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Abstract

We obtain a uncertainty principle for the Fourier-Jacobi transform
fa”g(A). When |3] < a+ 1, as in the Euclidean case, an analogues
of the uncertainty principle holds, because there is no discrete part
in the Parseval formula. Moreover, we can obtain a new type of a
uncertainty inequality: the L?-norm of fa,/g()\))\ is estimated below by
the L2-norm of (a+B+1)f(z)(cosh ) L. Otherwise, the discrete part
of f appears in the Parseval formula and it influences the uncertainty
principle.

1. Notation. Let a, 5 € C, Ra > —1 and p = a+ f+ 1. For A € C, let
o (x) denote the Jacobi function of the first kind, that is, the unique solution
of (L+ A2+ p?)f = 0 satisfying f(0) =1 and f’(0) = 0, where

d d
L=A@)'Z (A —) 1
(1) (A) (1)
and A(z) = (2sinh z)?**(2 cosh 2)?#+1. For \ # —i, —2i, —3i,..., let ®y(x)
denote the Jacobi function of the second kind which satisfies

2120 (o + 1) g (x) = C(N)@a(z) + C(=N)D_y (), (2)

where C'()) is Harish-Chandra’s C-function. Then the following estimates
are well-known (cf. [2, 3]): For z > 0 and A € C with |SA| < p

[oa(z)] < 1 (3)
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and for ¢ > 0 there exist a positive constant K such that for x >, A € R
A (2)] < Kse™™, (4)

and there exists a positive constant K such that for A € R
C=NTH < KL+ A2 (5)

Let f € OX(R), the space of all even C*° functions on R with compact
support. Then the Fourier-Jacobi transform f()) is defined as

~

71.1/2 0o
) = gy [ f@o@A@a, ©)

This transform f — f satisfies analogous properties of the classical cosine
Fourier transform; the inversion formula, the Paley-Wiener theorem, and the
Plancherel formula are obtained in [2, 3]. For convenience we suppose that
a, # € R in the following. We define

Daﬂ:{i(|ﬁ|—Oé—l—Qm);m:O,l,Q,--- ,|ﬂ|—a—1—2m>0}.
Then the inversion formula is given as follows. For f € C2%(R),

f@) = 5 [ FB@ICNP T S Fweddn)

PED, 5
where d(u) = —iResy—,(C(A\)C(—A)'). We denote this decomposition as
f=r+7f (7)

and we call fp and °f the principal and discrete part of f respectively. We
here recall that for each u € D, g, there exists a positive constant K () such
that

|fu()| < K (p)e™@Hebe, (8)

We denote by F(v) = (F(A),{a,}) a function on Ry U D, g defined by

F() F(\) itr=XeRy
V) =
a, if v=pecD,p.



KSTS/RR-06/004
April 11, 2006

We pu

t F(v) = (F()\), {@,}) and define the product of F(v) = (F()), {a,})
and G(v)

= (G(A); {bu}) as
(FG)(v) = (F(NGA), {aubu})-

For a function ~(\) on C, we define F(v)h(v) by regarding h(v) as a function
on D, . Let dv denote the measure on Ry U D, g defined by

/ :—/ )| 72d\ + Z a,d(f).
R+UDQB Hesz,ﬁ

For f € C%(R), we put

Fw)=(FNAFw}).

Then the Parseval formula for the Fourier-Jacobi transform on CZ2(R) can
be stated as follows (see [3, Theorem 2.4]):

/0 " @)@ A@)dr = / g (9)

for f,g € C%(R). This map f — f.fe C2(R), is extended to an isometry
between L*(A) = L*(Ry, A(z)dz) and L*(v) = L*(Ry U D, g, dv). Actually,
each function f in L?*(A) is of the form f = fp + °f (see (7)) and their
L?-norms are given as

/ooo @AW =5 /Ooo FOPICO)I2dA,

| Pr@PAGE = 3 laPdn) if°£0) = Sy, , autulo)io)

NEDQ,B

Therefore, if we put f(u) = (f()\), {a}), then ||f||r2a) = ||f||Lz(,,) and

fa) = 5 [ FOB@ICO] A+ 3 asu@d. (10

#€Da g

We define
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and put
f(x) = and O(\) = (\2 + p»)Y/2,

2. Main theorem. We keep the notation in §1 and prove the following.

Theorem 2.1. Let « > —1, f € R For f € L?(A), we suppose that
f0 € L*(A) and fO© € L*(v). Then

5 1
||f9||%m)/ [FWPOW)dr = 21l a), (12)
R+UDQ,B
where the equality holds if and only iof f is of the form
, / 0(t)dt
f(x) = ce Jo
for some ¢,y € C.

Proof. Without loss of generality we may supppose that f € CZ%(R) and f

is real valued. Since R . .
) = (F(N), {f(w)})-
and (—Lf)"(A) = fFA) (X2 +p?) = fF(A)O(N)?, the Parseval formula (9) yields

that
/RUD fW))PO)kdy = /0 f(@)(—Lf)(z)A(z)dx

- [ r@raw.
Hence it follows that
/ F()20(2)* A () /&UDQ,B'J&(”)'Z@(”)””
= [ faporads () Awds

> / Fa)f (2)0()A ()daz)
- 4 / FryBly) = 1( [ reramas)”
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Here we used the fact that B’ = A (see (11)). Clearly, the equality holds if
and only if f = cf’ for some ¢ € R, that is, f'/f = ¢~'0. This means that

log(f) = c_l/ 6(t)dt + C and thus, the desired result follows. m
0

We recall that ©2(\) = A\? + p?. Then (12) and the Parseval formula
imply the following.

Corollary 2.2. Let f be the same as in Theorem 2.1.

~ 1 o0
16220, / 0o > / F@)P(1L— 420 A(x)dr. (13)

+UDQ’B
We shall estimate 6 and 1 — 4p%6%. Since o > —1, it follows that
B(z) = / (2sinh 5)?**1(2 cosh 5)**1ds
0
sinh
= ?P/m 2T (1 + ¢%)A at
0
1
_ meﬂnhxfaﬁi/ 2041 (] 4 (sinh 2)22)P dt
0
1
— 221 (5inh 2)22 (cosh 1) / (1— $)%(1 — (tanh 2)2s) ds
0
1
= 2% !(sinh x)**"*(cosh x)w?F(l, —83,2 + a; (tanh )?)
o
and thus,
1

f(x) = mF(l, —3,2 + «a; (tanh 2)?) tanh . (14)

Lemma 2.3. Let k= 0,1,2,--- and 0 < x < 1. We suppose that k—(a+1) <
B<k+(2k+1Da. Then * ' F(k+1,k— B,k + 2+ «, 2?) is increasing and

L(k+2+a)l(p—k)
Fl+a)l(p+1) °

0< s F(k4+1,k—B,k+2+a;2%) <
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Proof. When k— (a+1) < 3 < k, it follows that F(k+1,k—,k+2+ ;) is
increasing on 0 < z < 1. Hence H(z) = Hi(a, B3,2) = 2?* ' F(k+1, k-, k+
2+ a; 2?) is dominated by H(1) = T(k+2+ a)(p— k)/T (1 + a)L(p+ 1).
Let £ < 8 < k + (2k + 1)a. We shall prove that H(x) is increasing and
H(z) < H(1) as before. In order to prove that H(z) is increasing, we shall
show that its derivative is positive. We note that

2(1 4+ k)(k — B)a™!
24+ k4«

H'(z) = (1+2k)r "Hy(o, B,2) + Hii1 (o, 3, xf15)
= (14 2k)a ' Hy(a, 3, 7)
+2(1 4+ k+a)z ! ( Hy(a — 1, 8,7) — Hp(a, ﬁ,x))
.
where K (z) = (1+2k)F(1+k, k—3,2+k+o;2)+2(1+k+a)(F(1+k, k—
B, 1+k+a;2)— F(1+kk— 3,24+ k+ «,z)). Then

k
K@) = 1Rk pae e (L2 g6 g0
Hk—l—l(a - 17571‘) Hk+1(aa5,$)
+2(1+k+a)( l+k+a 2+k+a ))

Since 3 > k, 2 H, (0, B,2) = FQ+k,1+k— 3,3+ k +a;7) <
F+kl+k—B2+k+a;2)=a"H  (a—1,06,z)and 1/(1+k +
a)—1/(2+k+a) > 0, it follows that K'(z) < 0 and thus, K (z) is decreasing.
Therefore, H'(x) is decreasing and

F2+k+a)l(a+p—k) >0

H'(x) > H'(1) = (k+ 2k + 1)a — ) NCES T I

under the assumption on 3. Hence H(x) is increasing. m

Lemma 2.4. Let notation be as above and p > 0. If —(a+1) < 3 < a, then
0<0(x)<1/2p
and if a < 3 and k is an integer such that k—14+(2k—1)a < B < k+(2k+1)a,

then
1 @K DB+ D(p—k)
0<0() < o DTGk T i) ~ V)

6
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Proof. Clearly, 8(x) > 0 from Euler’s integral expression of hypergeometric
functions. The first assertion follows from (9) and Lemma 2.3 with £ = 0.
We suppose that a < § < 1 + 3a, that is, the case of £ = 1 in Lemma
2.3. Since ( is out of the range when k£ = 0, we couldn’t conclude that
H(z) = xF(1,—(3,2 + a;z?) is increasing on 0 < x < 1. Let = zy be the
maximaum point of H(x). Since

20
24+«

H,(l‘) = <F(1a_6ao‘+27x2) - $2F(2,1—ﬂ,a—|—3,$2))

and H'(xy) = 0, it follows that

2
Hlw) = 5o —afF(2,1 - B0+ 3,23)

Since a < # < 1+ 3a, applying Lemma 2.3 with £ = 1, we see that

H(z) < 1 26 TB+a)'(p—1)
20+1) = 2a+D)24+al(1+a)l(p+1)
12T+ AL 1)
210 T(B)(p)

When 1 + 3a < 8 < 2 4 5a, we couldn’t apply Lemma 2.3 in the above
argument to conclude that 23F (2,1 — 8, a+ 3, 2?) is increasing on 0 < z < 1.
Hence, we shall consider its derivative and the maximum point again. Then
we can apply Lemma 2.3 with £ = 2 to the derivative. Generally, when
(k—1)+Q2k—1)a< B <k+2k+1Da, H(a,B,z) = 22T F(I+1,1- 3,1+
2+ a;2%), 0 <[ < k-1, are not increasing and Hy(«, 3,z) is increasing.
Then it follows from (9) that

f(x) <

2(8 —1+1)
@ - D1+ +a)

Hlfl(aaﬁaxlfl) = Hl(aaﬂaxlfl)a

where x; 1 is the maximum point of H; 1(«, 3, x) and thus,

1 ﬁ( A(B—1+1) TDk+2+a)T(p—k)

= e+ M@= ni+ita) Ta+arp+1)
1 (2K T(B+1)(p—k)
20 (2k — DIT(B—k+ 1)T(p)

b(z)

7
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The asymptotic behavior of 6(x) follows from Wallis’ formula. =

Lemma 2.5. Let T(z) = 1 — 4p*0(z)?. If —(a+1) < 3 <0, then T(z) >
(coshz)~2. Generally,

coshx ) if x — oo,
ifx—0

and if < «, then () >0

Proof. Since F(1,—(,24+ «;0) =1 and F(1,—f3,2 4+ ;1) = (v + 1) /p, the
asymptotic behaviour easily follows. If —(a+1) < # <0, then F(1,—03,2+
«; ) is increasing with respect to z. Hence 0(z) < F/(1,—3,2+4 «; 1) tanhx
/2(a+ 1) < (1/2p) tanh z and thus, T(z) > (coshz)™2. If 0 < 8 < a, then
Y(z) > 0 from Lemma 2.4. m

We put

o0 ) = 2k — )IT(B -k + 1)T(p)
EA k)" T(B+ 1) (p—k)

Lemma 2.4 implies that, if £ — 1+ (2k — 1)a < § < k + (2k + 1)c, then
0(x) < (2pe) ™" (17)

The following assertion follows from Theorem 2.1, Corollary 2.2, Lemma 2.4
and Lemma 2.5.

(16)

Corollary 2.6. Let p > 0 and f be the same as in Theorem 2.1. If —(a+1) <
/8 S a, then f = fP;

AmMuW@uﬂcuwﬂﬂzpwm;m)
and
AﬂﬂwwwmwwzfﬂﬂﬂmwwNmm

where T(x) =1—4p*0(x)? > 0, and if k—1+ (2k—1)a < S < k+(2k+1)q,
then

[ lfwPewd = el
R+ UD, B

8
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[P g [ @R @ AR, (18)
R+UDQ,B 0
The shapes of 0(t) with 1/2p and Y'(t), t = tanh x, are respectively given as
follows.
1/2p and 6 (x) Y (%)
1 1

Figure 1: The case of g < a.

1/2p and 6(x) Y (x)

Figure 2: The case of 3 > «.

3. Uncertainty. We shall apply the inequalities obtained in the previous
section to deduce some information on the concentration of f and f . Let f
be a non-zero function in L?(A) satisfying f0 € L?(A) and fO € L?(v). We
recall that

f=rf+°f °flx)= Z a,Bu(2)d(p)

MEDa,ﬁ
and f(v) = (f(N), {a,})-
Definition 3.1. Let 0 < ¢ < 1/4p® and M > 0.

9
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(1) We say that a function f(x) on Ry is (0,€)-concentrated at x = 0 if

1Ol z2a) < €ll fllr2(a

and is (0, €)-nonconcentrated at x = 0 if the reverse holds.
(2) We say that a function f(X) on Ry is (A, €)-concentrated at A = 0 if

/0 FOVRXICON 2N < e f[aga,

and is (X, €)-nonconcentrated at X = 0 if the reverse holds.
(8) We say that a function f(x) on Ry is (u, €)-concentrated at x =0 if

Y lauPluldn) < el fll7aa)-

“eDa,B

(4) We say that a function f(z) on Ry is (T, €)-nonconcentrated at x = 0
if
[ U@ @A @] < dili,
(5) We say that a function f(x) on Ry is (o, €)-bounded if

|f(@)] < ellflle2ay if © > xo.

Now we suppose that f(z) is (6, €)-concentrated at = 0. Since
[N CICOR
R+UDQ,B
= /0 FOOPXICN)72 AN =Y lauPlufd(n) + 0211 f1IZ2a)-
Da s
it follows from (12) that

/0 [FOVPNICN) AN = N ul’d(p) > (1/4€ = o)1 f 1172 (a)-
Da s

Therefore, f(v) is (A, 1/4e — p*)-nonconcentrated at A = 0.

10
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Conversely, we suppose that f(l/) is (v, €)-concentrated at A = 0. Then it
follows from (17) that, if k — 14 (2k — 1)a < f < k + (2k + 1)c, then

/ @) PY@A@Y > (1— )| ol

0

Here we recall that 1 — ;> < 0. Moreover, letting A = / |fp(2))?Y (2)|
0
A(x)dx and B = ||fp||%2(A), we see from (13) for f = fp that

(B— A)eB > p*AB

and thus,

B
A< 2 < °p (19)
p2 + € p2
Therefore, fp(x) is (7, 0)-nonconcentrated at = = 0, where
§ = max{e;*> — 1, p %¢}.

Moreover, let xy = 1. Then it follows from (2), (3), and (4) that for x > 1,
@l < | [ Fovewon iy

< i / NICENT D+ [ FOlIoEN )

NG
< e Ry (P fp sy

* . 1/2, [ 1/2
([ iopwieorzan) ([ aran™)
Ve Ve
< 2e K€ frlliza

Hence we have the following.

Theorem 3.2 Let p > 0 and f € L2(A) satisfy f0 € L*(A) and fO € L*(v).
Let k be an integer such that k—1+(2k—1)a < f < k+(2k+1)a, where k = 0
if B < a. We define g, by (16) where e = 1. If f(x) is (0, €)-concentrated
at x = 0, then f()\) is (X, 1/4e — p?)-nonconcentrated at X = 0. Conversely,
if f(\) is (X, €)-concentrated at X = 0, then fp(z) is (T, )-nonconcentrated

11
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at v = 0, where § = rnaux{e,;2 —1,p7%¢}, and there exists a positive constant
c such that fp(z) is (1, ce'/*)-bounded.

When 5 < «, we recall that f = fp and g9 = 1 (k = 0). Hence, the
above theorem implies that f(z) is (7, p~?¢)-nonconcentrated at r = 0 and
(1, ce'/*)-bounded. Therefore, f(x) is spread if ¢ goes to 0. However, when
[ > a, then g, < 1 and it is not clear that f(x) is spread if € goes to 0. This
implies that the discrete part of f influences the uncertaintity.

We now suppose that § > «, f()\) is (A, €)-concentrated at A = 0 and
f(x) is (u, €4)-concentrated at x = 0. We shall prove that f(z) is spread if

o0

e and ¢4 go to 0. As in the previous argument, let A = / |f(2)]*7 (2)]
0
A(z)dz and B = | f||72(a)- Then it follows from (13) that
(B— A)(e+eq)B > p*AB

and thus, A < p~?(e + ¢4)B. Let zy > 0 the point such that ¥’(x¢) = 0 and
x > 9. As before, it follows that

|fp(2)] < e P K ||l r2(a)-
On the other hand, it follows from (8) that

Pr@) < Y laullgu(@)ld(n)

l"‘esz,ﬁ

1/2
< e (O30 el ) e s

“eDa,B

Hence, for x > x4, we see that there exist a positive constant ¢ such that
F@)er ] < el + eI llzxa):

Therefore, it follows that

| @Pr@A@a = o [ if@e T

Zo

> NP PI ey [ T

Zo

= cr(e/ + e PIfIn)-

12
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Here ¢y < 0, because / Y(z)dz < 0.

zo

Theorem 3.3 Let 3 > a and o > —1. Let f € L*(A) satisfy f0 € L*(A) and
fO € L*(v). We suppose that f()\) is (X, €)-concentrated at X = 0 and f(z)
is (u, €4)-concentrated at x = 0. Then there ezists constants cy < 0,¢ > 0
such that f(x) is (T, 0)-nonconcentrated at x = 0, where § = max{—cy(e'/* +
6(11/2), p~2(e +eq)}, and is (xo, c(e/* + 6(11/2))—b0unded.

We suppose that f is supported on [R,00). Then there exists a constant
0 < e(R) < 1 such that

1
0<blo) < 2pz(R)

and £(R) — 1 if R — oo. Then it follows from (13) that

[ e ¢ [T @R em? - s
R+UDQ’5 0
Then we obtain the following.

Proposition 3.4. Let p > 0 and suppose that f € L*(A) satisfies f0 € L*(A)
and fO € L*(v). We suppose that [ is supported on [R,00). Then

> lauPluld(n) S/Ooo|f(A)|2A2|C(A)|‘2dA+p2(1—S(R)Z)HfH%z(A)-

l"‘esz,ﬁ

Remark 3.5. When § = 0, we can calculate more precisely. In this case
6 = (2p) 'tanhz and 1 — 4p*0? = (coshz) 2. Therefore, (12) and (13)
became

1f () t3”1}133”%2@)||f()\)()\2 + :02)1/2”%200\72) > p2||f||4L2(A)7

where the equality holds if and only if f is of the form ¢(cosh x)?, and

1f () tanh 2|20 L DA Z2 -2y = 22112 l1F () (cosh ) T[T

Since the Jacobi transform of (cosh A)? is explicitly calcurated in [1], we can
directly check the equality condition for these inequalities.

13
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