Research Report

KSTS/RR-06/004 April 11, 2006

Uncertainty principle for the Fourier-Jacobi transform

by

Takeshi Kawazoe

Takeshi Kawazoe Department of Mathematics Keio University at Fujisawa

Department of Mathematics Faculty of Science and Technology Keio University

 $©2006~\mathrm{KSTS}$

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan

Uncertainty principle for the Fourier-Jacobi transform

Takeshi KAWAZOE *

Abstract

We obtain a uncertainty principle for the Fourier-Jacobi transform $\hat{f}_{\alpha,\beta}(\lambda)$. When $|\beta| \leq \alpha + 1$, as in the Euclidean case, an analogues of the uncertainty principle holds, because there is no discrete part in the Parseval formula. Moreover, we can obtain a new type of a uncertainty inequality: the L^2 -norm of $\hat{f}_{\alpha,\beta}(\lambda)\lambda$ is estimated below by the L^2 -norm of $(\alpha+\beta+1)f(x)(\cosh x)^{-1}$. Otherwise, the discrete part of f appears in the Parseval formula and it influences the uncertainty principle.

1. Notation. Let $\alpha, \beta \in \mathbb{C}$, $\Re \alpha > -1$ and $\rho = \alpha + \beta + 1$. For $\lambda \in \mathbb{C}$, let $\phi_{\lambda}(x)$ denote the Jacobi function of the first kind, that is, the unique solution of $(L + \lambda^2 + \rho^2)f = 0$ satisfying f(0) = 1 and f'(0) = 0, where

$$L = \Delta(x)^{-1} \frac{d}{dx} \left(\Delta(x) \frac{d}{dx} \right) \tag{1}$$

and $\Delta(x) = (2\sinh x)^{2\alpha+1}(2\cosh x)^{2\beta+1}$. For $\lambda \neq -i, -2i, -3i, \ldots$, let $\Phi_{\lambda}(x)$ denote the Jacobi function of the second kind which satisfies

$$2\pi^{1/2}\Gamma(\alpha+1)^{-1}\phi_{\lambda}(x) = C(\lambda)\Phi_{\lambda}(x) + C(-\lambda)\Phi_{-\lambda}(x), \tag{2}$$

where $C(\lambda)$ is Harish-Chandra's C-function. Then the following estimates are well-known (cf. [2, 3]): For $x \geq 0$ and $\lambda \in \mathbb{C}$ with $|\Im \lambda| \leq \rho$

$$|\phi_{\lambda}(x)| \le 1 \tag{3}$$

^{*}Supported by Grant-in-Aid for Scientific Research (C), No. 16540168, Japan Society for the Promotion of Science

and for $\delta > 0$ there exist a positive constant K_{δ} such that for $x \geq \delta$, $\lambda \in \mathbb{R}$

$$|\Phi_{\lambda}(x)| \le K_{\delta} e^{-\rho x},\tag{4}$$

and there exists a positive constant K such that for $\lambda \in \mathbb{R}$

$$|C(-\lambda)|^{-1} \le K(1+|\lambda|)^{\alpha+1/2}.$$
 (5)

Let $f \in C^{\infty}_{c,e}(\mathbb{R})$, the space of all even C^{∞} functions on \mathbb{R} with compact support. Then the Fourier-Jacobi transform $\hat{f}(\lambda)$ is defined as

$$\hat{f}(\lambda) = \frac{\pi^{1/2}}{\Gamma(\alpha+1)} \int_0^\infty f(x)\phi_\lambda(x)\Delta(x)dx. \tag{6}$$

This transform $f \to \hat{f}$ satisfies analogous properties of the classical cosine Fourier transform; the inversion formula, the Paley-Wiener theorem, and the Plancherel formula are obtained in [2, 3]. For convenience we suppose that $\alpha, \beta \in \mathbb{R}$ in the following. We define

$$D_{\alpha,\beta} = \{i(|\beta| - \alpha - 1 - 2m); m = 0, 1, 2, \dots, |\beta| - \alpha - 1 - 2m > 0\}.$$

Then the inversion formula is given as follows. For $f \in C^{\infty}_{c,e}(\mathbb{R})$,

$$f(x) = \frac{1}{2\pi} \int_0^\infty \hat{f}(\lambda) \phi_{\lambda}(x) |C(\lambda)|^{-2} d\lambda + \sum_{\mu \in D_{\alpha,\beta}} \hat{f}(\mu) \phi_{\mu}(x) d(\mu),$$

where $d(\mu) = -i \operatorname{Res}_{\lambda=\mu}(C(\lambda)C(-\lambda)^{-1})$. We denote this decomposition as

$$f = f_P + {}^{\circ}f \tag{7}$$

and we call f_P and ${}^{\circ}f$ the principal and discrete part of f respectively. We here recall that for each $\mu \in D_{\alpha,\beta}$, there exists a positive constant $K(\mu)$ such that

$$|\phi_{\mu}(x)| \le K(\mu)e^{-(\rho + |\mu|)x}.$$
 (8)

We denote by $\mathbf{F}(\nu) = (F(\lambda), \{a_{\mu}\})$ a function on $\mathbb{R}_+ \cup D_{\alpha,\beta}$ defined by

$$\mathbf{F}(\nu) = \begin{cases} F(\lambda) & \text{if } \nu = \lambda \in \mathbb{R}_+ \\ a_{\mu} & \text{if } \nu = \mu \in D_{\alpha,\beta}. \end{cases}$$

We put $\overline{F}(\nu) = (\overline{F(\lambda)}, \{\overline{a_{\mu}}\})$ and define the product of $F(\nu) = (F(\lambda), \{a_{\mu}\})$ and $G(\nu) = (G(\lambda), \{b_{\mu}\})$ as

$$(\mathbf{F}\mathbf{G})(\nu) = (F(\lambda)G(\lambda), \{a_{\mu}b_{\mu}\}).$$

For a function $h(\lambda)$ on \mathbb{C} , we define $\mathbf{F}(\nu)h(\nu)$ by regarding $h(\nu)$ as a function on $D_{\alpha,\beta}$. Let $d\nu$ denote the measure on $\mathbb{R}_+ \cup D_{\alpha,\beta}$ defined by

$$\int_{\mathbb{R}_{+}\cup D_{\alpha,\beta}} \mathbf{F}(\nu) d\nu = \frac{1}{2\pi} \int_{0}^{\infty} F(\lambda) |C(\lambda)|^{-2} d\lambda + \sum_{\mu \in D_{\alpha,\beta}} a_{\mu} d(\mu).$$

For $f \in C_{c,e}^{\infty}(\mathbb{R})$, we put

$$\hat{\mathbf{f}}(\nu) = (\hat{f}(\lambda), \{\hat{f}(\mu)\}).$$

Then the Parseval formula for the Fourier-Jacobi transform on $C_{c,e}^{\infty}(\mathbb{R})$ can be stated as follows (see [3, Theorem 2.4]):

$$\int_{0}^{\infty} f(x)\overline{g(x)}\Delta(x)dx = \int_{\mathbb{R}_{+}\cup D_{\alpha,\beta}} \hat{\mathbf{f}}(\nu)\overline{\hat{\mathbf{g}}(\nu)}d\nu \tag{9}$$

for $f, g \in C^{\infty}_{c,e}(\mathbb{R})$. This map $f \to \hat{\mathbf{f}}$, $f \in C^{\infty}_{c,e}(\mathbb{R})$, is extended to an isometry between $L^2(\Delta) = L^2(\mathbb{R}_+, \Delta(x)dx)$ and $L^2(\nu) = L^2(\mathbb{R}_+ \cup D_{\alpha,\beta}, d\nu)$. Actually, each function f in $L^2(\Delta)$ is of the form $f = f_P + {}^{\circ}f$ (see (7)) and their L^2 -norms are given as

$$\int_0^\infty |f_P(x)|^2 \Delta(x) = \frac{1}{2\pi} \int_0^\infty |\hat{f}(\lambda)|^2 |C(\lambda)|^{-2} d\lambda,$$

$$\int_0^\infty |{}^{\circ}f(x)|^2 \Delta(x) dx = \sum_{\mu \in D_{\alpha,\beta}} |a_{\mu}|^2 d(\mu) \text{ if } {}^{\circ}f(x) = \sum_{\mu \in D_{\alpha,\beta}} a_{\mu} \phi_{\mu}(x) d(\mu).$$

Therefore, if we put $\hat{f}(\nu) = (\hat{f}(\lambda), \{a_{\mu}\})$, then $||f||_{L^{2}(\Delta)} = ||\hat{f}||_{L^{2}(\nu)}$ and

$$f(x) = \frac{1}{2\pi} \int_0^\infty \hat{f}(\lambda)\phi_\lambda(x)|C(\lambda)|^{-2}d\lambda + \sum_{\mu \in D_{\alpha,\beta}} a_\mu \phi_\mu(x)d(\mu).$$
 (10)

We define

$$B(x) = \int_0^x \Delta(t)dt, \ x \ge 0 \tag{11}$$

and put

$$\theta(x) = \frac{B(x)}{\Delta(x)}$$
 and $\Theta(\lambda) = (\lambda^2 + \rho^2)^{1/2}$.

2. Main theorem. We keep the notation in §1 and prove the following.

Theorem 2.1. Let $\alpha > -1$, $\beta \in \mathbb{R}$. For $f \in L^2(\Delta)$, we suppose that $f\theta \in L^2(\Delta)$ and $\hat{\mathbf{f}}\Theta \in L^2(\nu)$. Then

$$||f\theta||_{L^{2}(\Delta)}^{2} \int_{\mathbb{R}_{+} \cup D_{\alpha,\beta}} |\hat{\mathbf{f}}(\nu)|^{2} \Theta(\nu)^{2} d\nu \ge \frac{1}{4} ||f||_{L^{2}(\Delta)}^{4}, \tag{12}$$

where the equality holds if and only if f is of the form

$$f(x) = ce^{\gamma} \int_0^x \theta(t)dt$$

for some $c, \gamma \in \mathbb{C}$.

Proof. Without loss of generality we may suppose that $f \in C^{\infty}_{c,e}(\mathbb{R})$ and f is real valued. Since

$$\hat{\mathbf{f}}(\nu) = (\hat{f}(\lambda), \{\hat{f}(\mu)\}).$$

and $(-Lf)^{\wedge}(\lambda) = \hat{f}(\lambda)(\lambda^2 + \rho^2) = \hat{f}(\lambda)\Theta(\lambda)^2$, the Parseval formula (9) yields that

$$\int_{\mathbb{R}_{+}\cup D_{\alpha,\beta}} |\hat{\mathbf{f}}(\nu)|^{2} \Theta(\nu)^{2} d\nu = \int_{0}^{\infty} f(x)(-Lf)(x)\Delta(x) dx$$
$$= \int_{0}^{\infty} (f'(x))^{2} \Delta(x) dx.$$

Hence it follows that

$$\int_0^\infty f(x)^2 \theta(x)^2 \Delta(x) dx \int_{\mathbb{R}_+ \cup D_{\alpha,\beta}} |\hat{\mathbf{f}}(\nu)|^2 \Theta(\nu)^2 d\nu$$

$$= \int_0^\infty f(x)^2 \theta(x)^2 \Delta(x) dx \int_0^\infty (f'(x))^2 \Delta(x) dx$$

$$\geq \left(\int_0^\infty f(x) f'(x) \theta(x) \Delta(x) dx\right)^2$$

$$= \frac{1}{4} \left(\int_0^\infty (f(x)^2)' B(x) dx\right)^2 = \frac{1}{4} \left(\int_0^\infty f(x)^2 \Delta(x) dx\right)^2.$$

Here we used the fact that $B' = \Delta$ (see (11)). Clearly, the equality holds if and only if $f\theta = cf'$ for some $c \in \mathbb{R}$, that is, $f'/f = c^{-1}\theta$. This means that $\log(f) = c^{-1} \int_0^x \theta(t)dt + C$ and thus, the desired result follows.

We recall that $\Theta^2(\lambda) = \lambda^2 + \rho^2$. Then (12) and the Parseval formula imply the following.

Corollary 2.2. Let f be the same as in Theorem 2.1.

$$||f\theta||_{L^2(\Delta)}^2 \int_{\mathbb{R}_+ \cup D_{\alpha,\beta}} |\hat{\mathbf{f}}(\nu)|^2 \nu^2 d\nu \ge \frac{1}{4} ||f||_{L^2(\Delta)}^2 \int_0^\infty |f(x)|^2 (1 - 4\rho^2 \theta^2) \Delta(x) dx.$$
 (13)

We shall estimate θ and $1 - 4\rho^2\theta^2$. Since $\alpha > -1$, it follows that

$$B(x) = \int_0^x (2\sinh s)^{2\alpha+1} (2\cosh s)^{2\beta+1} ds$$

$$= 2^{2\rho} \int_0^{\sinh x} t^{2\alpha+1} (1+t^2)^{\beta} dt$$

$$= 2^{2\rho} (\sinh x)^{2\alpha+2} \int_0^1 t^{2\alpha+1} (1+(\sinh x)^2 t^2)^{\beta} dt$$

$$= 2^{2\rho-1} (\sinh x)^{2\alpha+2} (\cosh x)^{2\beta} \int_0^1 (1-s)^{\alpha} (1-(\tanh x)^2 s)^{\beta} ds$$

$$= 2^{2\rho-1} (\sinh x)^{2\alpha+2} (\cosh x)^{2\beta} \frac{1}{\alpha+1} F(1,-\beta,2+\alpha;(\tanh x)^2)$$

and thus,

$$\theta(x) = \frac{1}{2(\alpha+1)}F(1, -\beta, 2 + \alpha; (\tanh x)^2) \tanh x. \tag{14}$$

Lemma 2.3. Let $k = 0, 1, 2, \dots$ and $0 \le x \le 1$. We suppose that $k - (\alpha + 1) < \beta \le k + (2k + 1)\alpha$. Then $x^{2k+1}F(k+1, k-\beta, k+2+\alpha, x^2)$ is increasing and

$$0 \le x^{2k+1} F(k+1, k-\beta, k+2+\alpha; x^2) \le \frac{\Gamma(k+2+\alpha)\Gamma(\rho-k)}{\Gamma(1+\alpha)\Gamma(\rho+1)}.$$

Proof. When $k-(\alpha+1)<\beta\leq k$, it follows that $F(k+1,k-\beta,k+2+\alpha;x)$ is increasing on $0\leq x\leq 1$. Hence $H(x)=H_k(\alpha,\beta,x)=x^{2k+1}F(k+1,k-\beta,k+2+\alpha;x^2)$ is dominated by $H(1)=\Gamma(k+2+\alpha)\Gamma(\rho-k)/\Gamma(1+\alpha)\Gamma(\rho+1)$. Let $k<\beta\leq k+(2k+1)\alpha$. We shall prove that H(x) is increasing and $H(x)\leq H(1)$ as before. In order to prove that H(x) is increasing, we shall show that its derivative is positive. We note that

$$H'(x) = (1+2k)x^{-1}H_k(\alpha,\beta,x) + \frac{2(1+k)(k-\beta)x^{-1}}{2+k+\alpha}H_{k+1}(\alpha,\beta,x)$$

$$= (1+2k)x^{-1}H_k(\alpha,\beta,x)$$

$$+2(1+k+\alpha)x^{-1}\Big(H_k(\alpha-1,\beta,x) - H_k(\alpha,\beta,x)\Big)$$

$$= x^{2k}K(x^2),$$

where $K(x) = (1+2k)F(1+k, k-\beta, 2+k+\alpha; x) + 2(1+k+\alpha)(F(1+k, k-\beta, 1+k+\alpha; x) - F(1+k, k-\beta, 2+k+\alpha; x))$. Then

$$K'(x) = (1+k)(k-\beta)x^{-(2k+3)} \left(\frac{(1+2k)}{2+k+\alpha} H_{k+1}(\alpha,\beta,x) + 2(1+k+\alpha) \left(\frac{H_{k+1}(\alpha-1,\beta,x)}{1+k+\alpha} - \frac{H_{k+1}(\alpha,\beta,x)}{2+k+\alpha} \right) \right).$$

Since $\beta > k$, $x^{-(2k+3)}H_{k+1}(\alpha, \beta, x) = F(2+k, 1+k-\beta, 3+k+\alpha; x) \le F(2+k, 1+k-\beta, 2+k+\alpha; x) = x^{-(2k+3)}H_{k+1}(\alpha-1, \beta, x)$ and $1/(1+k+\alpha)-1/(2+k+\alpha) > 0$, it follows that K'(x) < 0 and thus, K(x) is decreasing. Therefore, H'(x) is decreasing and

$$H'(x) \ge H'(1) = (k + (2k+1)\alpha - \beta) \frac{\Gamma(2+k+\alpha)\Gamma(\alpha+\beta-k)}{\Gamma(\alpha+1)\Gamma(\alpha+\beta+2)} \ge 0$$

under the assumption on β . Hence H(x) is increasing.

Lemma 2.4. Let notation be as above and $\rho > 0$. If $-(\alpha + 1) < \beta \le \alpha$, then

$$0 \le \theta(x) \le 1/2\rho$$

and if $\alpha < \beta$ and k is an integer such that $k-1+(2k-1)\alpha < \beta \le k+(2k+1)\alpha$, then

$$0 \le \theta(x) \le \frac{1}{2\rho} \frac{(2k)!!}{(2k-1)!!} \frac{\Gamma(\beta+1)\Gamma(\rho-k)}{\Gamma(\beta-k+1)\Gamma(\rho)} = O(\sqrt{\beta}).$$

Proof. Clearly, $\theta(x) \geq 0$ from Euler's integral expression of hypergeometric functions. The first assertion follows from (9) and Lemma 2.3 with k=0. We suppose that $\alpha < \beta \leq 1 + 3\alpha$, that is, the case of k=1 in Lemma 2.3. Since β is out of the range when k=0, we couldn't conclude that $H(x) = xF(1, -\beta, 2 + \alpha; x^2)$ is increasing on $0 \leq x \leq 1$. Let $x = x_0$ be the maximaum point of H(x). Since

$$H'(x) = \left(F(1, -\beta, \alpha + 2, x^2) - \frac{2\beta}{2 + \alpha}x^2F(2, 1 - \beta, \alpha + 3, x^2)\right)$$

and $H'(x_0) = 0$, it follows that

$$H(x_0) = \frac{2\beta}{2+\alpha} x_0^3 F(2, 1-\beta, \alpha+3, x_0^2).$$

Since $\alpha < \beta \le 1 + 3\alpha$, applying Lemma 2.3 with k = 1, we see that

$$\theta(x) \le \frac{H(x_0)}{2(\alpha+1)} \le \frac{1}{2(\alpha+1)} \frac{2\beta}{2+\alpha} \frac{\Gamma(3+\alpha)\Gamma(\rho-1)}{\Gamma(1+\alpha)\Gamma(\rho+1)}$$
$$= \frac{1}{2\rho} \frac{2!!}{1!!} \frac{\Gamma(1+\beta)\Gamma(\rho-1)}{\Gamma(\beta)\Gamma(\rho)}.$$

When $1+3\alpha < \beta \leq 2+5\alpha$, we couldn't apply Lemma 2.3 in the above argument to conclude that $x^3F(2,1-\beta,\alpha+3,x^2)$ is increasing on $0 \leq x \leq 1$. Hence, we shall consider its derivative and the maximum point again. Then we can apply Lemma 2.3 with k=2 to the derivative. Generally, when $(k-1)+(2k-1)\alpha < \beta \leq k+(2k+1)\alpha$, $H_l(\alpha,\beta,x)=x^{2l+1}F(l+1,l-\beta,l+2+\alpha;x^2)$, $0 \leq l \leq k-1$, are not increasing and $H_k(\alpha,\beta,x)$ is increasing. Then it follows from (9) that

$$H_{l-1}(\alpha, \beta, x_{l-1}) = \frac{2l(\beta - l + 1)}{(2l - 1)(1 + l + \alpha)} H_l(\alpha, \beta, x_{l-1}),$$

where x_{l-1} is the maximum point of $H_{l-1}(\alpha, \beta, x)$ and thus,

$$\theta(x) \leq \frac{1}{2(\alpha+1)} \prod_{l=1}^{k} \frac{2l(\beta-l+1)}{(2l-1)(1+l+\alpha)} \frac{\Gamma(k+2+\alpha)\Gamma(\rho-k)}{\Gamma(1+\alpha)\Gamma(\rho+1)}$$
$$= \frac{1}{2\rho} \frac{(2k)!!}{(2k-1)!!} \frac{\Gamma(\beta+1)\Gamma(\rho-k)}{\Gamma(\beta-k+1)\Gamma(\rho)}.$$

The asymptotic behavior of $\theta(x)$ follows from Wallis' formula.

Lemma 2.5. Let $\Upsilon(x) = 1 - 4\rho^2 \theta(x)^2$. If $-(\alpha + 1) < \beta \le 0$, then $\Upsilon(x) \ge (\cosh x)^{-2}$. Generally,

$$\Upsilon(x) = \begin{cases} O((\cosh x)^{-2}) & \text{if } x \to \infty, \\ O(1) & \text{if } x \to 0 \end{cases}$$

and if $\beta \leq \alpha$, then $\Upsilon(x) \geq 0$.

Proof. Since $F(1, -\beta, 2 + \alpha; 0) = 1$ and $F(1, -\beta, 2 + \alpha; 1) = (\alpha + 1)/\rho$, the asymptotic behaviour easily follows. If $-(\alpha + 1) < \beta \le 0$, then $F(1, -\beta, 2 + \alpha; x)$ is increasing with respect to x. Hence $\theta(x) \le F(1, -\beta, 2 + \alpha; 1) \tanh x$ $/2(\alpha + 1) \le (1/2\rho) \tanh x$ and thus, $\Upsilon(x) \ge (\cosh x)^{-2}$. If $0 < \beta \le \alpha$, then $\Upsilon(x) \ge 0$ from Lemma 2.4.

We put

$$\varepsilon_k = \varepsilon_k(\alpha, \beta) = \frac{(2k-1)!!}{(2k)!!} \frac{\Gamma(\beta - k + 1)\Gamma(\rho)}{\Gamma(\beta + 1)\Gamma(\rho - k)}.$$
 (16)

Lemma 2.4 implies that, if $k-1+(2k-1)\alpha < \beta \leq k+(2k+1)\alpha$, then

$$\theta(x) \le (2\rho\epsilon_k)^{-1}. \tag{17}$$

The following assertion follows from Theorem 2.1, Corollary 2.2, Lemma 2.4 and Lemma 2.5.

Corollary 2.6. Let $\rho > 0$ and f be the same as in Theorem 2.1. If $-(\alpha+1) < \beta \leq \alpha$, then $f = f_P$,

$$\int_0^\infty |\hat{f}(\lambda)|^2 \Theta(\lambda)^2 |C(\lambda)|^{-2} d\lambda \ge \rho^2 ||f||_{L^2(\Delta)}^2$$

and

$$\int_0^\infty |\hat{f}(\lambda)|^2 \lambda^2 |C(\lambda)|^{-2} d\lambda \ge \rho^2 \int_0^\infty |f(x)|^2 \Upsilon(x) \Delta(x) dx,$$

where $\Upsilon(x) = 1 - 4\rho^2 \theta(x)^2 \ge 0$, and if $k - 1 + (2k - 1)\alpha < \beta \le k + (2k + 1)\alpha$, then

$$\int_{\mathbb{R}_+ \cup D_{\alpha,\beta}} |\hat{\mathbf{f}}(\nu)|^2 \Theta(\nu)^2 d\nu \ge \rho^2 \varepsilon_k^2 ||f||_{L^2(\Delta)}^2,$$

and

$$\int_{\mathbb{R}_{+} \cup D_{\alpha,\beta}} |\hat{\mathbf{f}}(\nu)|^{2} \nu^{2} d\nu \ge \rho^{2} \varepsilon_{k}^{2} \int_{0}^{\infty} |f(x)|^{2} \Upsilon(x) \Delta(x) dx. \tag{18}$$

The shapes of $\theta(t)$ with $1/2\rho$ and $\Upsilon(t)$, $t=\tanh x$, are respectively given as follows.

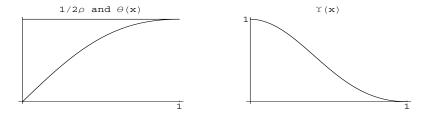


Figure 1: The case of $\beta \leq \alpha$.

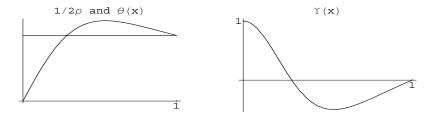


Figure 2: The case of $\beta > \alpha$.

3. Uncertainty. We shall apply the inequalities obtained in the previous section to deduce some information on the concentration of f and \hat{f} . Let f be a non-zero function in $L^2(\Delta)$ satisfying $f\theta \in L^2(\Delta)$ and $\hat{f}\Theta \in L^2(\nu)$. We recall that

$$f = f_P + {}^{\circ}f, \quad {}^{\circ}f(x) = \sum_{\mu \in D_{\alpha,\beta}} a_{\mu}\phi_{\mu}(x)d(\mu)$$

and $\hat{\boldsymbol{f}}(\nu) = (\hat{f}(\lambda), \{a_{\mu}\}).$

Definition 3.1. Let $0 < \epsilon < 1/4\rho^2$ and M > 0.

(1) We say that a function f(x) on \mathbb{R}_+ is (θ, ϵ) -concentrated at x = 0 if

$$||f\theta||_{L^2(\Delta)} \le \epsilon ||f||_{L^2(\Delta)}$$

and is (θ, ϵ) -nonconcentrated at x = 0 if the reverse holds.

(2) We say that a function $\hat{f}(\lambda)$ on \mathbb{R}_+ is (λ, ϵ) -concentrated at $\lambda = 0$ if

$$\int_0^\infty |\hat{f}(\lambda)|^2 \lambda^2 |C(\lambda)|^{-2} d\lambda \le \epsilon ||f||_{L^2(\Delta)}^2$$

and is (λ, ϵ) -nonconcentrated at $\lambda = 0$ if the reverse holds.

(3) We say that a function f(x) on \mathbb{R}_+ is (μ, ϵ) -concentrated at x = 0 if

$$\sum_{\mu \in D_{\alpha,\beta}} |a_{\mu}|^2 |\mu|^2 d(\mu) \le \epsilon ||f||_{L^2(\Delta)}^2.$$

(4) We say that a function f(x) on \mathbb{R}_+ is (Υ, ϵ) -nonconcentrated at x = 0 if

$$\left| \int_0^\infty |f(x)|^2 \Upsilon(x) \Delta(x) dx \right| \le \epsilon ||f||_{L^2(\Delta)}^2.$$

(5) We say that a function f(x) on \mathbb{R}_+ is (x_0, ϵ) -bounded if

$$|f(x)| \le \epsilon ||f||_{L^2(\Delta)} \text{ if } x \ge x_0.$$

Now we suppose that f(x) is (θ, ϵ) -concentrated at x = 0. Since

$$\int_{\mathbb{R}_{+} \cup D_{\alpha,\beta}} |\hat{f}(\nu)|^{2} \Theta(\nu)^{2} d\nu
= \int_{0}^{\infty} |\hat{f}(\lambda)|^{2} \lambda^{2} |C(\lambda)|^{-2} d\lambda - \sum_{D_{\alpha,\beta}} |a_{\mu}|^{2} |\mu|^{2} d(\mu) + \rho^{2} ||f||_{L^{2}(\Delta)}^{2},$$

it follows from (12) that

$$\int_0^\infty |\hat{f}(\lambda)|^2 \lambda^2 |C(\lambda)|^{-2} d\lambda - \sum_{D_{\alpha,\beta}} |a_{\mu}|^2 |\mu|^2 d(\mu) \ge (1/4\epsilon - \rho^2) ||f||_{L^2(\Delta)}^2.$$

Therefore, $\hat{f}(\nu)$ is $(\lambda, 1/4\epsilon - \rho^2)$ -nonconcentrated at $\lambda = 0$.

Conversely, we suppose that $\hat{f}(\nu)$ is (ν, ϵ) -concentrated at $\lambda = 0$. Then it follows from (17) that, if $k - 1 + (2k - 1)\alpha < \beta \le k + (2k + 1)\alpha$, then

$$\int_0^\infty |f_P(x)|^2 \Upsilon(x) \Delta(x) dx \ge (1 - \varepsilon_k^{-2}) ||f_P||_{L^2(\Delta)}^2.$$

Here we recall that $1 - \varepsilon_k^{-2} \leq 0$. Moreover, letting $A = \int_0^\infty |f_P(x)|^2 \Upsilon(x) |\Delta(x) dx$ and $B = ||f_P||_{L^2(\Delta)}^2$, we see from (13) for $f = f_P$ that

$$(B-A)\epsilon B \ge \rho^2 AB$$

and thus,

$$A \le \frac{\epsilon B}{\rho^2 + \epsilon} \le \frac{\epsilon}{\rho^2} B. \tag{19}$$

Therefore, $f_P(x)$ is (Υ, δ) -nonconcentrated at x = 0, where

$$\delta = \max\{\varepsilon_k^{-2} - 1, \rho^{-2}\epsilon\}.$$

Moreover, let $x_0 = 1$. Then it follows from (2), (3), and (4) that for $x \ge 1$,

$$|f_{P}(x)| \leq \left| \int_{0}^{\infty} \hat{f}(\lambda) \Phi_{\lambda}(x) C(\lambda)^{-1} d\lambda \right|$$

$$\leq e^{-\rho x} K_{x_{0}} \left(\int_{0}^{\sqrt{\epsilon}} |\hat{f}(\lambda)| |C(-\lambda)|^{-1} d\lambda + \int_{\sqrt{\epsilon}}^{\infty} |\hat{f}(\lambda)| |C(-\lambda)|^{-1} d\lambda \right)$$

$$\leq e^{-\rho x} K_{x_{0}} \left(\epsilon^{1/4} ||f_{P}||_{L^{2}(\Delta)} + \left(\int_{\sqrt{\epsilon}}^{\infty} |\hat{f}(\lambda)|^{2} \lambda^{2} |C(\lambda)|^{-2} d\lambda \right)^{1/2} \left(\int_{\sqrt{\epsilon}}^{\infty} \lambda^{-2} d\lambda \right)^{1/2} \right)$$

$$\leq 2e^{-\rho x} K_{x_{0}} \epsilon^{1/4} ||f_{P}||_{L^{2}(\Delta)}.$$

Hence we have the following.

Theorem 3.2 Let $\rho > 0$ and $f \in L^2(\Delta)$ satisfy $f\theta \in L^2(\Delta)$ and $\hat{f}\Theta \in L^2(\nu)$. Let k be an integer such that $k-1+(2k-1)\alpha < \beta \leq k+(2k+1)\alpha$, where k=0 if $\beta \leq \alpha$. We define ε_k by (16) where $\epsilon_0 = 1$. If f(x) is (θ, ϵ) -concentrated at x = 0, then $\hat{f}(\lambda)$ is $(\lambda, 1/4\epsilon - \rho^2)$ -nonconcentrated at $\lambda = 0$. Conversely, if $\hat{f}(\lambda)$ is (λ, ϵ) -concentrated at $\lambda = 0$, then $f_P(x)$ is (Υ, δ) -nonconcentrated at x = 0, where $\delta = \max\{\epsilon_k^{-2} - 1, \rho^{-2}\epsilon\}$, and there exists a positive constant c such that $f_P(x)$ is $(1, c\epsilon^{1/4})$ -bounded.

When $\beta \leq \alpha$, we recall that $f = f_P$ and $\varepsilon_0 = 1$ (k = 0). Hence, the above theorem implies that f(x) is $(\Upsilon, \rho^{-2}\epsilon)$ -nonconcentrated at x = 0 and $(1, c\epsilon^{1/4})$ -bounded. Therefore, f(x) is spread if ϵ goes to 0. However, when $\beta > \alpha$, then $\varepsilon_k < 1$ and it is not clear that f(x) is spread if ϵ goes to 0. This implies that the discrete part of f influences the uncertaintity.

We now suppose that $\beta > \alpha$, $\hat{f}(\lambda)$ is (λ, ϵ) -concentrated at $\lambda = 0$ and f(x) is (μ, ϵ_d) -concentrated at x = 0. We shall prove that f(x) is spread if ϵ and ϵ_d go to 0. As in the previous argument, let $A = \int_0^\infty |f(x)|^2 \Upsilon(x) |\Delta(x) dx$ and $B = ||f||_{L^2(\Delta)}^2$. Then it follows from (13) that

$$(B-A)(\epsilon+\epsilon_d)B \ge \rho^2 AB$$

and thus, $A \leq \rho^{-2}(\epsilon + \epsilon_d)B$. Let $x_0 > 0$ the point such that $\Upsilon(x_0) = 0$ and $x \geq x_0$. As before, it follows that

$$|f_P(x)| \le e^{-\rho x} K_{x_0} \epsilon^{1/4} ||f_P||_{L^2(\Delta)}.$$

On the other hand, it follows from (8) that

$$|^{\circ}f(x)| \leq \sum_{\mu \in D_{\alpha,\beta}} |a_{\mu}| |\phi_{\mu}(x)| d(\mu)$$

$$\leq e^{-\rho x} \Big(\sum_{\mu \in D_{\alpha,\beta}} e^{-2|\mu|x_{0}} |\mu|^{-2} d(\mu) \Big)^{1/2} \epsilon_{d}^{1/2} ||^{\circ}f||_{L^{2}(\Delta)}.$$

Hence, for $x \geq x_0$, we see that there exist a positive constant c such that

$$|f(x)e^{\rho x}| \le c(\epsilon^{1/4} + \epsilon_d^{1/2})||f||_{L^2(\Delta)}.$$

Therefore, it follows that

$$\int_{0}^{\infty} |f(x)|^{2} \Upsilon(x) \Delta(x) dx \geq c \int_{x_{0}}^{\infty} |f(x)e^{\rho x}|^{2} \Upsilon(x) dx
\geq c^{2} (\epsilon^{1/4} + \epsilon_{d}^{1/2})^{2} ||f||_{L^{2}(\Delta)}^{2} \int_{x_{0}}^{\infty} \Upsilon(x) dx
= c_{\Upsilon} (\epsilon^{1/4} + \epsilon_{d}^{1/2})^{2} ||f||_{L^{2}(\Delta)}^{2}.$$

Here $c_{\Upsilon} < 0$, because $\int_{x_0}^{\infty} \Upsilon(x) dx < 0$.

Theorem 3.3 Let $\beta > \alpha$ and $\alpha > -1$. Let $f \in L^2(\Delta)$ satisfy $f\theta \in L^2(\Delta)$ and $\hat{f}\Theta \in L^2(\nu)$. We suppose that $\hat{f}(\lambda)$ is (λ, ϵ) -concentrated at $\lambda = 0$ and f(x) is (μ, ϵ_d) -concentrated at x = 0. Then there exists constants $c_{\Upsilon} < 0, c > 0$ such that f(x) is (Υ, δ) -nonconcentrated at x = 0, where $\delta = \max\{-c_{\Upsilon}(\epsilon^{1/4} + \epsilon_d^{1/2}), \rho^{-2}(\epsilon + \epsilon_d)\}$, and is $(x_0, c(\epsilon^{1/4} + \epsilon_d^{1/2}))$ -bounded.

We suppose that f is supported on $[R, \infty)$. Then there exists a constant $0 < \varepsilon(R) \le 1$ such that

$$0 \le \theta(x) \le \frac{1}{2\rho\varepsilon(R)}$$

and $\varepsilon(R) \to 1$ if $R \to \infty$. Then it follows from (13) that

$$\int_{\mathbb{R}_+ \cup D_{\alpha,\beta}} |\hat{\boldsymbol{f}}(\nu)|^2 \nu^2 d\nu \ge \rho^2 \int_0^\infty |f(x)|^2 (\varepsilon(R)^2 - 1) \Delta(x) dx.$$

Then we obtain the following.

Proposition 3.4. Let $\rho > 0$ and suppose that $f \in L^2(\Delta)$ satisfies $f\theta \in L^2(\Delta)$ and $\hat{\mathbf{f}}\Theta \in L^2(\nu)$. We suppose that f is supported on $[R, \infty)$. Then

$$\sum_{\mu \in D_{\alpha,\beta}} |a_{\mu}|^2 |\mu|^2 d(\mu) \le \int_0^\infty |\hat{f}(\lambda)|^2 \lambda^2 |C(\lambda)|^{-2} d\lambda + \rho^2 (1 - \varepsilon(R)^2) ||f||_{L^2(\Delta)}^2.$$

Remark 3.5. When $\beta = 0$, we can calculate more precisely. In this case $\theta = (2\rho)^{-1} \tanh x$ and $1 - 4\rho^2 \theta^2 = (\cosh x)^{-2}$. Therefore, (12) and (13) became

$$||f(x) \tanh x||_{L^2(\Delta)}^2 ||\hat{f}(\lambda)(\lambda^2 + \rho^2)^{1/2}||_{L^2(|C|^{-2})}^2 \ge \rho^2 ||f||_{L^2(\Delta)}^4$$

where the equality holds if and only if f is of the form $c(\cosh x)^{\gamma}$, and

$$||f(x)\tanh x||_{L^2(\Delta)}^2 ||\hat{f}(\lambda)\lambda||_{L^2(|C|^{-2})}^2 \ge \rho^2 ||f||_{L^2(\Delta)}^2 ||f(x)(\cosh x)^{-1}||_{L^2(\Delta)}^2.$$

Since the Jacobi transform of $(\cosh \lambda)^{\gamma}$ is explicitly calcurated in [1], we can directly check the equality condition for these inequalities.

References

- [1] G. van Dijk and S. C. Hille, Canonical representations related to Hyperbolic spaces, J. Funct. Anal., Vol. 147, 1997, pp. 109-139.
- [2] T. H. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat., Vol. 13, 1975, pp. 145-159.
- [3] T. H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie Groups, Special functions, R. Askey et al (eds.), D. Reidel Publishing Company, Dordrecht, 1984, pp. 1-84.
- [4] T. Kawazoe and J. Liu, On Hardy's theorem on SU(1,1), preprint, 2005.

Department of Mathematics Faculty of Science and Technology Keio University

Research Report

2005

- [05/001] T. Kawazoe, On the Littlewood-Paley g function and the Lusin area function on real rank 1 semisimple Lie groups, KSTS/RR-05/001, March 28, 2005
- [05/002] A. Sako, T. Suzuki, Partition functions of supersymmetric gauge theories in noncommutative R^{2D} and their unified perspective, KSTS/RR-05/002, April 25, 2005
- [05/003] K. Aoyama, K. Shimizu, A generalization of the inverse trinomial, KSTS/RR-05/003, June 23, 2005
- [05/004] T. Tanaka, Algebraic independence of modified reciprocal sums of products of Fibonacci numbers, KSTS/RR-05/004, July 27, 2005
- [05/005] Y. Aoki, T. Kato, New method of ground reflection coefficient reconstruction and shape recovery by another SAR signal modeling, KSTS/RR-05/005, October 12, 2005
- [05/006] A. Sako, T. Suzuki, Dimensional reduction of Seiberg-Witten monopole equations, N=2 noncommutative supersymmetric field theories and Young diagrams, KSTS/RR-05/006, November 28, 2005

2006

- [06/001] N. Kumasaka, R. Shibata, *High dimensional data visualisation: Textile plot*, KSTS/RR-06/001, February 13, 2006
- [06/002] H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Geometric objects in an approach to quantum geometry, KSTS/RR-06/002, March 15, 2006
- [06/003] M. Nakasuji, Prime geodesic theorem for higher dimensional hyperbolic manifold, KSTS/RR-06/003, March 15, 2006
- [06/004] T. Kawazoe, Uncertainty principle for the Fourier-Jacobi transform, KSTS/RR-06/004, April 11, 2006