt.

Then, there is a reason to infer that

([) the S-state
(
after the measurement MC(Ω0)(Õ0, S[∗])

)
at τ in T is equal toR

(0,τ)
Πt∈T Ξt

(δω0).

Here the δω0 (∈Mp
+1(Ω0)) is defined by

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (3.35)

Proof. The proof is similar to that of Corollary 3.3. Let (Yτ , 2
Yτ , Gτ ) be any observ-

able in C(Ωτ ). Note that the above (]) is the same as the following statement:
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(])’ we know the measured value ((xt)t∈T , y) (∈ (
∏

t∈T Xt)×Yτ ) obtained by MC(Ω0)(Ô, S[∗])

belongs to (
∏

t∈T Ξt)× Yτ (where Ô0 is as in Definition 3.7).

Thus we can infer, by Theorem 3.2 (Fisher’s method) and the equality F̃0(
∏

t∈T Ξt) =

F̂0((
∏

t∈T Ξt)×Yτ ), that the unknown state [∗]
(
in MC(Ω0)(Ô, S[∗])

)
is equal to δω0

(
defined

by (3.35)
)
. Thus the conditional probability PΠt∈T Ξt(·) under the condition that we know

((xt)t∈T , y) ∈ (
∏

t∈T Ξt)× Yτ is given by

PΠt∈T Ξt(Γτ ) =
C(Ω0)∗ 〈δω0 , F̂0((

∏
t∈T Ξt)× Γτ )〉C(Ω0)

C(Ω0)∗ 〈δω0 , F̂0((
∏

t∈T Ξt)× Yτ )〉C(Ω0)

=
C(Ω0)∗ 〈δω0 , B

(0,τ)
Πt∈T Ξt

(Gτ (Γτ ))〉C(Ω0)

C(Ω0)∗ 〈δω0 , B
(0,τ)
Πt∈T Ξt

(1τ )〉C(Ω0)

=
C(Ωτ )∗ 〈R

(0,τ)
Πt∈T Ξt

(δω0), Gτ (Γτ )〉C(Ωτ )
(∀Γτ ∈ 2Yτ ) (cf. (3.30)).

From the equivalence of (C4) and (C5), we can conclude ([).

Now we consider the simplest case such that T ≡ {0, τ} and S[δω0 ] ≡ [S[δω0 ];C(Ωτ )
Φ0,τ→

C(Ω0)]. For each k = 0, τ , consider the null observable O
(nl)
k ≡ ({0, 1}, 2{0,1}, F (nl)

k ) in

C(Ωk) (cf. Example 2.3 (ii)). Then, we have the measurement

MC(Ω0)

(
Õ0 ≡ ({0, 1}2, 2{0,1}2

, F
(nl)
0 × Φ0,τF

(nl)
τ ), S[δω0 ]

)
. (3.36)

Note that

(i) the probability that the measured value (by MC(Ω0)(Õ0, S[δω0 ])) is equal to (1, 1) is

given by 1. That is, the measured value is always (or surely) equal to (1, 1).

Thus,

(ii) the measured value obtained by MC(Ω0)(Ô0, S[δω0 ]) has always the form ((1, 1), y) (∈
{0, 1}2 × Yτ ). Here Ô0 is defined by

({0, 1}2 × Yτ , 2{0,1}
2×Yτ , F

(nl)
0 × Φ0,τF

(nl)
τ × Φ0,τGτ ) (3.37)

for any any observable (Yτ , 2
Yτ , Gτ ) in C(Ωτ ).

Note that MC(Ω0)(Ô0, S[δω0 ]) and MC(Ω0)((Yτ , 2
Yτ ,Φ0,τGτ ), S[δω0 ]) are essentially the same.

That is because “to take MC(Ω0)(Õ0, S[δω0])” is essentially the same as “to take no mea-

surement” (cf. Example 2.3 (ii)). Thus, the above (ii) implies that

28

KSTS/RR-06/005
April 19, 2006



(iii) the probability distribution of unknown y
(
under (ii)

(
= (i)

))
, i.e., the probability

that y (∈ Yτ ) belongs to Γτ , is represented by

C(Ωτ )∗ 〈Φ
∗
0,τ (δω0), Gτ (Γτ )〉C(Ωτ )

for any observable (Yτ , 2
Yτ , Gτ ) in C(Ωτ ) and any Γτ (∈ 2Yτ ).

That is because it holds that

C(Ω0)∗ 〈δω0 , (F
(nl)
0 × Φ0,τF

(nl)
τ × Φ0,τGτ )({(1, 1)} × Γτ )〉C(Ω0)

C(Ω0)∗ 〈δω0 , (F
(nl)
0 × Φ0,τF

(nl)
τ × Φ0,τGτ )({(1, 1)} × Yτ )〉C(Ω0)

=
C(Ωτ )∗ 〈Φ

∗
0,τ (δω0), Gτ (Γτ )〉C(Ωτ )

.

Thus,we get the following (iv), which is short for (iii).

(iv) the S-state at τ (∈ T ≡ {0, τ}) is equal to Φ∗
0,τ (δω0).

Thus we conclude that (i) ⇒ (iv). However, note that (i) always holds. Therefore, we

consider that (iv) always holds.

From the above argument, we have the following lemma. This will be used in the

statement (3.41) later.

Lemma 3.12. (The Schrödinger picture representation). Put T = {0, τ}. Let S[δω0 ] ≡
[S[δω0 ]; {C(Ωτ )

Φ0,τ→ C(Ω0)}] be a general system with an initial state S[δω0 ]. Then we see

that

(]) the S-state at τ (∈ T ≡ {0, τ} ) is Φ∗
0,τ (δω0).

Here it should be noted that the measurement MC(Ω0)((Yτ , 2
Yτ ,Φ0,τGτ ), S[δω0 ])

(
or, MC(Ω0)

(Ô0, S[δω0 ]), cf. (3.37)
)

is hidden behind the assertion (]).

Also, the following lemma is the formal representation of Corollary 3.4 (ii).
(
Cf. Re-

mark 3.14.
)

Lemma 3.13. (Inference and the Schrödinger picture representation). Put T = {0, τ}.
Let S[∗] ≡ [S[∗]; {Φ0,τ : C(Ωτ )→ C(Ω0)}] be a general system with an initial state S[∗]. Let

O0 = (X0, 2
X0 , F0) be an observable in C(Ω0). And, let O

(nl)
τ = ({0, 1}, 2{0,1}, F (nl)

τ ) be

the null observable in C(Ωτ ) (cf. Example 2.3). Consider a measurement MC(Ω0)(Õ0(≡
O0××××××××× Φ0,τO

(nl)
τ ), S[∗]), which is essentially the same as MC(Ω0)(O0, S[∗]). Assume that
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(]) we know that the measured value obtained by MC(Ω0)(Õ0 ≡ O0××××××××× Φ0,τO
(nl)
τ , S[∗])

belongs to Ξ0 × {1} (∈ 2X0×{0,1}).

Then we see that

([) there is a reason to infer that the S-state (after the measurement MC(Ω0)(Õ0, S[∗]))

at τ (∈ T ≡ {0, τ}) is Φ∗
0,τ (δω0),

where δω0 (∈Mp
+1(Ω0)) is defined by

[F0(Ξ0)](ω0) = max
ω∈Ω0

[F0(Ξ0)](ω). (3.38)

Proof. Let B
(0,τ)
Ξ0×{1} : C(Ωτ ) → C(Ω0) and R

(0,τ)
Ξ0×{1} : Mm

+1(Ω0) → Mm
+1(Ωτ ) be as

in Definition 3.7. Here, note that, from the property of null observable, it holds that

F0(Ξ0)×Φ0,τF
(nl)
τ ({1}) = F0(Ξ0). Thus we see that B

(0,τ)
Ξ0×{1}(gτ ) = F0(Ξ0)×Φ0,τgτ for any

gτ (∈ C(Ωτ )). By Lemma 3.11, it suffices to prove R
(0,τ)
Ξ0

(δω0) = Φ∗
0,τ (δω0). This is shown

as follows.

C(Ωτ )∗ 〈R
(0,τ)
Ξ0×{1}(δω0), gτ 〉C(Ωτ )

=
C(Ωτ )∗ 〈

(B
(0,τ)
Ξ0×{1})

∗(δω0)

‖(B(0,τ)
Ξ0×{1})

∗(δω0)‖M(Ωτ )

, gτ 〉C(Ωτ )

=
1

‖(B(0,τ)
Ξ0×{1})

∗(δω0)‖M(Ωτ )
C(Ω0)∗ 〈δω0 , B

(0,τ)
Ξ0×{1}(gτ )〉C(Ω0)

=
[F0(Ξ0)](ω0)× [Φ0,τgτ ](ω0)

[F0(Ξ0)](ω0)

=
C(Ωτ )∗ 〈Φ

∗
0,τ (δω0), gτ 〉C(Ωτ )

(∀gτ ∈ C(Ωτ )). (3.39)

Then, we see that R
(0,τ)
Ξ0×{1}(δω0) = Φ∗

0,τ (δω0). This completes the proof.

The following remark shows that Corollary 3.4 (ii) is a direct consequence of Lemma

3.13.

Remark 3.14. (Continued from Corollary 3.4). As mentioned before, the proof of

Corollary 3.4 is temporary. Corollary 3.4 should be understood as a corollary of Lemma

3.13 as follows. In Lemma 3.13, put Ω0 = Ωτ = Ω+0. And let Φ0,τ : C(Ω+0) → C(Ω0)

be the identity map. Since “the S-state (after the measurement MC(Ω0)(O0, S[∗])) at

τ(= +0)” = Φ0,τ (δω0) = δω0 , we easily see that Corollary 3.4 is a consequence of Lemma

3.13. This should be regarded as the formal proof of Corollary 3.4.
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3.5 Regression analysis in measurements

Now let us explain the reason why we consider:

(]) it is worth while to doubting the derivation of (3.5)
(
= (3.29)

)
from (3.4)

(
= (3.28)

)
,

i.e., the formula h(2) = 0.4 + 1.4× 2 = 3.2.

Using the notations in Regression Analysis I, as the statement (R) of Example 3.6, we

say that

• the measurement MC(Ω0)(Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), S[∗]) is hidden behind the

inference (3.4)
(
=(3.28)

)
.

And we conclude, by Corollary 3.4 (or Remark 3.14), that

[∗] = “the S-state after the measurement MC(Ω0)(Õ0, S[∗])”

= δω0 . (3.40)

Here the δω0 (∈ Mp
+1(Ω0)) is defined by [F̃0(

∏
t∈T Ξt)](ω0) = maxω∈Ω0 [F̃0(

∏
t∈T Ξt)](ω).

On the other hand,

• the map “δω0 7→ Φ∗
0,τ (δω0)”

(
i.e., the derivation of (3.5)

(
= (3.29)

)
from (3.4)(

= (3.28)
))

is due to the Schrödinger picture, behind which the measurement

MC(Ω0)(Φ0,τO
′
τ ≡ (Yτ , 2

Yτ ,Φ0,τGτ ), S[δω0 ]) is hidden. Cf. Lemma 3.12. (3.41)

Thus, in order to conclude the assertion (3.5)
(
= (3.29)

)
, we need the above “two mea-

surements”, that is,

“MC(Ω0)(Õ0, S[∗])” and “MC(Ω0)(Φ0,τO
′
τ , S[δω0 ])”. (3.42)

However, note that it is forbidden to conduct “two measurements” (cf. Remark 2.4). This

is the reason that we consider that it is worth while to doubting (3.5)
(
= (3.29)

)
. In order

to avoid this confusion, it suffices to consider the “simultaneous” measurement:

MC(Ω0)(Ô0 ≡ ((
∏
t∈T

Xt)× Yτ , 2(
Q

t∈T Xt)×Yτ , F̂0), S[∗]), (where Ô0 is as in Definition 3.7),

(3.43)

instead of (3.42).

Then, we rewrite Lemma 3.11 as our main theorem as follows.
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Theorem 3.15. (= Lemma 3.11, Inference in Markov relation). Let Õ0 ≡ (
∏

t∈T Xt,

2
Q

t∈T Xt , F̃0) be as in Theorem 2.9 in the case At = C(Ωt) (∀t ∈ T ). And consider a

measurement MC(Ω0)(Õ0, S[∗]). Let τ be any element in T . Let {R(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈
T )} be as in Definition 3.7. Assume that we know that the measured value (obtained by

MC(Ω0)(Õ0, S[∗])) belongs to
∏

t∈T Ξt. Then, there is a reason to infer that

(]) “the S-state at τ (∈ T ) after MC(Ω0)(Õ0, S[∗])” = R
(0,τ)
Πt∈T Ξt

(δω0). (3.44)

Here δω0 (∈Mp
+1(Ω)) is defined by

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (3.45)

Lastly, we prove the following lemma, which justify the inference (3.5).

Lemma 3.16. (Some property of homomorphic relation). Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt ,

F̃0) be as in Theorem 2.9 in the case At = C(Ωt) (∀t ∈ T ). Consider the family of Bayes

operators {B(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (t ∈ T )} such as in Definition 3.7. Let τ be any element in

T . Assume that Φπ(t),t : C(Ωt)→ C(Ωπ(t)) (∀t ∈ T such that 0 < t ≤ τ) is homomorphic.

Then, it holds that:

B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ )) = F̃0(
∏
t∈T

Ξt)× Φ0,τGτ (Γτ ) (∀Ξt ∈ 2Xt (∀t ∈ T ),∀Γτ ∈ 2Yτ ), (3.46)

for any observable (Yτ , 2
Yτ , Gτ ) in C(Ωτ ). Thus we see that the Bayes operator B

(0,τ)
Πt∈T Ξt

:

C(Ωτ )→ C(Ω0) is determined uniquely under the homomorphic condition.

Proof. The proof is shown in the following three steps.

[Step 1]. Let ω0 be any element in Ω0. And let gτ and hτ be in C(Ωτ ) such that

0 ≤ gτ ≤ 1, gτ (φ0,τ (ω0)) = 0, 0 ≤ hτ ≤ 1, and hτ (φ0,τ (ω0)) = 1. (3.47)

where φ0,τ : Ω0 → Ωτ is defined by (2.18). Then we see, by (3.32), that

0 ≤ [B
(0,τ)
Πt∈T Ξt

(gτ )](ω) ≤ (Φ0,τgτ )(ω) = gτ (φ0,τ (ω)) (∀ω ∈ Ω0). (3.48)

Putting ω = ω0 in (3.48), we get, by (3.47), that

[B
(0,τ)
Πt∈T Ξt

(gτ )](ω0) = 0. (3.49)
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Also, from the linearity of Bayes operator and the condition (iii) of Definition 3.7, we get

[B
(0,τ)
Πt∈T Ξt

(1τ − hτ )](ω) = [B
(0,τ)
Πt∈T Ξt

(1τ )](ω)− [B
(0,τ)
Πt∈T Ξt

(hτ )](ω)

= [F̃0(
∏
t∈T

Ξt)](ω)− [B
(0,τ)
Πt∈T Ξt

(hτ )](ω) (∀ω ∈ Ω0). (3.50)

Thus, putting ω = ω0 in (3.50), we get, by (3.47), that

0 ≤ [B
(0,τ)
Πt∈T Ξt

(1τ − hτ )](ω0)

≤ [(Φ0,τ (1τ − hτ ))](ω0) = 1τ (φ0,τ (ω0))− hτ (φ0,τ (ω0)) = 1− 1 = 0. (3.51)

Then, we obtain

[B
(0,τ)
Πt∈T Ξt

(hτ )](ω0) = [F̃0(
∏
t∈T

Ξt)](ω0). (3.52)

[Step 2]. Let ω0 be any element in Ω0. Fix any f (∈ C(Ωτ )) such that 0 ≤ f ≤ 1. Define

gτ , hτ (∈ C(Ωτ )) such that

gτ (ωτ ) = max{0, f(ωτ )− f(φ0,τ (ω0))} (∀ωτ ∈ Ωτ ),

hτ (ωτ ) = min{ f(ωτ )

f(φ0,τ (ω0))
, 1} (∀ωτ ∈ Ωτ ). (3.53)

The gτ and the hτ clearly satisfy (3.47). And moreover, we see, for any ωτ ∈ Ωτ , that

gτ (ωτ ) + f(φ0,τ (ω0))hτ (ωτ )

= max{0, f(ωτ )− f(φ0,τ (ω0))}+ min{f(ωτ ), f(φ0,τ (ω0))}

=

{
(f(ωτ )− f(φ0,τ (ω0))) + f(φ0,τ (ω0)), if f(ωτ ) ≥ f(φ0,τ (ω0))
0 + f(ωτ ), if f(ωτ ) ≤ f(φ0,τ (ω0))

= f(ωτ ). (3.54)

[Step 3]. Let ω0 be any element in Ω0. Let Γτ be any element in 2Yτ . From the [Step

2], we see that there exist ĝτ (∈ C(Ωτ )) and ĥτ (∈ C(Ωτ )) such that Gτ (Γτ ) = ĝτ+

[Gτ (Γτ )](φ0,τ (ω0))ĥτ , ĝτ (φ0,τ (ω0)) = 0, ĥτ (φ0,τ (ω0)) = 1. Then we see

[B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ ))](ω) =
[
B

(0,τ)
Πt∈T Ξt

(
ĝτ + [Gτ (Γτ )](φ0,τ (ω0))ĥτ

)]
(ω)

=[B
(0,τ)
Πt∈T Ξt

(ĝτ )](ω) + [Gτ (Γτ )](φ0,τ (ω0))× [B
(0,τ)
Πt∈T Ξt

(ĥτ )](ω) (∀ω ∈ Ω0). (3.55)
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Putting ω = ω0, we see, by (3.49) and (3.42), that [B
(0,τ)
Πt∈T Ξt

(ĝτ )](ω0) = 0 and [B
(0,τ)
Πt∈T Ξt

(ĥτ )](ω0)

= [F̃0(
∏

t∈T Ξt)](ω0). Thus, we see, by (3.55), that

[B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ ))](ω0) = [Gτ (Γτ )](φ0,τ (ω0))× [F̃0(
∏
t∈T

Ξt)](ω0)

= [Φ0,τGτ (Γτ )](ω0)× [F̃0(
∏
t∈T

Ξt)](ω0). (3.56)

Since ω0 (∈ Ω0) is arbitrary, we obtain (3.46). This completes the proof.

Now we can propose our main assertion as follows.

REGRESSION ANALYSIS II. (The new proposal). Let (T ≡ {0, 1, ..., N}, π : T \
{0} → T ) be a tree with root 0, and let S[∗] ≡ [S[∗]; {C(Ωt)

Φπ(t),t→ C(Ωπ(t))}t∈T\{0}] be a

general system with the initial system S[∗]. And, let an observable Ot ≡ (Xt, 2
Xt , Ft) in a

C∗-algebra C(Ωt) be given for each t ∈ T . Then, we have a measurement

MC(Ω0)(Õ0 ≡ (
∏
t∈T

Xt, 2
Q

t∈T Xt , F̃0), S[∗]) (cf. Theorem 2.9). (3.57)

Assume that the measured value by the measurement MC(Ω)(Õ0, S[∗]) belongs to
∏

t∈T Ξt (∈
2
Q

t∈T Xt). Also define δω0 (∈Mp
+1(Ω0)) such that

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (3.58)

Let τ be any element in T . Let {R(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈ T )} be as in Definition 3.7.(
The existence of {R(0,τ)

Πt∈T Ξt
| Ξt ∈ 2Xt (∀t ∈ T )} is assumed by Theorem 3.8.

)
Then, we

see:

(i). [The S-state at τ (∈ T )]. There is a reason to infer that

(]) “The S-state at τ (∈ T ) after MC(Ω0)(Õ0, S[∗])” = R
(0,τ)
Πt∈T Ξt

(δω0). (3.59)

Also

(ii). [The S-state at τ (∈ T ) for the homomorphism Φ0,τ ]. Assume that Φ0,τ : C(Ωτ ) →
C(Ω0) is homomorphic

(
i.e., Φπ(t),t : C(Ωt) → C(Ωπ(t)) (∀t ∈ T such that 0 < t ≤ τ) is

homomorphic
)
. Then there is a reason to infer that

“the S-state at τ (∈ T ) after MC(Ω0)(Õ0, S[∗])” = Φ∗
0,τ (δω0). (3.60)

Here note that Φ∗
0,τ (δω0) = δφ0,τ (ω0) where φ0,τ : Ω0 → Ωτ is defined by (2.18).
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Proof. (i). See Theorem 3.15 (= Lemma 3.11).

(ii). We see, by Lemma 3.16, that

C(Ωτ )∗ 〈R
(0,τ)
Πt∈T Ξt

(δω0), gτ 〉C(Ωτ )
=

C(Ωτ )∗ 〈
(B

(0,τ)
Πt∈T Ξt

)∗(δω0)

(B
(0,τ)
Πt∈T Ξt

)∗(δω0)
, gτ 〉C(Ωτ )

=
1

‖(B(0,τ)
Πt∈T Ξt

)∗(δω0)‖M(Ωτ )
C(Ω0)∗ 〈δω0 , B

(0,τ)
Πt∈T Ξt

(gτ )〉C(Ω0)

=
1

[F̃0(
∏

t∈T Ξt)](ω0)
C(Ω0)∗ 〈δω0 , F̃0(

∏
t∈T

Ξt)× Φ0,τgτ 〉C(Ω0)
(by Lemma 3.10)

=
C(Ωτ )∗ 〈Φ

∗
0,τ (δω0), gτ 〉C(Ωτ )

(∀gτ ∈ C(Ωτ )).

Then, we see that R
(0,τ)
Πt∈T Ξt

(δω0) = Φ∗
0,τ (δω0).

Remark 3.17. (1. Continued from Examples 3.1 and 3.6). Note that our problem

(i) in Example 3.1 was to infer the h(2) and not (α0, β0). Regression analysis II (3.60) is

applicable to our problem, that is, the above (3.60) says that there is a reason to calculate

h(2) in the following:

h(2) = φ0,2(0.4, 1.4) = 0.4 + 1.4× 2 = 3.2. (3.61)

(2. Interesting logic). It should be noted that, when τ = 0, the Regression Analysis II

is the same as the Regression Analysis I. Thus, we also conclude (3.4), i.e., (α0, β0) =

(0.4, 1.4). After all, the Regression Analysis II says that

(M1) as the result in the case that τ = 0, the conclusion (3.4) in Example 3.1 is reasonable,

or

(M2) as the result in the case that τ 6= 0, the conclusion (3.5) in Example 3.1 is reasonable,

However, it should be noted that the Regression Analysis II does not guarantee that

(M3) both (3.4) and (3.5) in Example 3.1 are (simultaneously) reasonable.

That is because two measurements
(
i.e., the measurement M1 behind (M1) and the mea-

surement M2 behind (M2)
)

are included in (M1) and (M2). If we want to conclude

this (M3), we must consider the simultaneous measurement of “measurement M1” and

“measurement M2”, that is, we must generalize Definition 3.7 (Bayes operator) such as

B
(0,(0,τ))
Πt∈T Ξt

: C(Ω0) × C(Ωτ ) → C(Ω0) satisfying similar conditions since only one mea-

surement is permitted (cf. Remark 2.4). This is, of course, interesting, though it is not

discussed in this paper.
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3.6 Conclusion

It is too optimistic to claim that an axiomatic approach is always possible and powerful

to every field in science. We can easily check it if we, for example, examine the standard

description of chemistry, psycohlogy or botany, etc.. That is, we consider that the success

of the axiomatic approach to physics (e.g., “Newtonian mechanics is based on the three

laws” etc.) is a quite rare case in the history of science. And further, we believe that

only the most fundamental theories can be completely formulated under some axioms.

Here, we have the important question “Which category does statistics belong to?”. This is

precisely our motivation of this paper. For the axiomatic approach to statistics, we start

from the two axioms in measurement theory:

MT
(measurement theory)

= measurement
(Axiom 1)

+ the relation among systems
(Axiom 2)

(3.62)

which includes classical and quantum measurements.

In this paper we show that regression analysis can be completely understood in MT

as follows.

measurement theory

=⇒



Axiom 1⇒ Theorem 3.2
(Fisher’s method)

⇒
{

Corollary 3.3 (conditional probability)
Corollary 3.4 (classical Fisher’s method)

Axiom 2⇒


Theorem 2.9 (measurability)
Theorem 3.8 (the existence of Bayes operator)
Lemma 3.10 (some property of homomorphic relation).

And, using these results, we derive “regression analysis” as follows.

(i) : “Theorem 2.9” + “Corollary 3.4” ⇒ “Regression Analysis I ”,

(ii) :

“Theorem 2.9”

“Corollary 3.3” + “Theorem 3.8” ⇒ “Theorem 3.15”
(Markov inference)

“Lemma 3.10”


⇒ “Regression Analysis II”.

We believe that Regression Analysis II is the best (i.e., precise, wide, deep etc.) in all

conventional proposals of regression analysis (though it should be generalized as mentioned

in Remark 3,17.). It is surprising that both statistics and quantum mechanics can be

understood in the same theory, i.e., measurement theory (3.62).
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We believe that every statistician wants to know the complete justification of (3.4)

and (3.5) in Example 3.1. Thus we expect that many statisticians will be interested in

our axiomatic approach. That is because there is no justification without axioms.

We hope that our theory will be generally accepted as a standard theory of an ax-

iomatic formulation of statistics.

4 Kalman filter in Noise

In this section we formulate “Kalman filter” ( cf. Kalman (1960)) in SMT. Consider

the following conventional “Kalman” filter as follows.

+k z−1I C(n) +k
Ψ̃(n+ 1, n)

θ1(n) s(n+ 1) s(n) x(n)

θ2(n)

- - - - -

6

�

6

(4.1)

where s(n) : L-dimensional state vector at time n, x(n) : M -dimensional measured data

vector. And s(n) and x(n) are described by the following equations: s(n+ 1) = Ψ̃(n+ 1, n)s(n) + θ1(n) : stochastic difference state equation
(n = 0, 1, · · · , N − 1)

x(n) = C(n)s(n) + θ2(n) : measurement equation
(4.2)

Here, it is assumed that Ψ̃(n+1, n), C(n), θ1(n) (and its initial distribution) and θ2(n) are

known, where Ψ̃(n+ 1, n) : K ×K-dimensional transition matrix, θ1(n) : L-dimensional

input vector which represents a white noise, C(n) : L × K-dimensional measurement

matrix, θ2(n) : L-dimensional vector which represents a measurement error. Here, our

problem is as follows.

([) Infer the state vector s(τ) (0 ≤ τ ≤ N) from the measured data x(1),x(2), · · · ,x(N)

Also, note the original equation of the stochastic difference equation (4.2) is the following

equation:

s(n+ 1) = Ψ̃(n+ 1, n)s(n) (n = 0, 1, · · · , N − 1). (4.3)

In this section, we consider this problem ([) in SMT.
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The following theorem is an analogy of Theorem 3.15. This theorem ( = Theorem 4.1

) is also called “Bayes’ method“.

Theorem 4.1. (Generalized Bayes theorem, Bayes’ method or Bayes-Kalman filter).

Let (T ≡ {0, 1, ..., N}, π : T \ {0} → T ) be a tree with the root 0 and let S(ν0) ≡
[S(ν0), C(Ωt)

Φπ(t),t→ C(Ωπ(t)) (t ∈ T \ {0})] be a general system with the initial system

S(ν0). And, let an observable Ot ≡ (Xt,Ft, Ft) in a C∗-algebra C(Ωt) be given for each

t ∈ T . Then, we have a statistical measurement

MC(Ω0)(Õ0 ≡ (
∏
t∈T

Xt,
⊗
t∈T

Ft, F̃0), S(ν0)). (cf. Theorem 3.15 )

Assume that the measured value by the statistical measurement MC(Ω)(Õ0, S(ν0)) belongs

to
∏

t∈T Ξt (∈
⊗

t∈T Ft). Let τ be any element in T . Then, we see

(a) “the ( statistical ) S-state at τ(∈ T ) after MC(Ω0)(Õ0, S(ν0))” = R
(0,τ)
Πt∈T Ξt

(ν0).

Proof. Since the sequential observable [{Ot}t∈T , {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈T\{0}] is com-

mon to PMT and SMT, Theorem 3.15 is applicable.

4.1 The measurement theoretical formulation of the (4.2)

Firstly, we formulate the (4.2) in SMT. Assume, for simplicity, that T (≡ {0, 1, ..., N})
is a tree with a series structure (though this assumption is not needed). For each t (∈ T ),

consider compact Hausdorff spaces St and Θt. Note that the St [resp. Θt] (t (∈ T )) is

the state space [resp. “the set of the white noise”]. Although, it is natural to assume

that S0 = S1 = · · · = SN and Θ0 = Θ1 = · · · = ΘN . In this papaer, we can do

well without this assumption. Now, consider the following two Markov relations among

systems: [{Ψt1,t2 : C(St2) → C(St1)}(t1,t2)∈T 2
≤
] and [{Υt1,t2 : C(Θt2) → C(Θt1)}(t1,t2)∈T 2

≤
]

such as

[C(S0)]
Ψ0,1←−−− [C(S1)]

Ψ1,2←−−− · · ·
ΨN−2,N−1←−−−−−− [C(SN−1)]

ΨN−1,N←−−−− [C(SN)] (4.4)

where the initial state δs0 (∈Mp
+1(S0)) is assumed to be unknown, and

[C(Θ0)]
Υ0,1←−−− [C(Θ1)]

Υ1,2←−−− · · ·
ΥN−2,N−1←−−−−−− [C(ΘN−1)]

ΥN−1,N←−−−− [C(ΘN)](
with the initial state νΘ

0 (∈Mm
+1(Θ0))

)
. (4.5)
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Here, it should be noted that the above (4.4) [resp. (4.5)] is the measurement theoretical

formulation of (4.3) [resp. the θ1 in (4.1)]. Also, note that the above (4.4) is equivalent

to

[Mm
+1(S0)]

Ψ∗
0,1−−−→ [Mm

+1(S1)]
Ψ∗

1,2−−−→ · · ·
Ψ∗

N−2,N−1−−−−−−→ [Mm
+1(SN−1)]

Ψ∗
N−1,N−−−−→ [Mm

+1(SN)]

where Ψ∗
n,n+1 : Mm

+1(Sn) → Mm
+1(Sn+1)] is the dual operator of Ψn,n+1 : C(Sn+1) →

C(Sn). Since the (4.4) corresponds to the conventional (4.3), it is natural to assume that

the (4.4) is deterministic, i.e., Ψn,n+1 is homomorphic. Thus, for each n = 0, 1, 2, · · · , N−
1, there exists a continuous map ψn,n+1 : Sn → Sn+1, i.e.,

[S0]
ψ0,1−−−→ [S1]

ψ1,2−−−→ · · ·
ψN−2,N−1−−−−−−→ [SN−1]

ψN−1,N−−−−→ [SN ]

where

fn+1(ψn,n+1(sn)) = [Ψn,n+1(fn+1)](sn) (∀fn+1 ∈ C(Sn+1), ∀sn ∈ Sn).

Next, consider a continuous map λn : Sn ×Θn → Sn, that is,

Sn ×Θn 3 (sn, θn) 7→ λn(sn, θn) ∈ Sn (n = 0, 1, · · · , N) (4.6)

which corresponds to the left ⊕ in (4.1). The continuous map λn : Sn×Θn → Sn induces

the continuous map Λn :Mm
+1(Sn ×Θn)→Mm

+1(Sn) such that

Λn(ν
S
n ⊗ νΘ

n )](Bn) = (νSn ⊗ νΘ
n )(λ−1

n (Bn))

(∀νSn ⊗ νΘ
n ∈Mm

+1(Sn ×Θn), ∀Bn ⊆ Sn : open). (4.7)

Further, define the continuous map Φ̂∗
n,n+1 : Mm

+1(Sn × Θn) → Mm
+1(Sn+1 × Θn+1),

such that

Mm
+1(Sn ×Θn) 3 νSn ⊗ νΘ

n 7→Φ̂∗
n,n+1(ν

S
n ⊗ νΘ

n )

≡[Λn+1(Ψ∗
n,n+1ν

S
n ⊗Υ∗

n,n+1ν
Θ
n )]⊗Υ∗

n,n+1ν
Θ
n ∈Mm

+1(Sn+1 ×Θn+1)

where Υ∗
n,n+1 :Mm

+1(Θn)→Mm
+1(Θn+1) is a dual operator of Υn,n+1 : C(Ωn+1)→ C(Ωn).

That is,

νSn+1 ⊗ νΘ
n+1

(
≡ Φ̂∗

n,n+1(ν
S
n ⊗ νΘ

n )
)

=[Λn+1(Ψ
∗
n,n+1ν

S
n ⊗Υ∗

n,n+1ν
Θ
n )]⊗Υ∗

n,n+1ν
Θ
n (n = 0, 1, · · · , N − 1) (4.8)
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which (or, the following (4.9)) corresponds to the state equation (4.2). Thus, we have the

following Markov relation [{Φ̂n,n+1 : C(Sn+1 ×Θn+1)→ C(Sn ×Θn)}N−1
n=0 ]:

[C(S0 ×Θ0)]
bΦ0,1←−−−− [C(S1 ×Θ1)]

bΦ1,2←−−−− · · ·
bΦN−2,N−1←−−−−−−− [C(SN−1 ×ΘN−1)]

bΦN−1,N←−−−−− [C(SN ×ΘN )]
(4.9)

where Φ̂n,n+1 is the pre-dual operator of Φ̂∗
n,n+1 (i.e., (Φ̂n,n+1)

∗ = Φ̂∗
n,n+1).

Next, we consider the measurement theoretical characterization of the measurement

equation (4.2). That is, consider the following Markov relation:

[C(Θ′
0)]

Υ′
0,1←−−− [C(Θ′

1)]
Υ′

1,2←−−− · · ·
Υ′

N−2,N−1←−−−−−− [C(Θ′
N−1)]

Υ′
N−1,N←−−−− [C(Θ′

N)](
with the initial state νΘ′

0 (∈Mm
+1(Θ

′
0))

)
which corresponds to the θ2 in (4.2). Also, for each n (∈ T ), consider an observable

On = (Xn, 2
Xn , Fn) in C(Sn×Θn×Θ′

n), which corresponds to the measurement equation

(4.2). Thus, we see that the (4.2) corresponds to the following (4.10):

[C(S0 ×Θ0 ×Θ′
0)]

bΦ0,1←−−−− [C(S1 ×Θ1 ×Θ′
1)]

bΦ1,2←−−−− · · ·
bΦN−1,N←−−−−− [C(SN ×ΘN ×Θ′

N )]

(X0, 2X0 , F0) (X1, 2X1 , F1) · · · (XN , 2XN , FN )
(4.10)

with the initial state δs0 ⊗ νΘ
0 ⊗ νΘ′

0 , where νΘ
0 (∈ Mm

+1(Θ0)) and νΘ′
0 (∈ Mm

+1(Θ
′
0)) are

known, but δs0 (∈Mp
+1(S0)) is unknown.

Now, we can skip to the next section. However, in what follows we mention the con-

crete form of the family {On = (Xn, 2
Xn , Fn)}Nn=0, which corresponds to the measurement

equation (4.2).

For each n(= 0, 1, ..., N), consider an observable O′
n = (Xn, 2

Xn , F ′
n) in C(S ′

n), where

S ′
n is a compact space. And consider a continuous map λ′n : Sn×Θ′

n → S ′
n, which induces

the continuous map Λ′
n :Mm

+1(Sn ×Θn ×Θ′
n)→Mm

+1(S ′
n) such that

[Λ′
n(ν

S
n ⊗ νΘ

n ⊗ νΘ′

n )](Bn) = (νSn ⊗ νΘ′

n )((λ′n)
−1(B′

n))

(∀νSn ⊗ νΘ
n ⊗ νΘ′

n ∈Mm
+1(Sn ×Θn ×Θ′

n),∀B′
n ⊆ S ′

n : open).

Thus, for each n (∈ T ), we can define the observable On = (Xn, 2
Xn , Fn) (in (4.10)) in

C(Sn ×Θn ×Θ′
n) such that

C(Sn×Θn×Θ′
n)∗
〈νSn
n ⊗ νΘ

n ⊗ νΘ′

n , Fn(Ξn)〉C(Sn×Θn×Θ′
n)

=
C(S′

n)∗
〈Λ′

n(ν
Sn
n ⊗ νΘ

n ⊗ νΘ′

n ), F ′
n(Ξn)〉C(S′

n)

(∀νSn ⊗ νΘ
n ⊗ νΘ′

n ∈Mm
+1(Sn ×Θn ×Θ′

n)).
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4.2 Kalman filter in Noise

For simplicity, put Θ̂n = Θn×Θ′
n and ν

bΘ
0 = νΘ

0 ⊗ νΘ′
0 . Then, we can rewrite the (4.10)

as follows.

[C(S0 × Θ̂0)]
bΦ0,1←−−−− [C(S1 × Θ̂1)]

bΦ1,2←−−−− · · ·
bΦN−2,N−1←−−−−−−− [C(SN−1 × Θ̂N−1)]

bΦN−1,N←−−−−− [C(SN × Θ̂N )]

(X0, 2X0 , F0) (X1, 2X1 , F1) · · · (XN−1, 2XN−1 , FN−1) (XN , 2XN , FN )

with the initial state δs0⊗ν
bΘ
0 , where ν

bΘ
0 (∈Mm

+1(Θ̂0)) is known
(
that is, νΘ

0 (∈Mm
+1(Θ0))

and νΘ′
0 (∈Mm

+1(Θ
′
0)) are known

)
, but δs0 (∈Mp

+1(S0)) is unknown.

Now, we get the sequential observable [OT ] ≡ [{Ot}t∈T , {Φ̂t1,t2 : C(St2 × Θ̂t2) →
C(St1×Θ̂t1)}(t1,t2)∈T 2

≤
]. Then, we can construct the observable Õ0 ≡ (

∏
t∈T Xt, 2

Πt∈TXt , F̃0)

in C(S0 × Θ̂0), which is the realization of the sequential observable [OT ], such as

[C(S0 × Θ̂0)]
bΦ0,1←−−−− [C(S1 × Θ̂1)]

bΦ1,2←−−−− · · ·
bΦN−2,N−1←−−−−−−− [C(SN−1 × Θ̂N−1)]

bΦN−1,N←−−−−− [C(SN × Θ̂N )]

F0 F1 · · · FN−1 FNy y y y
(F0

qp
×××××××××bΦ eF1)

= eF0

bΦ0,1←−−−− (F1
qp
×××××××××bΦ eF2)

= eF1

bΦ1,2←−−−− · · ·
bΦN−2,N−1←−−−−−−− (FN−1

qp
×××××××××bΦ eFN )

= eFN−1

bΦN−1,N←−−−−− (FN )

= eFN .

(4.11)(
The existence of the Õ0 ≡ (

∏
t∈T Xt, 2

Πt∈TXt , F̃0) is assured by Theorem 2.9.
)

Now, we can represent the “measurement” M({Ot}t∈T ,S(δs0 ⊗ ν
bΘ
0 )) such as

M({Ot}t∈T ,S(δs0 ⊗ ν
bΘ
0 )) = MC(S0×bΘ0)(Õ0, S(δs0 ⊗ ν

bΘ
0 )).

Assume we know that the measured value (xt)t∈T (∈
∏

t∈T Xt), obtained by the mea-

surement MC(S0×bΘ0)(Õ0, S(δs0 ⊗ ν
bΘ
0 )), belongs to

∏
t∈T Ξt. Thus, Fisher’s maximum like-

lihood method (cf. Theorem 3.8, Corollary 4.1) says that there is a reason to infer that

the unknown s0 (∈ S0) is determined by

C(S0×bΘ0)
∗ 〈δs0 ⊗ ν

bΘ
0 , F̃0(

∏
t∈T

Ξt)〉
C(S0×bΘ0)

= max
s∈S0

C(S0×bΘ0)
∗ 〈δs ⊗ ν

bΘ
0 , F̃0(

∏
t∈T

Ξt)〉
C(S0×bΘ0)

.

Let τ ∈ T , and let {B(0,τ)
Πt∈T Ξt

|
∏

t∈T Ξt ∈ 2Πt∈TXt} be a family of Bayes operators.(
The existence is assured by Theorem 3.2.

)
Then, we see, by Theorem 3.4, that the new

S-state νSτ×bΘτ
new (∈Mm

+1(Sτ × Θ̂τ )) is defined by

νSτ×bΘτ
new = R

(0,τ)
Πt∈T Ξt

(δs0 ⊗ ν
bΘ
0 ),
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where R
(0,τ)
Πt∈T Ξt

: Mm
+1(S0 × Θ̂0) → Mm

+1(Sτ × Θ̂τ ) is a normalized dual Bayes operator,

i.e., R
(0,τ)
Πt∈T Ξt

(ν) =
(B

(0,τ)
Πt∈T Ξt

)∗(ν)

‖(B(0,τ)
Πt∈T Ξt

)∗(ν)‖
(∀ν ∈Mm

+1(S0× Θ̂0)). Thus there is a reason to consider

that the new S-state ( inMm
+1(Sτ )) is equal to νSτ

new such that

νSτ
new(Dτ ) ≡ νSτ×bΘτ

new (Dτ × Θ̂τ ) (∀Dτ (⊆ Sτ ) : open set). (4.12)

4.3 Conclusion

In this paper, we studied “Kalman filter” in SMT (= statistical measurement theory

).
s(n+ 1) = λ(ψ(n+ 1, n)s(n),θ1(n)) : stochastic difference state equation

( where λ is the additive operation)
(n = 0, 1, · · · , N − 1)

x(n) = λ′(C(n)s(n),θ2(n)) : measurement equation
( where λ′ is the additive operation)

(4.13)

Here, it is assumed that Ψ̃(n+1, n), C(n), θ1(n) (and its initial distribution) and θ2(n) are

known, where Ψ̃(n+ 1, n) : K ×K-dimensional transition matrix, θ1(n) : L-dimensional

input vector which represents a white noise, C(n) : L × K-dimensional measurement

matrix, θ2(n) : L-dimensional vector which represents a measurement error.

5 Measurement error model

Although we have several kinds of measurement error models in statistics (cf. Fuller), the

following may be the simplest one:

ỹn = θ0 + θ1xn + en, x̃n = xn + un (n = 1, 2, ..., N),

(en, un) ∼ NI[average(0, 0), variance(σ2
ee, σ

2
uu)]. (5.1)

The first equation is a classical regression specification, but the true explanatory variable

xn is not observed directly. The observed measure of xn, denoted by x̃n, may be obtained

by a certain measurement. Our present concern is how to infer the unknown parameters

θ0 and θ1 from the measured data {(x̃n, ỹn)}Nn=1. Precisely speaking, our purpose of this

paper is to study this problem in general situations (i.e., without the assumption of normal

distributions). We show that the above problem is naturally formulated in measurement

theory, and assert that the method of measurement error model is valid for more general

situations (i.e., the abstract form of (5.1) without the assumption of normal distributions).
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5.1 Measuement error model in measurement theory

From here and onwards, we, for simplicity, devote ourselves to classical systems (i.e., the

case that A = C(Ω)), and not quantum systems (cf. the last statement in this section).

Put A0 ≡ C(Ω0) and A1 ≡ C(Ω1). Let Θ be a compact space, which may be called a

parameter state space. Consider a parametrized continuous map ψθ : Ω0 → Ω1, θ ∈ Θ,

which induces the parametrized Markov operator Ψθ : C(Ω1)→ C(Ω0) such that

(Ψθf1)(ω) = f1(ψ
θ(ω)) (∀f1 ∈ C(Ω1),∀ω ∈ Ω0). (5.2)

Consider observables O0 ≡ (X,F , F ) in C(Ω0) and O1 ≡ (Y,G, G) in C(Ω1). Recall that

ΨθO1 can be identified with the observable in C(Ω0) (cf. Axiom (ii)). Thus, we can con-

sider the product observable Õθ = (X×Y,F×G, F×××××××××ΨθG) in C(Ω0). And, we get the mea-

surement MC(Ω0)(Õ
θ, S[δω ]) (ω ∈ Ω0). Consider the N times repeated measurement of

MC(Ω0)(Õ
θ, S[δω ]), which is represented by MC(ΩN

0 )(
⊗N

n=1 Õθ, S[⊗N
n=1δωn ]). Here, ⊗Nn=1δωn =

δ(ω1,ω2,...,ωN ) (∈ Mp
+1(Ω

N
0 )) and

⊗N
n=1 Õθ = (XN × Y N ,FN × GN ,

⊗N
n=1(F ××××××××× ΨθG)) in⊗N

n=1C(Ω0) ≡ C(ΩN
0 ), that is,

[(
N⊗
n=1

(F ×××××××××ΨθG))(Ξ1 × Ξ2 × · · · × ΞN × Γ1 × Γ2 × · · · × ΓN)](ω1, ω2, ..., ωN)

=[F ×××××××××ΨθG(Ξ1 × Γ1)](ω1) · [F ×××××××××ΨθG(Ξ2 × Γ2)](ω2) · · · [F ×××××××××ΨθG(ΞN × ΓN)](ωN)

(∀Ξn ∈ F , ∀Γn ∈ G, ∀(ω1, ω2, ..., ωN) ∈ ΩN
0 ,∀θ ∈ Θ). (5.3)

Our present problem is as follows.

(]) Consider the measurement MC(ΩN
0 )(

⊗N
n=1 Õθ̄, S[⊗N

n=1δω̄n ]) where it is assumed that

(ω̄1, ω̄2, ..., ω̄N) (∈ ΩN
0 ) and θ̄ (∈ Θ) are unknown. Assume that we know that the

measured value (x̃1, ..., x̃N , ỹ1, ..., ỹN) (∈ XN × Y N) obtained by the measurement

MC(ΩN
0 )(

⊗N
n=1 Õθ̄, S[⊗N

n=1δω̄n ]) belongs to
∏N

n=1(Ξn × Γn). Then, infer the unknown

ω̄1, ω̄2, ..., ω̄N and θ̄.

This problem is solved as follows. Define the observable Ô ≡ (XN × Y N ,FN × GN , Ĥ)

in C(ΩN
0 × Θ) such that [Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN , θ) = (5.4). Note

that we have the following identification:

MC(ΩN
0 ×Θ)(Ô, S[(⊗N

n=1δωn )⊗δθ]) = MC(ΩN
0 )(

N⊗
n=1

Õθ, S[⊗N
n=1δωn ]). (5.4)
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Consider the measurement MC(ΩN
0 ×Θ)(Ô, S[(⊗N

n=1δω̄n )⊗δθ̄]) where it is assumed that we

do not know ω̄1, ω̄2, ..., ω̄N , θ̄. Then, we can, by Fisher’s maximum likelihood method

(Corollary 3.4), infer the unknown state (⊗Nn=1δω̄n)⊗ δθ̄ such that

[Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω̄1, ..., ω̄N , θ̄)

= max
(ω1,...,ωN ,θ)∈ΩN

0 ×Θ
[Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN , θ). (5.5)

This is the answer to the above problem (]). Note that Ω0, Ω1, X and Y are not necessarily

the real lines R. Also, if readers are familiar with the theory of tensor product C∗-algebras,

they can easily see that the assertion (5.5) is valid for even quantum systems under the

condition that O0 and ΨθO1 commute. Therefore, the answer (5.5) is stated under the

very general situations.

5.2 A simple example with normal distributions

In this section, we apply our main result (5.5) to the simple measurement error model

(5.1) with normal distributions.

Let L be a sufficiently large number. Put Ω0 = [−L,L],Ω1 = [−L2 − L,L2 + L],Θ =

[−L,L]2 and define the map ψ(θ0,θ1) : Ω0 → Ω1 such that

ψ(θ0,θ1)(ω) = θ1ω + θ0 (∀ω ∈ Ω0, ∀(θ0, θ1) ∈ Θ).

Also, put (X,F , F ) = (R,BR, G
σ1) in C(Ω0) and (Y,G, G) = (R,BR, G

σ2) in C(Ω1)

(cf. Example 2.2). Thus, we define the product observable Õ(θ0,θ1) = (X × Y,F × G, F ×××××××××
ΨθG) = (R2,BR2 , H(θ0,θ1)), where H(θ0,θ1) ≡ F ×××××××××ΨθG, in C(Ω0) such that

[H(θ0,θ1)(Ξ× Γ)](ω) = (
1√

2πσ1σ2

)2

∫∫
Ξ×Γ

exp[−(x− ω)2

2σ2
1

− (y − (θ1ω + θ0))
2

2σ2
2

]dxdy

(∀Ξ ∈ BR,∀Γ ∈ BR, ∀ω ∈ Ω0).

Thus, we have the observable Ô = (R2N ,BR2N , Ĥ) in C(ΩN
0 ×Θ) such that

[Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN , θ0, θ1) =
N∏
n=1

[H(θ0,θ1)(Ξn × Γn)](ωn)

=(
1√

2πσ1σ2

)2N

∫
···
∫

ΠN
n=1(Ξn×Γn)

e
−
PN

n=1(xn−ωn)2

2σ2
1

−
PN

n=1(yn−(θ1ωn+θ0))2

2σ2
2 dx1dy1 · · · dxNdyN

(∀Ξn ∈ BR,∀Γn ∈ BR,∀(ω1, ω2, ..., ωN) ∈ ΩN
0 , ∀(θ0, θ1) ∈ Θ).
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Assume the conditions in the problem (]) in Section 5.1, and further add that

Ξεn = [x̃n − ε, x̃n + ε], Γεn = [ỹn − ε, ỹn + ε] (for sufficiently small positive ε).

Then, our main result (5.5) says that

max
(ω1,...,ωN ,θ0,θ1)∈ΩN

0 ×Θ
[Ĥ(θ0,θ1)(Ξε1 × · · · × ΞεN × Γε1 × · · · × ΓεN)](ω1, ..., ωN , θ0, θ1)

⇐⇒ min
(ω1,...,ωN ,θ0,θ1)∈ΩN

0 ×Θ

[ N∑
n=1

(
x̃n
σ1

− ωn
σ1

)2 +
N∑
n=1

(
ỹn
σ2

− (
θ1σ1

σ2

ωn
σ1

+
θ0

σ2

))2
]

(since ε is small)

(
Here, note that the distance between a point ( exn

σ1
, eyn

σ2
) and a line y = θ1σ1

σ2
x+ θ0

σ2
is equal

to |eyn−θ1exn−θ0|√
σ2
2+σ2

1θ
2
1

. Then, we see
)

⇐⇒ min
(θ0,θ1)∈Θ

∑N
n=1(ỹn − θ1x̃n − θ0)

2

σ2
2 + σ2

1θ
2
1

(5.6)

⇐⇒

{ ∑N
n=1(ỹn − θ̄1x̃n − θ̄0) = 0 (← ∂

∂θ0
(5.6) = 0),∑N

n=1(θ̄1ỹnσ
2
1 + x̃nσ

2
2 − θ̄0θ̄1σ

2
1)(ỹn − θ̄1x̃n − θ̄0) = 0 (← ∂

∂θ1
(5.6) = 0).

(5.7)

Thus, the unknown parameters θ̄0 and θ̄1 are inferred by the solution of this equation

(5.7). Note that this is a direct consequence of our main result (5.5), which is the general

assertion applicable to both classical and quantum systems (cf. the last statement in

Section 5.1). Also as mentioned in Section 1, we can see that, if σ1 = 0, the (5.6) (or the

(5.7)) is the same as the result of ordinary regression analysis.
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6 Appendix (The proof of Theorem 3.8)

Proof. It will be proved by induction. Let O′
τ = (Yτ , 2

Yτ , Gτ ) be any observable in

C(Ωτ ).

[Step 1]. First, define the positive bounded linear operator B̂
(τ,τ)
Πt∈Tτ Ξt

: C(Ωτ ) → C(Ωτ )

such that

B̂
(τ,τ)
Πt∈Tτ Ξt

(gτ ) = F̃τ (
∏
t∈Tτ

Ξt)× gτ (∀gτ ∈ C(Ωτ )), (6.1)

and define the observable Ôτ

(
≡ ((

∏
t∈Tτ

Xt)×Yτ , 2(
Q

t∈Tτ
Xt)×Yτ , F̂τ )

)
in C(Ωτ ) such that

F̂τ (
∏
t∈Tτ

Ξt × Γτ ) = B̂
(τ,τ)
Πt∈Tτ Ξt

(Gτ (Γτ )) (∀Γτ ∈ 2Yτ ), (6.2)

which is clearly the Heisenberg picture representation of the sequential observable [{Ot}t∈Tτ ;

{C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈Tτ\{τ}], where Ot = Ot (if t 6= τ), = Oτ ×××××××××O′

τ (if t = τ). Thus,

the operator B̂
(τ,τ)
Πt∈Tτ Ξt

: C(Ωτ ) → C(Ωτ ) is the Bayes operator induced from the Õτ(
≡ (

∏
t∈Tτ

Xt, 2
Q

t∈Tτ
Xt , F̃τ )

)
.

[Step 2 (Assumption)]. Let s be any element in T \ {0} such that s ≤ τ . Here,

assume that B̂
(s,τ)
Πt∈TsΞt

: C(Ωτ ) → C(Ωs) is the Bayes operator induced from the Õs(
≡ (

∏
t∈Ts

Xt, 2
Q

t∈Ts
Xt , F̃s)

)
. That is, there exists an observable Ôs

(
≡ ((

∏
t∈Ts

Xt) ×

Yτ , 2
(
Q

t∈Ts
Xt)×Yτ , F̂s)

)
in C(Ωs) such that
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(i) Ôs is the Heisenberg picture representation (cf. Theorem 2.9) of the sequential

observable [{Ôt}t∈Ts ; {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈Ts\{s}], where Ot = Ot (if t 6= τ),

= Oτ ×××××××××O′
τ (if t = τ).

(ii) F̂s((
∏

t∈Ts
Ξt)× Γτ ) = B̂

(s,τ)Q
t∈Ts

Ξt
(Gτ (Γτ )) (∀Ξt ∈ 2Xt (∀t ∈ Ts),∀Γτ ∈ 2Yτ ),

(iii) F̂s((
∏

t∈Ts
Ξt)× Yτ ) = F̃s(

∏
t∈Ts

Ξt) (∀Ξt ∈ 2Xt (∀t ∈ Ts)).

[Step 3]. Let (xt)t∈Tπ(s)
be any element in

∏
t∈Tπ(s)

Xt. Note that {(xt)t∈Tπ(s)
} =

∏
t∈Tπ(s)

{xt}.
Define the positive bounded linear operator B̂

(π(s),τ)
Πt∈Tπ(s)

{xt} : C(Ωτ )→ C(Ωπ(s)) by

[B̂
(π(s),τ)
Πt∈Tπ(s)

{xt}(gτ )](ωπ(s)) =
[F̃π(s)(

∏
t∈Tπ(s)

{xt})](ωπ(s))× [Φπ(s),sB̂
(s,τ)
Πt∈Ts{xt}(gτ )](ωπ(s))

[F̃π(s)((Πt∈Tπ(s)\TsXt)×
∏

t∈Ts
{xt})](ωπ(s))

(6.3)

(∀gτ ∈ C(Ωτ ),∀ωπ(s) ∈ Ωπ(s)).

Here, the above is assumed to be equal to 0 if the denominator of (6.3) is equal to 0
(
i.e.,

[F̃π(s) ((Πt∈Tπ(s)\TsXt) ×
∏

t∈Ts
{xt})](ωπ(s)) = 0

)
. And thus, we can define the positive

bounded linear operator B̂
(π(s),τ)
Πt∈Tπ(s)

Ξt
: C(Ωτ )→ C(Ωπ(s)) by

B̂
(π(s),τ)
Πt∈Tπ(s)

Ξt
=

∑
(xt)t∈Tπ(s)

∈
Q

t∈Tπ(s)
Ξt

B̂
(π(s),τ)
{(xt)t∈Tπ(s)

}.

Define the observable Ôπ(s) ≡ ((
∏

t∈Tπ(s)
Xt)× Yτ , 2

(
Q

t∈Tπ(s)
Xt)×Yτ

, F̂π(s)) in C(Ωπ(s)) such

that

F̂π(s)((
∏

t∈Tπ(s)

Ξt)× Γτ ) = B̂
(π(s),τ)
Πt∈Tπ(s)

Ξt
(Gτ (Γτ )) (∀Ξt ∈ 2Xt (∀t ∈ Tπ(s)), ∀Γτ ∈ 2Yτ ),

which is clearly the Heisenberg picture representation of the sequential observable [{Ot}t∈Tπ(s)
;

{C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈Tπ(s)\{π(s)}], where Ot = Ot (if t 6= τ), = Oτ×××××××××O′

τ (if t = τ). Also,

we see that (cf. Theorem 2.9) of

F̂π(s)((
∏

t∈Tπ(s)

Ξt)× Yτ ) = F̃π(s)(
∏

t∈Tπ(s)

Ξt) (∀Ξt ∈ 2Xt (∀t ∈ Tπ(s))).
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That is because we see

F̂π(s)((
∏

t∈Tπ(s)

Ξt)× Yτ ) = B̂
(π(s),τ)
Πt∈Tπ(s)

Ξt
(1τ ) =

∑
(xt)t∈Tπ(s)

∈
Q

t∈Tπ(s)
Ξt

B̂
(π(s),τ)
Πt∈Tπ(s)

{xt}(1τ )

=
∑

(xt)t∈Tπ(s)
∈
Q

t∈Tπ(s)
Ξt

F̃π(s)(
∏

t∈Tπ(s)
{xt})× Φπ(s),sB̂

(s,τ)
Πt∈Ts{xt}(1τ )

F̃π(s)((
∏

t∈Tπ(s)\Ts
Xt)×

∏
t∈Ts
{xt})

=
∑

(xt)t∈Tπ(s)
∈
Q

t∈Tπ(s)
Ξt

F̃π(s)(
∏

t∈Tπ(s)
{xt})× F̃π(s)((

∏
t∈Tπ(s)\Ts

Xt)×
∏

t∈Ts
{xt})

F̃π(s)((
∏

t∈Tπ(s)\Ts
Xt)×

∏
t∈Ts
{xt})

=
∑

(xt)t∈Tπ(s)
∈
Q

t∈Tπ(s)
Ξt

F̃π(s)(
∏

t∈Tπ(s)

{xt}) = F̃π(s)(
∏

t∈Tπ(s)

Ξt). (6.4)

Therefore, we see that B̂
(π(s),τ)
Πt∈Tπ(s)

Ξt
: C(Ωτ )→ C(Ωπ(s)) is the Bayes operator induced from

the Õπ(s)

(
= (

∏
t∈Tπ(s)

Xt, 2
Q

t∈Tπ(s)
Xt
, F̃π(s))

)
. Thus, we can, by induction, finish the proof

since it suffices to put B
(0,τ)
Πt∈T Ξt

= B̂
(0,τ)
Πt∈T0

Ξt
.
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