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1 Introduction

The aim of this paper is to show that deformation quantization provides us with
a new geometric idea going beyond classical geometry. In fact, there have been
several attempts to describe “quantum objects” in a geometric way (cf. [3], [5],
[6]), although no treatment has been accepted as definitive. Motivated by these
attempts, we produce a description of objects which arise from the deformation
of algebras, as one approach to describing quantum mechanics mathematically
is via deformation quantization, which is a deformation of Poisson algebras.
Through the construction of the star exponential functions of the quadratic
forms in the complex Weyl algebra, we found several strange phenomena which
cannot be treated as classical geometric objects (cf. [9], [11], [12], [13]). Our
main concern is to understand how to handle these objects geometrically, and
we consider our results are a step toward quantum geometry. However, sim-
ilar questions arise even for deformations of commutative algebras, as in the
case of deformation quantizations. For this reason, in this paper we deal with
the simplest case of the deformation of the associative commutative algebra of
polynomials of one variable.

In §2.1, we construct an algebra C∗[ζ] whose elements are elements of C[ζ]
parametrized by the indeterminate κ. Motivated by deformation quantization,
we introduce associative commutative products on C[ζ] parametrized by a com-
plex number κ (cf. Definition 2.1), which gives both a deformation of the canon-
ical product and a representation parameterized by κ of C.

Our standpoint formulated in § 2.1 is to view elements in the abstract algebra
C∗[ζ] as a family of elements. The deformation parameter κ is viewed as an
indeterminate.

One method of treating this family of elements as geometric objects is to
introduce the notion of infinitesimal intertwiners, which play the role of a con-
nection. In fact, elements of C∗[ζ] can be viewed as parallel sections with respect
to this connection. These elements are called q-number polynomials.

In § 2.2 and § 2.3, we extend this setting to a class of transcendental elements
such as exponential functions. In this setting, the notion of densely defined
multi-valued parallel sections appears crucially. We also call these q-number
functions in analogy with [1]. However, the only geometrical setting possible is
to extend the infinitesimal intertwiners to a linear connection on a trivial bundle
over C with a certain Fréchet space of entire functions.

In § 3 we investigate the moduli space of densely defined parallel sections
consisting of exponential functions of quadratic forms. We show that the moduli
space is not an ordinary bundle, as it contains fuzzy transition functions. This
has similarities to the theory of gerbes (cf. [2], [8]).

However, our construction has a different flavor from the differential geomet-
ric point of view, since gerbes are classified by the Dixmier-Douady classes in
the third cohomology over Z, while our example is constructed on the 2-sphere
or the complex plane. We prefer call this fuzzy object a pile, although Z2-gerbes
have been proposed as similar notions (cf.[14]).
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We run into a similar situation in quantizing non-integral closed 2-forms on
manifolds. As for integral symplectic forms on symplectic manifolds, we can
construct a prequantum bundle, which is a line bundle with connection whose
curvature is given by the symplectic form. We attempt the prequantization of
a non-integral closed 2-form by mimicing our examples describing the moduli
space of densely defined multi-valued parallel sections. We note that Melrose
[7] proposed a method handling a type of prequantization of non-integral closed
2-forms, which seems closely related to our approach.

In § 5, we give an simple example for treating solution spaces of ordinary
differential equation with movable branch singularities. We introduce an as-
sociative product on the space of parallel sections of exponential functions of
quadratic forms, but this product is “broken” in the sense that for every κ,
there is a singular set on which the product diverges. Thanks to the movable
singularities, this broken product defines an associative product by treating κ
as an indeterminate. This computation provides a novel aspect of the noncom-
mutative calculus. We also hope that our attempt will help with the study for
solutions of ordinary differential equations with movable branch singularities.

In the end, our work seems to extend the notion of points as established
elements of a fixed set to a more flexible notion of elements.

2 Deformation of a commutative product

We construct an algebra C∗[ζ] whose elements are elements of C[ζ] parametrized
by the indeterminate κ. For convenience, we denote by ∗ the product on the
algebra C∗[ζ]. The algebra C∗[ζ] is isomorphic to the algebra C[ζ] of polynomials
in ζ over C, but we will view C∗[ζ] as a family of algebras which are mutually
isomorphic.

2.1 A deformation of commutative product on C[ζ]

We denote the set of polynomials of ζ viewed as a linear space by P(C). We
introduce a family of product ∗κ on P(C) parametrized by κ ∈ C as follows.

Definition 2.1. For every f, g ∈ P(C), we set

f ∗κ g =
∞∑

`=0

1
`!

(κ

2
)`

∂`
ζf(ζ) · ∂`

ζg(ζ).

Then (P(C), ∗κ) is an associative commutative algebra for every κ ∈ C. Since
putting κ = 0 gives the algebra C[ζ], the family of algebras {(P(C), ∗κ)}κ∈C
gives a deformation of C[ζ] within associative commutative algebras. We note
the following.

Lemma 2.2. For every κ, κ′ ∈ C, the algebras (P(C), ∗κ) and (P(C), ∗κ′) are
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mutually isomorphic. Namely, the mapping Tκ′
κ : P(C)→ P(C) given by

Tκ′
κ (f) =

(
exp

1
4
(κ′−κ)∂2

ζ

)
f(ζ) =

∞∑

`=0

1
`!

(1
4
(κ′−κ)

)`(∂2`
ζ )f(ζ)(1)

satisfies Tκ′
κ (f ∗κ g) = Tκ′

κ (f) ∗κ′ Tκ′
κ (g).

Definition 2.3. The isomorphism Tκ′
κ given by (1) is called the intertwiner

between the algebras (P(C), ∗κ) and (P(C), ∗κ′).
Taking the derivative in κ′ for Tκ′

κ defines an infinitesimal intertwiner. Namely,
for κ ∈ C we set

tκ(u)(f) =
d

ds

∣∣
s=0

Tκ+su
κ (f) =

1
4
u∂2

ζf.(2)

The infinitesimal intertwiner gives a realization of C∗[ζ] as follows. Let π :
C×P(C)→ C be the trivial bundle over C, and Γ(C×P (C)) the set of sections
of this bundle. Using the infinitesimal intertwiner defined by (2), we introduce a
connection∇ on Γ(C×P(C)): For a smooth curve c(s) in C and γ ∈ Γ(C×P(C)),
we set

∇ċγ(s)=
d

ds |s=0
γ(c(s))−tc(s)(ċ(s))(γ(c(s)), where ċ(s)=

d

ds
c(s).(3)

Definition 2.4. A section γ∈Γ(C×P(C)) is parallel if ∇γ=0. We denote by
S(C×P(C)) the set of all parallel sections γ∈Γ(C×P(C)).

Let us consider an element f∗∈C∗[ζ]. Corresponding to the unique expression
of an element f∗ ∈ C∗[ζ] as

f∗ =
∑

aj ζ∗ · · · ∗ζ︸ ︷︷ ︸
j-times

(finite sum), aj∈C,

we set the element fκ ∈ P(C) for κ ∈ C by

fκ=
∑

aj ζ ∗κ · · · ∗κ ζ︸ ︷︷ ︸
j-times

(finite sum), aj∈C.

The section γf∗(κ)=fκ gives a parallel section of the bundle π : C×P(C)→C.
Using the product formula ∗κ, we define a product ∗ on S(C×P(C)) by

(γ1∗γ2)(κ)=γ1(κ) ∗κ γ2(κ), γ1, γ2 ∈ S(C×P(C)).(4)

Lemma 2.5. (S(C×P(C)), ∗) is an associative commutative algebra.

This procedure gives an identification of the algebra (S(C×P(C)), ∗) with
C∗[ζ]. Elements of (S(C×P(C)), ∗) will be called q-number polynomials. Al-
though the space of parallel sections could also be defined as space of leaves of a
foliation, we attempt to give examples via deformations as alternative geometric
objects.
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2.2 Strange exponential functions

We now extend this procedure to exponential functions. For f∗ ∈ C∗[ζ], we
want to describe the star exponential functions exp∗ f∗ (singular), which may
be highly transcendental elements.

Let E(C) be the set of all entire functions on C. For p > 0, we set

Ep(C) = {f ∈ E(C) | ||f ||p,δ = sup
ζ∈C

e−δ|ζ|p |f(ζ)| <∞,∀δ > 0},(5)

and also set Ep+(C)= ∩q>p Eq(C). Then (Ep(C), ∗κ) is a Fréchet commutative
associative algebra for p ≤ 2 (cf. [11]). Recalling the intertwiner Tκ′

κ given by
(1), we have the following [12]:

Lemma 2.6. Let p ≤ 2. The intertwiner Tκ′
κ in (1) canonically extends to a

map Tκ′
κ : Ep(C)→ Ep(C) satisfying

Tκ′
κ (f ∗κ g)=Tκ′

κ (f) ∗κ′ Tκ′
κ (g) for every f, g ∈ Ep(C).(6)

We note that while the product ∗κ does not give an associative commutative
product and the intertwiner Tκ′

κ does not extend to Ep(C) for p ≥ 2, the notion
of the connection ∇ is still defined.

Namely, we consider the trivial bundle π : C×E(C) → C over C with the
fiber E(C), and the set of sections Γ(C×E(C)). For γ∈Γ(C×E(C)), we define a
covariant derivative ∇ċγ as the natural extension of (3). It is easily seen that
∇ is well defined for Γ(C×Ep(C)) and Γ(C×Ep+(C)) for every p≥0. As before,
we denote by S(C×Ep(C)), S(C×Ep+(C)) the sets of parallel sections.

We wish to treat the star exponential function exp∗ f∗ for f∗ ∈ C∗[ζ]. As in
§2.1, we have the realization {fκ}κ∈C of f∗∈C∗[ζ], where fκ∈P(C). Fixing the
∗κ product gives the star exponential functions of fκ ∈ P(C) with respect to
∗κas follows. We consider the following evolution equation

{
∂tFκ(t) = fκ(ζ) ∗κ Fκ(t),
Fκ(0) = gκ.

(7)

If (7) has a real analytic solution in t, then this solution is unique. Thus, we
may set exp∗κ

fκ = Fκ(1) when (7) has an analytic solution with Fκ(0) = 1.
By letting κ∈ vary in C, the totality of the star exponential functions

{exp∗κ
fκ}κ∈C may be viewed as a natural representation of the star exponential

function exp∗ f∗.

As an example, we consider the linear function f(ζ) = aζ, where a ∈ C.
Then the evolution equation (7) is expressed as

{
∂tFκ(t) = aζFκ + κ

2 a∂ζFκ,
Fκ(0) = 1.

(8)

By a direct computation, we have
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Lemma 2.7. The equation (8) has the solution Fκ(t)= exp(atζ+κ
4 a2t2). Thus,

we may set

exp∗κ
tζ = exp(tζ +

κ

4
t2)(9)

which is contained in E1+(C) for every κ ∈ C.

Since the intertwiner Tκ′
κ is defined on E1+(C), and Tκ′

κ (exp∗κ
aζ) = exp∗κ′

aζ,
we see that {exp∗κ

aζ}κ∈C is an element of S(C×E1+(C)). As in §2.1, it is natu-
ral to regard {exp∗κ

aζ}κ∈C as the star exponential function exp∗ aζ, which may
be called a q-number exponential function.

From the star exponential functions exp∗κ
aζ, we construct a type of delta

function via the star Fourier transform: Namely, we call

δ∗κ
(ζ) =

∫ ∞

−∞
exp∗κ

itζ dt(10)

the ∗κ-delta function. Using (9), we have

Lemma 2.8. The ∗κ-delta function δ∗κ(ζ) is well defined as an element of
E2+(C) for every κ∈C such that Re(κ) > 0.

Using integration by parts, we easily see that

eiθ

∫ ∞

−∞
exp∗κ

eiθitζ dt, Re e2iθκ>0

does not depend on θ whenever Re(e2iθκ) > 0. This allows us to define
δ∗κ(ζ)∈E2+(C) for κ∈C−{0}.
Lemma 2.9. The mapping δ∗ : C−{0} → E2+(C) defined by κ→δ∗κ

is double-
valued.

Proof. We set

δ(ζ; eiθ, κ) = eiθ

∫ ∞

−∞
exp(ieiθtζ − κ

4
e2iθt2)dt.(11)

HHHHHHHH

HHHHHHHH

HHHHHHHH

HHHHHHHH
θ

τ••

Fig.1

Setting κ=eiτ gives that δ(ζ; eiθ, eiτ ) is
well defined on the strip bounded by
θ = −π

2 ± π
4 given in Fig.1. Note

that δ(ζ; eiθ, κ) depends only on τ in this
strip −π/2<τ+2θ<π/2 and δ(ζ; eiθ, κ) is
a parallel section with respect to κ. By
varying θ, we may move t from 0 to 2π
such that (t, θ) is contained in the strip
as indicated in the figure. Moving along
such a path from t = 0 to t = 2π gives

δ(ζ; 1, c)=
∫ ∞

−∞
exp(itζ−1

4
ct2)dt=−

∫ ∞

−∞
exp(−itζ−1

4
ct2)dt=−δ(ζ; 1, c).
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Let us consider the trivial vector bundle over C−{0}. Lemma 2.9 tells us that
δ∗(ζ) can be viewed as a double-valued holomorphic parallel section over C−{0}.
Note that δ(ζ; 1, c)= 2

√
π√
c

e−
1
c ζ2

, and limc→0 δ(ζ; 1, c) gives us the ordinary delta
function.

As seen in the construction of the star delta functions, the notion of densely
defined multi-valued parallel sections arises naturally, which could be handled
as leaves of a foliation. However, as mentioned in §2.1, we prefer to interpret
this object as an alternative geometric notion.

2.3 Star exponential functions of quadratic functions

We set

P (2)(C)={f(ζ)=aζ2+b | a, b∈C}, C(2)
∗ [C]={f∗(ζ)=aζ∗ζ ∈ C∗[ζ] | a∈C}

Thus, we view aζ∗ζ as the section γ(κ) = aζ2+a
2κ∈Γ(C×P (2)(C)), where π :

C×P (2)(C)→C is the trivial bundle over C with fiber P (2)(C). We now attempt
to give a meaning to the star exponential function exp∗ aζ∗ζ, a∈C along the
argument in §2.1.

We consider a quadratic element f∗ ∈ C(2)
∗ [ζ]. Then the corresponding

polynomial fκ is given by

fκ = ζ∗κζ = ζ2+
κ

2
.(12)

As in §2.1, we view {fκ}κ∈C as a parallel section of C×P (2)(C). We consider
the following evolution equation.

∂tFκ(t) = fκ(ζ) ∗κ Fκ(t), Fκ(0) = gκ,(13)

where fκ can be given by (12). (13) is rewritten as

∂tFκ(t) = (ζ2+
κ

2
)Fκ+κζ∂ζFκ+

κ2

4
∂2

ζFκ, Fκ(0) = gκ.(14)

We assume that the initial condition gκ is given by the form gκ = ρκ,0 exp aκ,0ζ
2,

where ρκ,0 ∈ C×=C−{0} and aκ,0 ∈ C. Putting gκ=1 gives the star exponential
function exp∗κ

fκ(ζ). To solve (14) explicitly, we assume that Fκ is of the
following form:

Fκ(t) = ρκ(t) exp aκ(t)ζ2.(15)

Plugging (15) into (14), we have




∂taκ=1+2aκκ+a2
κκ2,

∂tρκ=κ
2

(
1+κaκ

)
ρ,

aκ(0)=aκ,0, ρκ(0)=ρκ,0.
(16)

7

KSTS/RR-06/002
March 15, 2006



Proposition 2.10. The solution of (16) is given by

aκ(t) =
aκ,0+t(1+κaκ,0)
1−κt(1+κaκ,0)

, ρκ(t) =
ρκ,0√

1−κt(1+κaκ,0)
,(17)

where we note the ambiguity in choosing the sign of the square root in (17). We
define a subset E(2)(C) of E(C) by

E(2)(C) = {f = ρ exp aζ2 | ρ ∈ C×, a ∈ C}.

Identifying f=ρ exp aζ2 ∈ E(2)(C) with (ρ, a) gives E(2)(C) ∼= C××C. Note that
E(2)(C) is not contained in E2(C) but in E2+(C), on which the product ∗κ may
give rise to strange phenomena (cf. [12]).

Consider the trivial bundle π : C×E(2)(C) over C with fiber E(2)(C). In
particular, putting aκ,0=0, ρκ,0=1 and t=a in Proposition 2.10, we see that

exp∗κ
aζ∗κζ =

1√
1−aκ

exp
a

1−aκ
ζ2(18)

where the right hand side of (18) still has an ambiguous choice for the the sign
of the square root.

Keeping this ambiguity in mind, we have a kind of fuzzy one parameter group
property for the exponential function of (18). Namely, for gκ = exp∗κ

bζ∗κζ,
where b ∈ C, the solutions of (14) yield the exponential law:

exp∗κ
aζ∗κζ ∗κ exp∗κ

bζ∗κζ =
1√

1−(a+b)κ
e

a+b
1−(a+b)κ

ζ2

= exp∗κ
(a+b)ζ∗κζ,

(19)

where (19) still contains an ambiguity in the sign of the square root.

Recall the connection ∇ on the trivial bundle π : C×E(C)→C. It is eas-
ily seen that the connection ∇ gives a specific trivialization of the bundle
π : C×E(2)(C)→C. According to the identification E(2)(C) ∼= C××C, we write
γ(κ) = ρ(κ) exp a(κ)ζ2 as (ρ(κ), a(κ)). Then the equation ∇∂t

γ = 0 gives
{

∂ta(t) = a(t)2,
∂tρ(t) = 1

2ρ(t)a(t).(20)

We easily see that (18) gives a densely defined parallel section. As seen in [12],
it should also be considered as a densely defined multi-valued section of this
bundle. Thus, we may view the star exponential function exp∗ aζ∗ζ as a family

{
Fκ(ζ) =

1√
1−aκ

exp
a

1−aκ
ζ2

}
κ∈C.

This realization of exp∗ aζ∗ζ is a densely defined and multi-valued parallel
section γ(κ) = ρ(κ) exp a(κ)ζ2 of the bundle π : C×E(2)(C)→C. In the next
section, we investigate the solution of (20) more closely.
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3 Bundle gerbes as a non-cohomological notion

The bundle π : C×E(C)→C with the flat connection ∇ gave us the notion
of parallel sections, where we extended this notion to be densely defined and
multi-valued sections. This is in fact the notion of leaves of the foliation given
by the flat connection ∇. We now analyze the moduli space of densely defined
multi-valued parallel sections of the bundle π : C×E(2)(C)→C with respect to
the connection ∇. The moduli space has an unusual bundle structure, which we
would call a pile. We analyse the evolution equation (20) for parallel sections
as a toy model of the phenomena of movable branch singularities.

3.1 Non-linear connections

First, consider a non-linear connection on the trivial bundle
∐

κ∈C C = C×C
over C given by a holomorphic horizontal distribution

H(κ; y) = {(t; y2t); t ∈ C} (independent of κ.)(21)

.
The first equation of parallel translation (20) is given by dy

dκ = y2. Hence,
parallel sections are given in general by

(κ; y(κ))=(κ;
1

c−κ
)=(κ;

c−1

1−c−1κ
).(22)

There is also the singular solution (κ; 0), corresponding to c−1 = 0. Note that
(κ,− 1

κ ) is not a singular solution. For consistency, we think that the singular
point of the (κ, 0) section as at ∞.

Let A be the set of parallel sections including the singular solution (κ, 0).
Every f∈A has one singular point at a point c ∈ S2=C∪{∞}. The assignment
of f ∈ A to its singular point σ(f) = c gives a bijection σ : A→S2=C ∪ {∞}.
Namely, A is parameterized by S2 by

σ(f) = c⇔ f = (κ,
1

c−κ
), σ(f) =∞⇔ f = (κ, 0) ∈ A.(23)

In this way, we give a topology on A.

Let Tκ′
κ (y) be the parallel translation of (κ; y) along a curve from κ to κ′.

Since (21) is independent of the base point κ, Tκ′
κ (y) is given by

Tκ′
κ (y) =

y

1−y(κ′−κ)
, Tκ′

κ (∞) =
1

κ−κ′
.

We easily see that Tκ′′
κ = Tκ′′

κ′ Tκ′
κ , Tκ

κ = I. Every f∈A satisfies Tκ′
κ f(κ) = f(κ′)

where they are defined.

9
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3.1.1 Extension of the non-linear connection

We now extend the non-linear connection H defined by (21) to the space C×C2

by giving the holomorphic horizontal distributions

H̃(κ; y, z) = {(t; y2t,−yt); t ∈ C} (independent of κ, z).(24)

Parallel translation with respect to (24) is given by the following equations:

dy

dκ
= y2,

dz

dκ
= −y.(25)

For the equation (25), multi-valued parallel sections are given by both ways

(κ,
a

1−aκ
, z+ log(1−aκ)), (κ,

1
b−κ

,w+ log(κ−b)), (a, b ∈ C)(26)

although they are infinitely valued. The singular solution (κ; 0, z) occurs in the
first expression. The set-to-set correspondence

(a, z+2πiZ) ι⇐⇒ (b, w+2πiZ)=(a−1, z+ log a+πi+2πiZ)(27)

identifies these two sets of parallel sections, which gives multi-valued parallel
sections. However, because of the ambiguity of log a, we can not make this
correspondence a univalent correspondence (cf. Proposition 3.1).

Denote by Ã the set of all parallel sections written in the form (26). De-
note by π3 : Ã→A be the mapping which forgets the last component. This is
surjective. For every v∈A such that σ(v)=b=a−1∈S2, we see

π−1
3 (v)={(κ,

1
b−κ

,w+ log(κ−b));w∈C}={(κ,
a

1−aκ
, z+ log(1−aκ)); z∈C}.

Since there is one dimensional freedom of moving, π−1
3 (v) should be parameter-

ized by C. However, there is no natural parameterization and there are many
technical choices.

3.1.2 Tangent spaces of Ã
For an element f=(κ, a

1−aκ , z+ log(1−aκ))=(κ, 1
b−κ , w+ log(κ−b)), the tangent

space Tf Ã of Ã at f is

Tf Ã =
{ d

ds

∣∣∣
s=0

(
a(s)

1−a(s)κ
, z(s)+ log(1−a(s)κ)); (a(0), z(0))=(a, z)

}

=
{

(
ȧ

(1−aκ)2
, ż− ȧκ

1−aκ
); ȧ, ż∈C

}
=

{
(
−ḃ

(b−κ)2
, ẇ− ḃ

κ−b
); ḃ, ẇ∈C

}
.

Hence [
ḃ
ẇ

]
=

[−a−2 0
a−1 1

] [
ȧ
ż

]
=(dι)(a,z)

[
ȧ
ż

]
, and Tf Ã ∼= C2.
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Consider now a subspace Hf of Tf Ã obtained by setting ż = 0 in the definition
of Tf Ã. Then, {Hf ; f ∈ Ã} is defined without ambiguity 2πiZ, and obviously
Hf
∼= C. We regard {Hf ; f ∈ Ã} an unambiguously defined horizontal distri-

bution on π3 : Ã → A.
The invariance in the vertical direction gives that {Hf ; f ∈ Ã} may be

viewed as an infinitesimal trivialization of π3 : Ã → A.
Parallel translation Iκ′

κ for (25) is given by

Iκ′
κ (y, z)=(

y

1−y(κ′−κ)
, z+ log(1−y(κ′−κ))),

=(
1

y−1−κ′+κ
, z+ log y+ log(y−1−κ′+κ)),

(28)

which is obtained by solving for (25) under the initial data (κ, y, z).
By definition we see Iκ

κ = I, and Iκ′′
κ = Iκ′′

κ′ Iκ′
κ , as a set-to-set mapping

Every f ∈ Ã satisfies Iκ′
κ f(κ) = f(κ′) where they are defined.

Proposition 3.1. Parallel translation via the horizontal distribution {Hf : f ∈
Ã} does not give a local trivialization of π3 : Ã → A.

Proof. For a point g = (κ, a
1−aκ ) of A, and a small neighborhood Va of a,

Ṽa = { a′
1−a′κ ; a′ ∈ Va} is a neighborhood of f in A. Consider the set

π−1
3 (Ṽa) = {(κ,

a′

1−a′κ
, z+ log(1−a′κ)); a′ ∈ Va, z∈C}.

The horizontal lift of the curve a′(s)
1−a′(s)κ , a′(s) = a+s(a′−a) along the infinites-

imal trivialization is given by solving the equation

d

ds
z(s) = − (a′−a)κ

1−a′(s)κ
, z(0) ∈ log(1−aκ).

Hence z(s) = log(1−(a+s(a′−a))κ), and z(1) = log(1−a′κ). Thus it is impos-
sible to eliminate the ambiguity of log(1−a′κ) on Va, no matter how small the
neighborhood Va is.

Proposition3.1 shows that π3 : Ã → A is not an affine bundle. In spite of
this, one may say that the curvature of its connection vanishes.

3.1.3 Affine bundle gerbes

Although π3 : Ã→A does not have a bundle structure, we can consider local
trivializations by restricting the domain of κ.
(a) Let V∞={b; |b|>3} ⊂ S2 be a neighborhood of∞. First, we define a fiber pre-
serving mapping p∞,D

from the trivial bundle π : V∞×C→ V∞ into π3 : Ã → A
such that π3p∞,D

=σ−1π by restricting the domain of κ in a unit disk D: Con-
sider (κ, a

1−aκ , z+ log(1−aκ)) for (κ, a−1)∈D×V∞. Since |aκ|<1/3, log(1−aκ)
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is defined as a univalent function log(1−aκ)= log |1−aκ|+iθ, −π<θ<π on this
domain by setting 1−aκ=|1−aκ|eiθ, which will be denoted by log(1−aκ)D×V∞ .
We define

p∞,D
(b, z)=(κ,

a

1−aκ
, z+ log(1−aκ)), a−1=b∈V∞, z∈C(29)

where log(1−aκ) in the right hand side is the analytic continuation of log(1−aκ)
= log(1−aκ)D×V∞ .

Fig.2

z z
¹¸

º·¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

V∞

D
D′

Vb0
Vb1

Vb−1

Vb−2

Vb2
Vb3

cu

cl

·······

(b) We take a simple covering of
the domain |z| ≤ 3 by unit disks
Vb−k

, . . . , Vb−1 , Vb0 , Vb1 , . . . , Vb`
as in

Fig.2, and fix a unit disk D′ apart from
all Vbi

. We define a fiber preserving
mapping p

Vbi
,D′ from the trivial bun-

dle π : Vbi
×C → Vbi

to the bundle
π3 : Ã → A such that π3pVbi

,D′=σ−1π

by restricting the domain of κ in a unit
disk D′.

We see that setting κ−b=|κ−b|eiθ, log(κ−b) is defined as a univalent func-
tion on the domain D′×Vbi

as log |κ−b|+iθ, −π<θ<π, which is denoted by
log(κ−b)D′×Vbi

.
Consider (κ, 1

b−κ , w+ log(κ−b)) for (κ, b)∈D′×Vbi . We define

p
Vbi

,D′ (b
′, w)=(κ,

1
b′−κ

,w+ log(κ−b′)), (b′, w)∈Vb×C(30)

where log(κ−b) on the r.h.s. is the analytic continuation of log(κ−b)Vbi
×D′ .

(c) Suppose c∈Vbi
∩Vbj

and pVbi
,D′(c, w)=pVbj

,D′(c, w′). Then we see that there
exists a unique n(i, j)∈Z such that w′=w+2πin(i, j). For the above covering,
we see n(i, j)=0 for every pair (i, j).

Let c∈Vbi
∩V∞ and pVbi

,D′(c, w)=p∞,D(c, z). To fix the coordinate transfor-
mation, we have to choose the identification of two sets of values log(κ−b)D′×Vbi

and log(1−aκ)D×V∞ . For bi, except b1, we identify these through the analytic
continuation along the (lower) curve cl joining D and D′, but for b1, we identify
log(κ−b)D′×Vb1

and log(1−aκ)D×V∞ through the analytic continuation along
the (upper) curve cu joining D and D′.

Therefore there is a positive integer n(i,∞) such that w′=z+2πin(i,∞) by
the same argument. For the above covering we see in fact that if n(1,∞)=m
for i=1, then n(i,∞)=m+1 for every i6=1.

These give coordinate transformations. However, the collection of these local
trivializations do not glue together, for these do not satisfy the cocycle condition
on the triple intersection marked with the triangle in Fig. 2.
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We denote by
∐

b∈S2 Cb the collection of these local trivializations. Thus we
have a commutative diagram

∐
b∈S2 Cb

p(•)−→ Ã
π ↓ π3 ↓
S2 σ←− A

(31)

One can consider various local trivializations of the bundle-like object of the left
hand side.

∐
b∈S2 Cb is not an affine bundle, but an “affine bundle gerbe” with

a holomorphic flat connection (cf.[8]). However, the geometric realization of a
holomorphic parallel section is nothing but an element of Ã given by (26).

3.2 Geometric notions on Ã
Recall that the discordance (the Japanese word sogo in the term used in [10])
of patching of three local coordinate neighbourhood occurs only on the small
dotted triangle in Fig.2.

In this section, we construct two examples which give almost the same phe-
nomena as in the previous section for gluing local bundles.

3.2.1 Geometric quantization for a non-integral 2-form

Consider the standard volume form dV on S2 with total volume 4π. Let Ω be a
non-integral, closed smooth 2-form (current) on S2 such that

∫
S2 Ω = 4πλ, and

with the support of Ω concentrated on a small disk neighborhood of the north
pole N . For {Ui}i∈I a simple cover of S2, on each Ui, Ω is of the form Ω = dωi,
and hence ωij = ωi−ωj on Uij = Ui ∩ Uj is a closed 1-form (current), and is
written by ωij = dfij on Uij for a smooth 0-form (current) fij .

Now we want to make a U(1)-vector bundle using e
√−1fij as transition

functions. However, since on Uijk = Ui ∩ Uj ∩ Uk we only have

e
√−1fij e

√−1fjke
√−1fki = e

√−1(fij+fjk+fki),

e
√−1fij cannot be used as patching diffeomorphisms. In spite of these difficul-

ties, we see that the horizontal distributions defined by ωi glue together.
Thus, we can define a linear connection on such broken vector bundle, which

is precisely the notion of bundle gerbes. Since Ω = dωi, the curvature form of
this connection is given by Ω. Note that we can make a parallel translation
along any smooth curve c(t) in S2.

Since the support of Ω is concentrated in a small neighborhood VN of the
north pole N . Therefore any closed curve in S2−VN can be shrunk to a point
in S2−VN . In spite of this, the homotopy lifting of parallel translation does not
succeed, because of the discordance (sogo) of the patching diffeomorphisms.

If Ui does not intersect VN , then we have a product bundle Ui × C with
the trivial flat connection. Since ωi = d log ehi , the integral submanifold of the
horizontal distribution of ωi is given by log ehi . This looks like a pile. Thus,
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even if the object is restricted to S2−VN , we have a non-trivial bundle gerbe
which is apparently not classified by a cohomology class.

We note that this gives also a concrete example of the local line bundles over
a manifold treated by [7].

3.2.2 A simple example

The simplest example of objects we propose in this paper is given by the Hopf-

fibering S3 S1

→S2. Viewing S3=
∐

q∈S2 S1
q (disjoint union), we consider the `-

covering S̃1
q of each fiber S1

q , and denote by S̃3 the disjoint union
∐

q∈S2 S̃1
q .

We are able to define local trivializations of S̃3|Ui
∼= Ui×S̃1 naturally through

the trivializations S3|Ui given on a simple open covering {Ui}i∈Γ of S2. This
structure permits us to treat S̃3 as a local Lie group, and hence it looks like a
topological space. On the other hand, we have a projection

π : S̃3=
∐

q∈S2

S̃1
q → S3=

∐

q∈S2

S1
q

as the union of fiberwise projections, as if it were a non-trivial `- covering.
However S̃3 cannot be a manifold, since S3 is simply connected. In particular,
the points of S̃3 should be regarded as `-valued elements.

We now consider a 1-parameter subgroup S1 of S3 and the inverse image
π−1(S1). Since all points of S̃3 are “`-valued”, this simply looks like a combined
object of S1 × Z` and the ` covering group, i.e. in some restricted region, this
object can be regarded as a point set by several ways. In such a region, the
ambiguity is caused simply by the reason that two pictures of point sets are
mixed up.

3.2.3 Conceptual difficulties beyond ordinary mathematics

Let Pc be the parallel translation along a closed curve. Let cs(t) be a family
of closed curves. Suppose cs(0) = cs(1) = p and c1(t) = p. We see that
there is (p; v) such that Pcs

(p; v) 6= v. Therefore there must be somewhere a
singular point for the homotopy chasing, caused by the discordance. However
the position of singular point can not be specified.

Even though the parallel translation is defined for every fixed curve, these
parallel translations are in general set-to-set mappings when one parameter
family of closed curves are considered.

Thus, we have some conceptual difficulty that may be explained as follows: a
parallel translation along a curve has a definite meaning, but when we think this
in a family of curves, then we have to think suddenly this a set-to-set mapping.
Recall here the “Schrödinger’s cat”.

Such a strange phenomena caused in Ã by movable branch singularities. In
§3.1, we considered a non-linear connection on the trivial bundle S2×C, and an
extended connection to treat the amplitude of the star exponential functions of
the quadratic form.
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4 Broken associative products and extensions

In this section we give an example where such fuzzy phenomena play a crucial
role in defining a concrete algebraic structure. We consider the product bundle∐

κ∈C C, and we define in each fiber an associative product which is broken in
the sense that each product is not necessarily defined for all pairs (a, b).

4.1 Associative products combined with the Cayley trans-
form

First of all, we give such a product on the fiber at κ=0. Let S2 be the 2-
sphere identified with C ∪ {∞}. Consider the Cayley transform C0 : S2→S2,
C0(X) = 1−X

1+X , and define the product by

a•0b =
a+b

1+ab
∼ C−1

0 (C0(a)C0(b)).(32)

Here ∼ means algebraic equality where defined: an algebraic procedure through
the calculations such as follows:

1− 1−a
1+a · 1−b

1+b

1 + 1−a
1+a · 1−b

1+b

∼ (1+a)(1+b)− (1−a)(1−b)
(1+a)(1+b) + (1−a)(1−b)

=
a + b

1 + ab
.

The product is defined for every pair (a, b) such that ab 6= −1, and is commu-
tative and associative whenever they are defined. Note also that

a•0b =
a+b

1+ab
∼ a−1+b−1

1+(ab)−1
= a−1•0b−1.(33)

Hence we set ∞•0b = b−1, ∞•0∞=0, in particular.
One can extend this broken product to pairs (a : g)∈C×C as follows:

(a : g)•0(b : g′) = (a•0b : gg′(1+ab)).

This is an associative product, which follows from ( 32).

(1+bc)(1+a
b+c

1+bc
) = (1+

a+b

1+ab
c)(1+ab).

It is worthwhile to write this identity in the logarithmic form

log(1+bc)+ log(1+a
b+c

1+bc
) = log(1+

a+b

1+ab
c)+ log(1+ab), mod 2πiZ(34)

although the logarithmic form uses infinitely valued functions. If one sets
C(a, b) = log(1+ab), then (34) is a the Hochschild 2-cocycle condition:

C(b, c)−C(a•0b, c)+C(a, b•0c)−C(a, b) = 0, mod 2πiZ.
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We extend the product as follows:

(a : g)•ln(b : g′) = (a•0b : g+g′+ log(1+ab)).(35)

This is associative as a set-to-set mapping. By using (27), (35) is rewritten as

(a−1 : g)•ln(b−1 : g′) = (a−1•0b−1 : g+g′+ log(1+a−1b−1)).

Next we define a family of products defined on each fiber at κ. To define
such a product, we use the twisted Cayley transform defined by Cκ ∼ C0T

0
κ ,

where T 0
κ is given in the equality (1). The result is

Cκ(y) =
1−y(1−κ)
1+y(1+κ)

,(36)

and we define

a•κb =
a+b+2abκ

1+ab(1−κ2)
∼ C−1

κ (Cκ(a)Cκ(b)).(37)

The point is that the singular set of the product depends on κ. a•κb is defined
for every pair (a, b) such that ab(1−κ2)6=−1. In other word, for an arbitrary pair
(a, b) ∈ C2, the product a•κb is defined for some κ in an open dense domain.

For the parallel sections given in (22), we see that

a

1−aκ
•κ b

1−bκ
=

a+b

1−(a+b)κ+ab
.(38)

In particular,

−κ−1•κ−κ−1 = 0, −κ−1•κ 1
b−1−κ

=
1

b−κ
.

For simplicity, we denote by f(κ) the section f of the bundle π : S2 × C→ S2.

Proposition 4.1. For parallel sections f(κ), g(κ) defined on open subsets, the
product f(κ)•κg(κ) is also a parallel section where defined.

4.1.1 Extension of the product

Using (35), one can extend the product a•κb by the formula

(a; g)•κ(b; g′) ∼ Iκ
0

(
(I0

κ(a; g))•ln(I0
κ(a; g′))

)
.

Indeed, we see how the algebraic trick works:

(a : g)•κ(b : g′) =(a•κb : g+g′+ log(1+ab(1−κ2))

=
( a+b+2abκ

1+ab(1−κ2)
: g+g′+ log(1+ab(1−κ2))

)
.

(39)
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Proposition 4.2. The extended product (a : g)•κ(b : g′) is defined with a 2πiZ
ambiguity. However, the •κ product is associative where defined.

The point of such a fiberwise product is the following:

Proposition 4.3. For parallel sections f(κ), g(κ) defined on open subsets, the
product f(κ)•κg(κ) is also a parallel section where defined.

Proof. We have only to prove Iκ′
κ (f•κh) = Iκ′

κ (f)•κ′Iκ′
κ (h).

For f = ( a
1−aκ , log(1−aκ)), h = ( b

1−bκ , log(1−bκ)), we see that

f•κh =
( a+b

1−(a+b)κ+ab
, log

(
(1−aκ)(1−bκ)(1+

a

1−aκ

b

1−bκ
(1−κ2))

))

=
( a+b

1−(a+b)κ+ab
, log(1−(a+b)κ+ab)

)
.

It is easily seen that Iκ′
κ (f•κh) =

(
a+b

1−(a+b)κ′+ab , log(1−(a+b)κ′+ab)
)
.

5 The notion of q-number functions

Using Propositions 4.1, 4.3, we define a multiplicative structure on the sets A
and Ã of parallel sections. A notion of q-number functions which describe
quantum observables was introduced in [1], and our notion of parallel sections
is stimulated by this idea. From this point of view, we may employ the notation
: f :κ for a section f of the bundle π :

∏
κ∈C C→ C.

For f∈A, we view κ as an indeterminate. For every f, g∈A, excluding the
pair (f, g) = ( 1

1−κ , −1
1+κ ), we define an element f•g∈A by

:f•g:κ = f(κ)•κg(κ).(40)

Some product formulas on A are given as follows:

0•f = f,
−1
κ
•−1

κ
= 0,

1
1−κ
•f =

1
1−κ

,
−1
1+κ
•f =

−1
1+κ

,

where 0 stands for the singular solution (κ, 0). These formulas say that ±1
1∓κ acts

like 0 or ∞. Hence A is viewed naturally as the Riemann sphere with standard
multiplicative structure such that a0 = 0, a∞ =∞, but 0∞ is not defined. By
the definition of •κ, we have Cκ(f•κg) = Cκ(f)Cκ(g).

Here the correspondence is given by the family of twisted Cayley transforms∐
κ∈C Cκ : A→C∪{∞}. We view A as a topological space through the identifi-

cation
∐

κ∈C Cκ.
The table of correspondence is as follows:

A 0 −1
κ

1
1−κ

−1
1+κ

a
1−aκ

1−a
1−κ+a(1+κ) f(κ)

Image Cκ 1 −1 0 ∞ 1−a
1+a a 1−f(κ)(1−κ)

1+f(κ)(1+κ)

singular point ∞ 0 1 −1 1
a

1+a
1−a –
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Note that

C−1
κ (a) =

1−a

1−κ+a(1+κ)
∼

1−a
1+a

1− 1−a
1+aκ

∼ Tκ
0 C−1

0 (a)

is a parallel section, and 1−f(κ)(1−κ)
1+f(κ)(1+κ) is independent of κ for every parallel section

f .

5.1 A product on Ã
Let Ã be the space of all parallel sections given in (26), and consider the product
• on Ã is given by the product formula (39). For f, f ′ ∈ Ã, we set f =
(κ, y(κ), z(κ)), f ′ = (κ, y′(κ), z′(κ)). f•g is defined as a parallel section defined
on the open dense domain where y(κ), y′(κ) 6=∞.

Note that

(κ,
a

1−aκ
, log(1−aκ))•(κ,

−1
1+κ

, log(1+κ)) = (κ,
−1
1+κ

, log(1−a)+ log(1+κ)),

(κ,
a

1−aκ
, log(1−aκ))•(κ,

1
1−κ

, log(1−κ)) = (κ,
1

1−κ
, log(1+a)+ log(1−κ)).

Although ±1
1∓κ plays the role of 0 or ∞, the third component depends on a.

For simplicity, we denote in particular

$c = (κ;
1

1−κ
, c+ log

1
2
(1−κ)), $̄c = (κ;

−1
1+κ

, c+ log
1
2
(1+κ)).(41)

It is easy to see that

$c•$c′ = $c+c′ , $̄c•$̄c′ = $̄c+c′ ,

but $c•$̄c′ diverges.
Let Ã× be the subset of Ã excluding the parallel sections (κ; ±1

1∓κ , c+ log(1∓κ)).
We also set

Ã0 = Ã× ∪ {$c}, Ã∞ = Ã× ∪ {$̄c}.
Proposition 5.1. Ã is closed under the extended product •κ, where defined. In
particular, Ã×, Ã0 Ã∞ are each closed respectively under the •-product.

5.2 The infinitesimal left action

Note that the singular solution 1=(κ, 0, 0) ∈ Ã is the multiplicative identity.
A neighborhood of 1 is given by (κ, a

1−aκ , g+ log(1−aκ)) by taking (a, g) in a
small neighborhood of 0. For g = 0, we set fa = (κ, a

1−aκ , log(1−aκ)). For a
parallel section h = (κ, y(κ), z(κ)) ∈ Ã, the product fa•h is given by

fa•h =
(

a + y(κ) + ay(κ)κ
1− aκ + ay(κ)(1− κ2)

, z+ log(1−aκ+ay(κ)(1− κ2))
)

,
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Consider the infinitesimal action

d

ds

∣∣∣
s=0

fas•κ(y, z) = (a(1+2yκ−y2(1−κ2)), a(−κ + y(1−κ2)).

Define for every fixed κ the invariant distribution

L̃κ(y, z) = {(a((1+yκ)2−y2), a(−κ + y(1−κ2))); a ∈ C}.
By Proposition5.1, we have dIκ

0 L̃0I
0
κ(y, z) = L̃κ.

5.3 The exponential mapping

The equation for the integral curves of the invariant distribution L̃κ through
the identity (0, 0) is

d

dt
(y(t), z(t)) = (a((1+y(t)κ)2−y(t)2), ay(t)(1−κ2)), (y(0), z(0)) = (0, 0).

For the case κ = 0, a = 1, we have (y(t), z(t)) = (tanh t, log cosh t).

We define Exp• : C→ A× by the family of Expκ:

Exp•κ
t = Tκ

0 (tanh t) =
sinh t

cosh t−(sinh t)κ
,

Exp•t = (κ;Tκ
0 (tanh t)) =

(
κ;

sinh t

cosh t−(sinh t)κ

)
.(42)

For a fixed t, Exp•t is a parallel section with the exponential law

Exp•s•Exp•t = Exp•(s+t), and Exp•(s+2πi) = Exp•s.

For the extended product, let Ẽxp0 t = (tanh t; log cosh t), and let

Ẽxpκ t = Iκ
0 Ẽxp0 t =

( sinh t

cosh t−(sinh t)κ
, log(cosh t−(sinh t)κ

)
).

Although Ẽxpκ is not defined for all t ∈ C, viewing κ as an indeterminate
permits us to define the exponential mapping Ẽxp• : C→ Ã× by

Ẽxp•t = (κ;
sinh t

cosh t−(sinh t)κ
, log(cosh t−(sinh t)κ)).(43)

This is a parallel section with the exponential law

Ẽxp•s•Ẽxp• t = Ẽxp•(s+t).

We remark here that Ẽxp•s is infinitely many valued. We have Ẽxp•(s+2πi) =
Ẽxp•s, but these equalities hold as a set-to-set correspondence.
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Consider the formula

log(cosh t−(sinh t)κ) =
∫ t

0

sinh s−(cosh s)κ
cosh s−(sinh s)κ

ds.(44)

The multi-valuedness of the left hand side is caused by dependence of the integral
on the homology class of the route of integration. Thus, for a fixed κ, the
left hand side must be considered as a univalent function on the homological
universal covering space of C−{cosh s−(sinh s)κ = 0} (the path space factored
by the group of all homologically trivial loops).

Keeping this in mind, we see the following:

Proposition 5.2. If κ is treated as an indeterminate, then 2πi periodicity does
not appear in the integral

∫ t

0

sinh s−(cosh s)κ
cosh s−(sinh s)κ

ds.

Proof If the periodicity appears, then
∫ a+2πi

a
sinh s−(cosh s)κ
cosh s−(sinh s)κds must be of the

form 2πn. Hence the derivative by κ must vanish. Consider now the following
quantity:

d

dκ

∫ a+2πi

a

sinh s−(cosh s)κ
cosh s−(sinh s)κ

ds = −
∫ a+2πi

a

1
(cosh s−(sinh s)κ)2

ds.

This does not vanish if we regard κ as an indeterminate.

We see also that for every α ∈ C

Ẽxp
(α)

• s =
(
κ;

sinh s

cosh t−(sinh s)κ
, log eαs(cosh s−(sinh s)κ)

)

satisfies the exponential law. Using this formula, it is easily seen that for t ∈ R,

:$0:κ = lim
t→∞

( sinh t

cosh t−(sinh t)κ
, log e−t(cosh t−(sinh t)κ)

)
,

:$̄0:κ = lim
t→−∞

( sinh t

cosh t−(sinh t)κ
, log et(cosh t−(sinh t)κ)

)
.

We end by noting that Ã× is a strange object, which one cannot treat as
an usual manifold. Ã× is a group-like object and the mapping which forget the
last component for the map Ã× → A× is a homomorphism onto A× ∼= C×. The
mapping Ẽxp• : C→ Ã× may be viewed as an injective homomorphism.
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