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Abstract

Textile plot is a parallel coordinate plot on which the whole location and scales of the
axes are simultaneously chosen so that all connecting lines, each of which signifies
an observation, are aligned as horizontally as possible. Textile plot can visualise
not only numerical data but also ordered or unordered categorical data or the mix
of those. Textile plot makes easier for user to understand the given data because
of the design principle. Various attributes are displayed together with the parallel
coordinate plot and the missing values are dealt with properly. Several theorems
necessary for the computation of Textile plot are given and two outstanding features
Knot and Neat Weft are characterised by several simple conditions. The design
principle of the Textile plot is also discussed into detail.

1 Introduction

Parallel coordinate plot has been frequently used for exploring high dimen-
sional data. It is proposed by Inselberg [5] as a tool for visualising a high di-
mensional geometry on a two-dimensional display. Wegman [10] has developed
it into a tool for visualising multivariate data. The basic idea of the parallel
coordinate plot is to place all axes in parallel on a two dimensional display,
and the coordinates of each observation are connected by segments from left
to right to signify an observational point in the high dimensional space. The
parallel coordinate plot is a good way of visualising very high-dimensional
data, but it is also true that it becomes difficult to understand any mecha-
nism behind the data as the number of the intersections of connecting lines
increases.
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Textile plot is a solution to such a problem. The location and scales of the axes
are chosen so that all connected lines are aligned as horizontally as possible.
In other words, given data vectors x1, . . . , xp, they are always transformed
into p coordinate vectors,

yj = αj1 + βjxj, j = 1, . . . , p

to make a Textile plot with a common coordinate system through axes. The
parameters αj ’s and βj’s are chosen so that the sum of squares

∑p
j=1 ‖yj −ξ‖2

is minimised to a vector ξ which is also determined so as the sum of squares
to be minimised. Textile plot is named after a fabric into which warp and
weft yarns are woven. Our criterion reflects the fact that any weft yarns run
as horizontally as possible to make a neat textile. This is a good contrast to
the parallel coordinate plot, on which the location and scale of each axis are
chosen so that all coordinate points on the axis fill up the axis, that is, the
given data vector xj is always transformed into

yj =
xj − min(xj)1

max(xj) − min(xj)
, j = 1, . . . , p,

before display. Note that the transformation is determined axis by axis and
no global criterion is employed in the parallel coordinate plot.

Textile plot does not only make easier for people to understand relationship
between adjacent axes, but also make possible to grasp a global relationship
among data vectors. Furthermore, any ordered or unordered categorical data
can be displayed on a plot together with numerical data in which missing
values can exist. This is due to our general criterion to choose the location
and scales of the axes. For example, the positional vector for the levels of a
categorical data vector is automatically determined by the criterion as far as
the data vector is encoded by a set of contrasts. The result does not depend
on the choice of the contrast.

There are several related works which have been done in the field of Homo-
geneity analysis [3]. In homogeneity analysis, any categorical data vectors are
quantified so as to make the distance from the object scores as small as possi-
ble. Usually a 2D plot is produced to visualise the first two quantified vectors
but sometimes a parallel coordinate plot is employed to visualise all quanti-
fied vectors, which is called Optimised Parallel Coordinate Plot([6]). In fact,
the plot produces the same picture as that produced by Textile in a specific
case where all data vectors are categorical and no missing value exists. The
objective of the Textile plot is, however, different from that of homogeneity
analysis. Textile plot is a tool for visualising and browsing high dimensional
data as it is. Symbols for points displayed are carefully chosen so that any
necessary and sufficient information is provided in a neat way. Furthermore,
the order of axis is also carefully chosen so as to give a clear image of the given
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data to the user.

In the next section we will establish several theorems for the computation to
produce a Textile plot.

2 Choice of Location and Scales

2.1 Numerical Data

We will use the following notations. The norm ‖x‖2
v =

∑n
i=1 vix

2
i is a weighted

norm of a vector x with a non-negative weight vector v, and x · v and x/v
are element-wise product and division of the vectors x and v.

We first consider the case when all n-dimensional data vectors are numerical.
Let us denote them by a matrix (x1, . . . , xp) = (xij ; 1 ≤ i ≤ n, 1 ≤ j ≤ p). As
is described in the previous section, in the Textile plot the given data vectors
{xj, j = 1, . . . , p} are always transformed into the coordinate vectors,

yj = αj1 + βjxj , j = 1, . . . , p

for the display, where 1 is the vector of all ones. The location α = (α1, . . . , αp)
T

and the scale β = (β1, . . . , βp)
T parameter vectors are simultaneously chosen

so as the sum of squares

S2(α, β, ξ) =
p∑

j=1

‖yj − ξ‖2
wj

(1)

to be minimised. Here wj is the jth column of a weight matrix (w1, . . . , wp) =
(wij; 1 ≤ i ≤ n, 1 ≤ j ≤ p) of zero or one to indicate missing values. That is,
wij = 0 if the value of xij is missing or invalid, otherwise 1. The use of such a
weighted norm implies that all missing values will be neglected for the choice
of location and scales of the axes on the Textile plot.

The vector ξ is not predetermined but the choice ξ = m =
∑p

j=1 wj · yj/w
gives a solution to minimise S2(α, β, ξ) for any yj’s, since

S2(α, β, ξ) =
p∑

j=1

‖yj − m‖2
wj

+
p∑

j=1

‖m − ξ‖2
wj

, (2)

where w =
∑p

j=1 wj. We will call the vector m the mean vector for yj’s, the
vector of the mean positions of each observations or records.

We need here a constraint for α and β to avoid trivial solutions like α = β = 0.
A natural constraint would be that the total dispersion of the points on the
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textile plot,
∑p

j=1 ‖yj − ȳ·j1‖2
wj

remains a constant, for example, the effective

number of the points N =
∑n

i=1

∑p
j=1 wij, where ȳ·j = wT

j yj/1
Twj is the mean

of the coordinates on the j th axis.

From the decomposition,

S2(α, β, m)=
p∑

j=1

‖yj − m‖2
wj

=
p∑

j=1

‖yj − ȳ·j1‖2
wj

+
p∑

j=1

‖ȳ·j1‖2
wj

− ‖m‖2
w

=N +
p∑

j=1

‖ȳ·j1‖2
wj

− ‖m‖2
w, (3)

we see that it is enough to find α and β which minimise

f(α, β) =
p∑

j=1

‖ȳ·j1‖2
wj

− ‖m‖2
w

under the constraint that

p∑
j=1

‖yj − ȳ·j1‖2
wj

= N. (4)

Such an optimal choice of location and scales of the axes of the Textile plot
always exists since f(α, β) is bounded above −N .

The function f(α, β) is rewritten as

f(α, β) = αTA11α − 2αTA12β + βTA22β (5)

by using the matrix notations,

A11 =−
(
wT

j (wk/w); j, k = 1, . . . , p
)

+ diag(1T wj; j = 1, . . . , p),

A12 =
(
wT

j (wk · xk/w); j, k = 1, . . . , p
)
− diag(wT

j xj; j = 1, . . . , p),

and

A22 =−
(
(wj · xj)

T (wk · xk/w); j, k = 1, . . . , p
)

+diag
(
(wT

j xj)
2/1T wj; j = 1, . . . , p

)
.

Also the constraint (4) is rewritten as

βTBβ = N, (6)
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where B = diag(‖xj − x̄·j1‖2
wj

; j = 1, . . . , p) and x̄·j = wT
j xj/1

T wj is the
mean of the data vector xj.

Since the constraint (6) is related only to the parameter vector β, the solution
α̂ should always satisfy

A11α̂ = A12β̂

for a solution β̂. To write explicitly α̂, we need a generalised inverse of A11

since A11 is singular. In fact, by using the Moor-Penrose inverse A+
11 [7] of

A11 it is written as

α̂ = A+
11A12β + (I− A+

11A11)z (7)

where z is arbitrary p-dimensional vector. Noting the fact that

(A12β)T (I − A+
11A11)z = (A11α)T (I − A+

11A11)z = 0

which follows from the definition of the generalised inverse A+
11, we have

f(α̂, β)=βT (−AT
12A

+
11A12 + A22)β − 2zT (I −A+

11A11)
TA12β

=βT (−AT
12A

+
11A12 + A22)β. (8)

It is now clear that the solution β̂ is an eigenvector of A = AT
12A

+
11A12 −A22

with respect to B for the largest eigenvalue.

We need the following assumptions for Theorem 1.

Assumption 1 There is no record of all missing values.

Assumption 2 No xj is a vector of a unique value, for j = 1, . . . , p.

The Assumption 1 assures that all elements of w are positive, and the As-
sumption 2 assumes that no trivial data vector is included in the given data
set.

Theorem 1 For the given numerical data vectors xj, j = 1, . . . , p, which
satisfy Assumptions 1 and 2, an optimal choice of location and scale vectors is
given by α̂ = A+

11A12β̂ +(I−A+
11A11)z for an arbitrary p-dimensional vector

z, and β̂ such that β̂TBβ̂ = N , which is an eigenvector of A with respect to
B for the largest eigenvalue.

Optimal choice of location and scales is not necessarily unique. However, if
rank(A11) = p − 1, then the choice of α becomes essentially unique and α̂ =
c1 + A+

11A12β̂ for an arbitrary global constant c. This is because Ker(A11) =
span{1} if rank(A11) = p−1. Here note that 1 ∈ Ker(A11) always holds true.
The uniqueness of β̂ is of course equivalent to that of the eigenvector of A
with respect to B for the largest eigenvalue.
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Theorem 1 becomes simpler if no missing value exists.

Corollary 1 If there is no missing value in X, an optimal choice of the loca-
tion and scales is given by

α̂j = α0 − x̄·jβ̂j , j = 1, . . . , p,

and

β̂j =
1

‖xj − x̄·j1‖γj, j = 1, . . . , p,

where α0 is an arbitrary constant, γ = (γ1, . . . , γp)
T is an eigenvector of the

sample correlation matrix of xj, j = 1, . . . , p for the largest eigenvalue and
‖γ‖2 = N = np.

PROOF. It is easily seen that

A+
11 =

1

n2
A11 =

1

n

(
I − 1

p
11T

)
,

and

A12 = −n

(
diag(x̄) − 1

p
1x̄T

)
,

where x̄ = (x̄·1, . . . , x̄·p)T . Then we have

α̂ =A+
11A12β̂ + (I −A+

11A11)z

=
1

n
A12β̂ +

1

p
11T z

=
1

p

(
1TXβ̂

n
+ 1T z

)
1 − x̄ · β̂

=α01 − x̄ · β̂.

The sample correlation matrix of xj, j = 1, . . . , p can be written as

R = pB− 1
2 AB− 1

2 ,

since pA/n is the sample covariance matrix of xj, j = 1, . . . , p. Therefore we

see that β̂ = B− 1
2 γ. �

2.2 Numerical and Categorical Data

Even if some of data vectors are categorical, a similar theorem holds true to
Theorem 1 as far as such categorical data vectors are encoded by a set of
contrasts.
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By introducing a q × (q − 1) contrast matrix C whose column vectors are
linearly independent of 1 for an n-dimensional categorical data vector x with
q levels, we can encode it into an n × (q − 1) data matrix X. It is then
transformed into a coordinate vector

y = α1 + Xβ

for the display of the Textile plot. The location parameter is now not a single
value but a β is a (q − 1)-dimensional vector for a categorical data vector x.

Example 1 The categorical data vector x = (A, B, C)T is transformed into
the coordinate vector,

y = α1 +

⎛
⎜⎜⎜⎜⎜⎝

0 0

1 0

0 1

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎜⎝β1

β2

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

α

α + β1

α + β2

⎞
⎟⎟⎟⎟⎟⎠ ,

if a Treatment contrast CT = (0, I) is used.

To cover cases where both numerical and categorical data vectors exist, we will
use a matrix notation Xj for numerical data vector xj where qj = 2 for the
consistency of notations. Then, given data matrices {Xj, j = 1 . . . , p} they are
combined into a n×Q data matrix X = (X1, . . . ,Xp), where Q =

∑p
j=1(qj−1).

The index set

Ij =

{ j−1∑
i=1

(qi − 1) + 1, . . . ,
j∑

i=1

(qi − 1)

}

signifies the columns in X corresponding to the data vector xj. The whole
index set is then

I =
p⋃

j=1

Ij = {1, . . . , Q}.

By using notations v(K ) or M(K , L ) for the sub-vector or the sub-matrix
specified by index set K and L [4], we can write the transformation to
coordinate vector in a general manner,

yj = αj1 + Xjβ(Ij), j = 1, . . . , p,

where αT = (α1, . . . , αp) and βT = (β1, . . . , βQ) are scale and location param-
eter vectors, respectively.

The matrix notations used in the previous section have to be re-defined except
A11 given both numerical and categorical data vectors. The A12 is a p × Q
matrix such that

A12(j, Ik) =

⎧⎪⎨
⎪⎩

wT
j (wk · Xk/w) j �= k,

wT
j (wk · Xk/w) − wT

j Xj j = k,
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for j, k = 1, . . . , p. The A22 and B are Q × Q matrices as

A22(Ij, Ik) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(wj · Xj)
T (wk · Xk/w) j �= k,

−(wj · Xj)
T (wk · Xk/w)

+XT
j wjw

T
j Xj/(1Twj)

j = k,

and

B(Ij, Ik) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O j �= k,

XT
j (wj · Xj)

−XT
j wjw

T
j Xj/(1Twj)

j = k,

for j, k = 1, . . . , p.

We have used the notations · and / in a slightly extended way to accommodate
matrix in place of vector, that is, v · Z = (v · z1, . . . , v · zr) and Z/v =
(z1/v, . . . , zr/v) for an n-dimensional vector v and an n × r matrix Z =
(z1, . . . , zr).

To show the Textile plot does not depend on the choice of the contrast, we
need the following lemma.

Lemma 1 Given two q × (q − 1) contrast matrices G and H, there always
exist a (q−1)-dimensional vector c and a non-singular (q−1)×(q−1) matrix
D such that

H = 1cT + GD.

PROOF. Since rank(G) = q − 1 and all column vectors of G are linearly
independent of 1, there exist ci ∈ R and di ∈ R

q−1 such that

hi = ci1 + Gdi

for each column vector hi of H, i = 1, . . . , q−1 . Therefore, we have the desired
result by taking c = (c1, . . . , cq−1) and D = (d1, . . . , dq−1).The non-singularity
of D is clear if we note that,

(1,H) = (1,G)

⎛
⎜⎝ 1 cT

0 D

⎞
⎟⎠ .

�

Theorem 2 Given numerical or categorical data vectors xj, j = 1, . . . , p,
which satisfy Assumptions 1 and 2, an optimal choice of location and scale vec-
tors are given by α̂ = A+

11A12β̂+(I−A+
11A11)z for an arbitrary p-dimensional
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vector z and β̂ such that β̂T Bβ̂ = N , which is an eigenvector of A with re-
spect to B for the largest eigenvalue. The result is independent of the choice
of the contrast.

PROOF. The proof of the former part of the theorem is exactly the same as
that of Theorem 1, so that it is enough to show that the result is independent
of the choice of the contrast. Assume that two different contrasts G and H
are used for a categorical data vector. Then, two different encoded matrices
XG and XH are obtained, the coordinate vector y is differently represented as

y = α1 + XGβ,

or

y = α1 + XHβ.

However, we see that Lemma 1implies that there exist a (q − 1)-dimensional
vector c and a (q − 1) × (q − 1) nonsingular matrix D such that

XH = 1cT + XGD.

Therefore, the linear spaces of y are the same although the representations
are different, so that the same optimal choice of scale and location parameter
vectors can be obtained. �

Theorem 2 becomes simpler if no missing value exists. The matrix A becomes

A =
1

p

(
XTX− 1

n
XT11TX

)
, (9)

and the matrix B becomes

B(Ij, Ik) =

⎧⎪⎨
⎪⎩

O j �= k,

XT
j Xj − XT

j 11T Xj/n j = k,
(10)

for j, k = 1, . . . , p.

Corollary 2 If there is no missing value in X, an optimal choice of the loca-
tions is given by

α̂j = α0 − x̄T
·jβ̂(Ij), j = 1, . . . , p

for an arbitrary constant α0, where x̄T
·j = 1TXj/n. That of the scales is given

by β̂ such that β̂T Bβ̂ = N as an eigenvector of A in (9) with respect to B in
(10) for the largest eigenvalue.
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2.3 General Result

We have not taken into consideration the case when some of categorical data
vectors are ordered. For such ordered categorical data vector, we have to retain
the order of the levels for the display.

Example 2 Given an ordered categorical data vector x = (Small, Medium,
Large)T , if it is encoded by a contrast,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

1
. . .

...
...

. . . 0

1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

then the coordinate vector is parametrised as

y = α1 +

⎛
⎜⎜⎜⎜⎜⎝

0 0

1 0

1 1

⎞
⎟⎟⎟⎟⎟⎠
(

β1

β2

)
=

⎛
⎜⎜⎜⎜⎜⎝

α

α + β1

α + β1 + β2

⎞
⎟⎟⎟⎟⎟⎠ .

To retain the order of the levels as Small < Medium < Large, we need an
additional constraint

β1 ≥ 0, β2 ≥ 0.

or

β1 ≤ 0, β2 ≤ 0,

since the direction, upward or downward, of each axis is arbitrary in the Textile
plot.

As is seen from this example, we need an additional inequality constraint if an
ordered categorical data vector were included in the given data vectors. Al-
though the resulting coordinate vector remains unchanged even by the choice
of the constraint, the inequality constraint becomes more complicated. There-
fore, we hereafter use the constraint as in (11) for ordered categorical data
vector and assume that the levels are in an increasing order.

To simplify the problem, we assume that the first r data vectors xk, k =
1, . . . , r are ordered categorical data vectors and xk, k = r+1, . . . , p are other
types of data vectors. Then the problem is to minimise

f(α, β) = αTA11α − 2αTA12β + βTA22β (12)
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under the equality constraint

βTBβ = N (13)

and the inequality constraint

β(Ik) ≥ 0 or β(Ik) ≤ 0, k = 1, . . . , r. (14)

Here, the matrices A11,A12 and A22 are the same matrices as before and the
notations ≥ or ≤ are used as an element-wise inequality for two vectors. That
is, u ≥ v for u, v ∈ R

k according to ui ≥ vi, for all i = 1, . . . , k.

Since α̂ is still given the same as in (7), it is enough to consider the minimi-
sation problem of the β by introducing the following Lagrangian function,

L(β; λ, μ)=−βT Aβ + λ(βTBβ − N) +
r∑

k=1

μ(Ik)
T β(Ik),

where λ and μ = (μ1, . . . , μR)T are Lagrange multipliers and A and B are the
same as in the previous section. The following proposition is an application of
the well known result, for example, see Proposition 1.29 in [1].

Proposition 1 The solution β̂ is characterised by the following condition.
There exist λ̂ and μ̂ such that

∇βL(β̂; λ̂, μ̂) = 0, (15)

and either

μ̂(Ik) ≥ 0, μ̂(Ik) · β̂(Ik) = 0, β̂(Ik) ≤ 0 (16)

or
μ̂(Ik) ≤ 0, μ̂(Ik) · β̂(Ik) = 0, β̂(Ik) ≥ 0 (17)

is satisfied for k = 1, . . . , r.

The condition (16) or (17) in the proposition implies that any element of
μ̂(Ik) = −∇β(Ik)g(β̂, λ̂) should be zero as far the corresponding element of

the solution β̂ is not on the boundary of the inequality constraint in (14),
where

g(β; λ) = −βT Aβ + λ(βTBβ − N).

We have a practical algorithm in the following theorem from this observation.

Theorem 3 Given ordered categorical data vectors xj, j = 1, . . . , r and other
data vectors xj, j = r + 1, . . . , p, which satisfy Assumptions 1 and 2, an
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optimal choice of the locations is given by α̂ = A+
11A12β̂ + (I−A+

11A11)z for
an arbitrary p-dimensional vector z. That of the scales β̂ can be obtained by
finding all index sets I0 ⊆ ⋃r

k=1 Ik such that

(1) β̂(I0) = 0, and β̂(I c
0 ) such that β̂(I c

0 )B(I c
0 , I c

0 )β̂(I c
0 ) = N is an

eigenvector of A(I c
0 , I c

0 ) with respect to B(I c
0 , I c

0 ) for the largest eigen-
value λ̂, where I c

0 = I \ I0,
(2) either β̂(Ik ∩ I c

0 ) > 0 or β̂(Ik ∩ I c
0 ) < 0 is satisfied for k = 1, . . . , r,

select an I0 for which the λ̂ is the largest, and normalise it so that β̂Bβ̂ = N .

PROOF. From Proposition 1, we see that it is enough to compare the solu-
tions which satisfy conditions (1) and (2) for all possible I0’s. Note that

L(β̂; λ̂, μ̂) = g(β̂, λ̂) = −λ̂N

for any such solutions, then the desired result follows.

3 Design of Textile Plot

We have developed several theorems to find an optimal choice of location
and scales of each axes. A simple Textile plot would be a plot of the points
according to the coordinate vectors y1, . . . , yp on the parallel axes with a
coordinate system. However, the aim of Textile plot is not only to visualise
data but also to assist human being to understand various aspect of the given
data. Therefore it is necessary to display only the points but also some other
helpful information on the Textile plot. We will describe various aspects of the
design of Textile plot in the following sections.

”A graphical method is successful only if the decoding process of human being
from the given graphics is effective” (Cleveland [2]).

3.1 Point Display on a Warp Yarn

In this section, we will discuss the way of point display on a warp yarn. It is
clear that the display of enough attributes of each data vector is indispensable.
One of such attributes is so called data type. Besides a well known distinction
between quantitative or categorical, a further classification is needed to be
informative, particularly in case of high dimensional data. We first classify
a data vector into numerical or non-numerical and further classify numerical
data into continuous or discrete, and classify non-numerical data into ordered
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Fig. 1. Design of Point Display on a Warp Yarn

category, unordered category or logical. Although any further classification is
possible, we restrict our attention into such five data types in order to avoid
superfluity.

Figure 1 illustrates the way of point display on a warp yarn for each data
type. In case of numerical data, indication of possible values is quite useful
for understanding the data. The possible values are indicated by a continuous
line if it is continuous and by ticks otherwise. Also, the possible maximum
and minimum are shown by figures at the both end of the continuous line or
of a series of the ticks. Then, it makes possible for user to understand well
the background of the data but also makes easier to distinguish two data
types, continuous or discrete. An arrow head placed on either end of the warp
yarn indicates a direction of coordinates. It is upward on the jth warp yarn if
βj ≥ 0, and downward otherwise. Circles are placed on each warp yarn instead
of points. We can understand the coordinate from the centre and the number
of duplication from the area. This is similar idea to that for categorical data in
parallel coordinate plot [11]. The minimum and maximum of the given data
vector are shown by labels with tick marks on the left hand side of these
coordinates.

In case of non-numerical data, no definite coordinate exists a priori but we
have now the coordinate vector by a transformation as is described in the
previous section. The levels are indicated by circles on a warp yarn. Each
level can be identified by the level name in the circle. We can see relative
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Fig. 2. Display of Warp Yarns for Iris Data

frequencies from the area of the circle. This design is consistent with that for
numerical data. Zero frequency levels are indicated on the top of the display
by the name without circle. This is similar to the display of possible values
in case of discrete data. If it is ordered category, the levels are connected by
a sequence of arrows to indicate a natural order of the levels. If it is a logical
data, the circle for FALSE is daubed with black in order to stand out logical
data from categorical one.

In any case, existence of missing values is indicated by a circle with ”NA”,
which is separately placed on the bottom of each warp display. The area of the
circle is again proportional to the number of missing values. As the label for
each warp yarn, we can make use of the name of data vector if it is available.
It is hard to understand the meaning without such labels. The unit or numeral
attribute is indispensable in case of continuous or discrete data, so that it is
indicated together with the label.

3.2 Display of Warp Yarns

According to the design of point display, all coordinate vectors yj, j = 1, . . . , p
are displayed as the warp yarns in a Textile plot. However, there is an extra
warp yarn so called ID warp yarn on the leftmost of the Textile plot. This is
for identification of each record or observation, and the ID labels are placed
according to the coordinate vector

y0 =
1

λ
(m − m̄1) + m̄1,
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where m̄ = 1T m/n, because the coordinate vector of a categorical data vector
with all different values is equal to the vector m except a multiple constant.
It is shown in the following proposition.

Proposition 2 The coordinate vector yj of a categorical data vector with all
different values is equal to the vector m except for a constant multiplication.

PROOF. Assume that the first r data vectors are ordered categorical. Let
us define a function

L(α, β; λ)= f(α, β) + λ

( p∑
k=1

‖yk − ȳ·k1‖2
wk

− N

)
+

r∑
k=1

μ(Ik)
T β(Ik)

=
p∑

k=1

‖ȳ·k1‖2
wk

− ‖m‖2
w + λ

( p∑
k=1

‖yk − ȳ·k1‖2
wk

− N

)

+
r∑

k=1

μ(Ik)
T β(Ik)

with Lagrange multiplier λ and μ. If xj is the unordered categorical data
vector with n levels, we see from ∂L/∂αj = 0 that

1T yj = 1T m

and from ∂L/∂β(Ij) = 0 that

λXT
j yj = XT

j m

for a n × (n − 1) encoded matrix Xj such that

1TXj = 0, XT
j Xj = I.

Note here that

XjX
T
j = I − 1

n
11T ,

we have

λ(yj − m̄1) = m − m̄1. (18)

Therefore the resulting coordinate vector yj should satisfy (18) for λ = λ̂
which attains the minimum. �

Therefore, it is not necessary to include an ID data vector for the computation
of coordinate vector even if it exists, but the ID data vector is used for labelling
the points on the ID warp yarn. The sequence number of observations or
records will be used as the labels if no ID data vector is given.
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Fig. 3. Parallel Coordinate Plot of Iris Data
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Fig. 4. Simple Minded Textile Plot of Iris Data

Figure 2 is an example of warp yarns for the coordinate vectors y1, . . . , y5 of
famous Iris data. The user can at once understand there are one unordered
categorical data vector and four continuous measurement in this data set. The
different size of circles on continuous warp yarns indicate that there are many
duplicated values. This is simple because the precision is up to 10−1. It is
also interesting to note that the direction of the axis for Sepal width is upside
down.

3.3 Weft Interlace

As same as in parallel coordinate plot, the coordinates on warp yarns are
connected in order to identify data points. Figure 3 is a parallel coordinate
plot of the Iris data and Figure 4 is a simple minded Textile plot. The effect of
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Fig. 5. Textile Plot of Iris Data

choosing proper location and scale for each data vector is significant in Species
and Sepal width. Properly placed labels of Species suggests that Iris setosa is
isolated from other species in the Textile plot. The upside down direction of the
axis for Sepal width makes the connection look simpler. However, the order of
warp yarns is carefully chosen in Textile plot. The Textile plot becomes more
persuasive if an appropriate order is selected.

There would be various criteria to make an order of the warp yarns. One of
such criteria is based on the distance ‖yj − m‖, j = 1, . . . , p from the mean
vector m. The identification of data points becomes easier by this criterion.
The coordinate vector for left hand side yarn of a yarn is closer to m. However,
the ID warp yarn is always placed on the leftmost.

The coordinates of a data points are connected by segments but there are
some cases when no coordinate exists on a warp yarn due to the existence
of missing values. The weft yarn is then disconnected on the warp yarn. It is
possible to make a more detailed design of the segments, for example, coloured,
varying width, varying thickness and so forth. However, we leave such a design
problem for further investigation.

Figure 5 is now a Textile plot of the Iris data. The weft yarns are identified
by colours to the three species. The difference among species is clear in the
plot and the most important data vectors Petal width and length are placed
on the left and the right of the categorical vector Species, and those data
vectors are placed nearest to the ID warp yarn. Such an observation is well
known in discriminant analysis but easily seen from Textile plot without any
complicated calculation. However, advantage of data visualisation by Textile
plot is not only on a classification of data but also whole understanding of the
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Fig. 6. The Second Piece of Textile Plot in a Suit

given data. For example, we can see marginal distribution of each data vector,
correlations and so forth.

3.4 Several Textile Plots

There are two cases where several Textile plots in a suit. The first case is
when the maximum eigenvalue in Theorem 3 has multiplicity. Then we will
find several orthogonal eigenvectors for the maximum eigenvalue and produce
several Textile plots for every eigenvectors.

Another case is when we want to see the results of other types of horizontal
alignment. Then we can produce different Textile plots for a given data by
choosing different eigenvectors in Theorem 3. This is equivalent to choose
different type of location and scales. In other words, it is to choose different
mean vector m orthogonal to that for the largest eigenvalue.

Figure 6 is an example of such a Textile plot for Iris data, where the eigenvector
for the second largest eigenvalue has been chosen. The left most warp yarn
indicates again the ID warp yarn with sequence numbers. Now, we can see the
role of the data vector Sepal width which was not so clear in Figure 5.
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4 Properties of Textile Plot

Two outstanding features can be found in Textile plot. One of them is an
existence of Knot on a warp yarn. Another is Neat weft which is required for a
pretty textile. In this section, we will give a condition for a knot produced on
a warp yarn or a condition for neat weft produced between two warp yarns.

To simplify the problem, let us assume that there is no missing value and no
ordered categorical data vector in the given data. Under these assumptions, we
can assume without loss of generality that the data matrices Xj, j = 1, . . . , p
are normalised so that

1TXj = 0 and XT
j Xj = I, j = 1, . . . , p. (19)

Note that the textile plot is invariant under change of location and scales of
the original data vectors or the choice of contrasts mentioned in Section 3. By
using such normalised data matrices, we define a n × q data matrix

X−j = (X1, . . . ,Xj−1,Xj+1, . . . ,Xp),

where q = Q − (qj − 1).

We also assume that α0 = 0 in Corollary 2 since the choice of α0 does not
change the appearance of Textile plot. This implies that the mean vector m
is orthogonal to 1.

4.1 Knot on a Warp Yarn

The knot is a point on a warp yarn, which all weft yarns go through. Math-
ematically saying, a knot is produced on the jth warp yarn when the scale
parameter selected is zero, that is, β̂(Ij) = 0. Before giving a necessary and

sufficient condition for β̂(Ij) = 0 in Theorem 4, we need the following lemma
for the proof of the theorem. Consider a Q × Q symmetric matrix C, and
partition C into

C =

⎛
⎜⎝C11 C12

CT
12 C22

⎞
⎟⎠ , (20)

where C22 is a q × q sub matrix for a q < Q. We also denote the eigenvalues
of C22 as λ1, . . . , λq in a descending order, and the corresponding eigenvectors
as p1, . . . , pq. Then we have the lemma.

Lemma 2 Assume that the largest eigne value λ1 of C22 has no multiplicity.
Let γ̂ be the γ which maximises γTCγ under the constraint ‖γ‖ = 1. A
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necessary and sufficient condition for the first Q − q elements of γ̂ to be 0 is
given by

C12p1 = 0 (21)

and
C12(λ1I− C22)

+CT
12 < λ1I −C11 (22)

in a sense of positive definiteness.

PROOF. Let us partition the vector γ to

γ =

⎛
⎜⎝γ1

γ2

⎞
⎟⎠

in parallel with the partition of C. If γ̂ is partitioned in a similar way, the γ̂1

is the vector of the first Q − q elements of γ̂ and γ̂1 = 0 is equivalent to

γTCγ < γ̂TCγ̂ = λ1 (23)

for any γ such that ‖γ‖ = 1 other than γ̂.

The condition (23) can be rewritten as

f(γ1, γ2) < λ1 (24)

for any 0 < ε ≤ 1 and any γ1 and γ2 such that ‖γ1‖2 = ε and ‖γ2‖2 = 1 − ε,
where

f(γ1, γ2) = γT
1 C11γ1 + 2γT

1 C12γ2 + γT
2 C22γ2.

For a fixed γ1 and ε, the maximum of f(γ1, γ2) with respect to γ2 under the
constraint ‖γ2‖2 = 1 − ε is attained by γ∗

2 such that

(λI− C22)γ
∗
2 = CT

12γ1, (25)

where λ is a Lagrange multiplier. By using the Moor-Penrose inverse of λI −
C22, a solution of (25) is given by

γ∗
2 = (λI −C22)

+CT
12γ1. (26)

The Lagrange multiplier λ is chosen so that ‖γ2‖2 = 1− ε. We will show that
we can always find a λ > λ2 for any 0 < ε ≤ 1. We see that

(λI − C22)
+ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q∑
i=2

pip
T
i

λ1 − λi
λ = λ1,

q∑
i=1

pip
T
i

λ − λi

λ �= λ1,
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and p1 = γ̂2 since γ̂2 is the eigenvector of C22 for the largest eigenvalue λ1,
and C12γ̂2 = λ1C12p1 = 0. Then

‖(λI− C22)
+CT

12γ1‖2 =
q∑

i=2

γT
1 C12pip

T
i CT

12γ1

(λ − λi)2

for any λ > λ2. Here we have already shown that γ̂1 = 0 implies (21). There-
fore it is enough to show (23) is equivalent to (22).

By normalising γ1 as γ̃ = γ1/‖γ1‖, we can rewrite ‖γ∗
2‖2 = 1 − ε as

1

ε
= 1 +

q∑
i=2

γ̃T
1 C12pip

T
i CT

12γ̃1

(λ − λi)2
(27)

for λ > λ2. The right hand side of (27) is now independent of ε and a monotone
decreasing function of λ from ∞ to 1 as λ moves from λ2 to ∞. This leads to
that we can find a λ for any given 0 < ε ≤ 1. Here, we employed a convention
that λ = ∞, that is, γ∗

2 = 0 if ε = 1. Now,

f(γ1, γ
∗
2) =γT

1 C11γ1 + γT
1 C12(λI − C22)

+

×(2λI −C22)(λI− C22)
+CT

12γ1 < λ1

is equivalent to

γ̃T
1 C11γ̃1 <

λ1

ε
− γ̃T

1 C12(λI− C22)
+(2λI− C22)(λI − C22)

+CT
12γ̃1.

Substituting 1/ε by the right hand side of (27), we further rewrite the inequal-
ity above as

γ̃T
1 C11γ̃1 <

q∑
i=2

(λ1 + λi − 2λ)γ̃T
1 C12pip

T
i CT

12γ̃1

(λ − λi)2
+ λ1. (28)

We see now that (28) is equivalent to (23) for any γ̃1 with ‖γ̃1‖ = 1 and λ > λ2.
Let us evaluate the lower bound of the right hand side of the inequality (28).
The minimum of the right hand side of (28) for λ > λ2 is attained at λ = λ1

since the gradient with respect to λ is

2(λ − λ1)
q∑

i=2

γ̃T
1 C12pip

T
i CT

12γ̃1

(λ − λi)3
.

Therefore (23) is equivalent to the condition that

γ̃T
1 C11γ̃1 < −

q∑
i=2

γ̃T
1 C12pip

T
i CT

12γ̃1

(λ1 − λi)
+ λ1 (29)
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for any γ̃1 with ‖γ̃1‖ = 1. Note that the inequality (29) is equivalent to

C12

q∑
i=2

pip
T
i

λ1 − λi
CT

12 < C11 − λ1I.

Then, it is clear that this is equivalent to (22) if we remember the definition
of the Moor-Penrose inverse (λ1I −C22)

+. �

We shall use the singular value decomposition UDVT of X−j, where the diag-
onal elements of D = diag(dj; j = 1, . . . , q) are singular values arranged in the
order that d1 > d2 ≥ · · · ≥ dq ≥ 0, and U = (u1, . . . , uq) and V = (v1, . . . , vq)
are column orthogonal matrices.

Assumption 3 The multiplicity of the largest singular value d1 of X−j is 1.

Assumption 3 implies that d1 > 1, since

tr(XT
−jX−j) =

q∑
i=1

d2
i = q.

The following theorem gives us necessary and sufficient condition for a knot
produced on the jth warp yarn under Assumption 3.

Theorem 4 Assume that there is no missing value in X and no ordered cate-
gorical data in the given data. Under Assumption 3, a necessary and sufficient
condition for a knot produced on the jth warp yarn is that

XT
j u1 = 0 (30)

and all eigen values of XT
j UΔUTXj are less than d2

1 − 1, where

Δ = diag

(
0,

d2
2

d2
1 − d2

2

, . . . ,
d2

q

d2
1 − d2

q

)
.

PROOF. Note that β̂j = 0 is equivalent to the fact that the first kj − 1
elements are 0 of the eigenvector of

C =

⎛
⎜⎝ XT

j Xj XT
j X−j

XT
−jXj XT

−jX−j

⎞
⎟⎠

for the largest eigenvalue. It follows from Theorem 2 by putting A = C/p and
B = I. Then, the necessary and sufficient condition is given by (21) and (22)
in Lemma 2. In (21),
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C12v1 = XT
j X−jv1 =XT

j UDVT v1

= d1X
T
j u1

which is equivalent to (30). In (22), the left hand side of the inequality is
rewritten as

C12(λ1I − C22)
+CT

12 =XT
j X−j(d

2
1I −XT

−jX−j)X
T
−jXj

=XT
j UDVT (d2

1I − VD2VT )VDUTXj

=XT
j UD(d2

1I −D2)+DUTXj

=XT
j UΔUTXj ,

and the right hand side of the inequality is rewritten as

λ1I − C11 = d2
1I −XT

j Xj = (d2
1 − 1)I.

We have now the desired result. �

Note that u1 is proportional to the mean vector m−j to which all coordinate
vectors on the textile plot of X−j are aligned. Therefore, the condition (30)
says that any column vector of Xj is orthogonal to m−j . However, such an
orthogonality is not enough for a knot produced. The projected size of Xj on
the range space of X−j should be small enough relative to the size of X−j .
The following corollary gives us a simplified sufficient condition for a knot
produced on a warp yarn.

Corollary 3 Under the same assumption as in Theorem 4, a sufficient con-
dition for a knot produced on the jth warp is that

XT
j u1 = 0

and all eigenvalues of XT
j UUTXj are less than (d2

1 − d2
2)(d

2
1 − 1)/d2

2.

PROOF. It is enough to note that

zT (XT
j UΔUTXj)z ≤ d2

2

d2
1 − d2

2

zT (XT
j UUTXj)z

for any (kj − 1)-dimensional vector z. �

The sufficient condition in Corollary 3 becomes simpler if the original data
vector xj for the jth warp is numerical. Then Xj in Corollary 3 is a vector
and XT

j UUTXj is a scalar value. Therefore, it is easy to check XT
j u1 = 0 and

XT
j UUTXj < (d2

1 − d2
2)(d

2
1 − 1)/d2

2.
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Example 3 If XT
j u1 = 0, a sufficient condition for a knot produced on the

jth warp is that d2
1 > d2

2 + 1.

The condition d2
1 > d2

2+1 for the largest and the second largest singular values
d1 and d2 requires that column vectors of X−j are not so much distinct each
other.

If we assume a stronger assumption that XT
j X−j = O, then XT

j UΔUTXj =
O. Therefore we have the following example from Corollary 4.

Example 4 If XT
j X−j = O, a knot is always produced on the jth warp.

4.2 Neat Weft

Another outstanding feature of a textile plot is neat weft, which means that
all weft yarns are horizontally aligned between two warp yarns. Neat weft
between the jth and the j +1th warp yarns is when the coordinate vectors yj

and yj+1 are identical.

Lemma 3 Assume that there is no missing value in the given data and no
ordered categorical data is involved. A necessary and sufficient condition for
yj = yk is given by

ProjXj
(m) = ProjXk

(m), (31)

where ProjM(v) is the projection of v on the range space of a matrix M and
m =

∑p
j=1 yj/p.

PROOF. Note that

yj = α̂j1 + Xjβ̂(Ij), j = 1, . . . , p,

where α̂j = 0 provided that α0 = 0 and 1TXj = 0. Therefore yj = yk is
equivalent to

Xjβ(Ij) = Xkβ(Ik).

If we remember that λβ̂ = XTXβ̂ for the maximum eigenvalue λ of XTX,
the necessary and sufficient condition is

(XjX
T
j )Xβ = (XkX

T
k )Xβ.

It is enough to note that m = Xβ̂/p. �

Theorem 5 Assume that there is no knot on an adjacent pair of warps. If
the data vectors for the pair of warps are both numerical, then a necessary
and sufficient condition for a neat weft between the pair of warps is that the
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data vectors are identical except difference of locations and scales. If the data
vectors are unordered categorical, then a sufficient condition is that the data
vectors are identical except difference of the labels of levels.

PROOF. The former part of the theorem follows from Lemma 3, if we note
the normalisation assumption given in (19). The latter part follows from
Lemma 1. From the condition, there exists an nonsingular matrix D such
that

Xj = Xj+1D,

since Xj and Xj+1 are both normalised as in (19). The matrix D is then an
orthogonal matrix, since

I = XT
j Xj = DTXT

j+1Xj+1D = DTD.

Therefor we have

XjX
T
j = Xj+1DDTXT

j+1 = Xj+1X
T
j+1

and the desired result follows from Lemma 3. �

5 Textile Plot and Optimised Parallel Coordinate Plot

The optimised parallel coordinate plot is proposed by Michailidis and Leeuw
[6] in the context of homogeneity analysis. In homogeneity analysis, the main
concern is to find a proper quantification of given categorical data vectors xj ,
j = 1, . . . , p. The quantified vectors in case of no missing values are defined
as yj = Zjϕj , j = 1, . . . , p so as to minimise

σ2(ϕ1, . . . , ϕp, ξ) =
1

p

p∑
j=1

‖ξ − yj‖2

under the constraint

Var(ξ) =
1

n
‖ξ − ξ̄1‖2 = 1,

where ξ̄ =
∑n

i=1 ξi/n. Here Zj, j = 1, . . . , p are indicator matrices for the
data vector xj, j = 1, . . . , p. The ith row of Zj is an indicator vector for the
ith element of xj, in which the element corresponding to the level of the ith
element of xj is 1 and 0 otherwise. The optimised parallel coordinate plot is
a parallel coordinate plot of yj , j = 1, . . . , p where all axes share the same
coordinate system.

We can see similarities between textile plot and optimised parallel coordinate
plot. In fact, the criterion σ2(ϕ1, . . . , ϕp, ξ) is equivalent to S2(α, β, ξ) in (1).
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This is because a space spanned by a quantified vector yj is equivalent to
that for the coordinate vector yj in Textile plot, since the range space of Zj

is equal to that of the matrix (1,Xj), where Xj is an encoded matrix with
any contrasts matrix. Therefore the quantified vectors are considered to be
the coordinate vectors yj = αj1 + Xjβ(Ij), j = 1, . . . , p so as to minimise
S2(α, β, m) in (3) under the constraint Var(m) = 1.

It is clear that the problems yield the same solution α̂ given in Corollary 2,
since the constraints are both independent of α. By introducing the means
ȳ·j =

∑n
i=1 yij/n and m̄ =

∑n
i=1 mi/n, the sum of squares S2 can be written as

S2(α̂, β)=
p∑

j=1

‖yj − ȳ·j1‖2 − p‖m − m̄1‖2

= βTBβ − βTAβ,

where A in (9) and B in (10). Then the solution β̂ under the constraint
Var(m) = 1 is given by the β which minimises S2(α̂, β) under the constraint
βTAβ = N , since Var(m) = βTAβ/N .

On the other hand, the optimal choice of scales in Textile plot is given by
β which minimises S2(α̂, β) under the constraint βT Bβ = N . The following
proposition tells us that the solutions are the same.

Proposition 3 The eigenvector of A with respect to B for the largest eigen-
value gives us the solution for the minimisation problem of g(β) = −βT Aβ +
βTBβ irrespective of constraint βTAβ = 1 or βTBβ = 1 except a constant
multiplication.

PROOF. It is enough to note that, the solution β̂ for the minimization of
βTBβ/βTAβ is equivalent to that of −βTAβ/βTBβ except for a constant
multiplication. The solution β̂ immediately follows from the eigen vector of A
with respect to B for the largest eigenvalue. �

From Proposition 3, we see that both optimised parallel coordinate plot and
Textile plot yield the same picture, provided that given data vectors are all
categorical and no missing value exists. This is rather a coincidence because the
problems are in a dual relation as is seen in the proof. Proposition 3 suggests
another view of textile plot. The locations and scales on each axes of textile
plot are chosen so that the coordinate vectors are close to the mean vector m
normalised as ‖m − m̄1‖ = 1. However, it is worthy of noting that the aims
are different. The quantification itself is the aim of homogeneity analysis, but
data visualisation and data browsing is the aim of textile plot.
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6 Concluding Remarks

We have proposed a new high dimensional data visualisation technique called
Textile plot with a hope that this will be a key to understand phenomena
hidden behind the data. Textile plot is a generalisation of the Parallel coordi-
nate plot and accepts any kind of data, although the Parallel coordinate plot
accepts only numerics.

Two outstanding features of Textile plot is knot and neat weft. A knot indi-
cates that the data vector is isolated from other data vectors, and a neat weft
indicates existence of a linear relation between two measurements or equiva-
lence of two categorical data.

It is quite important to develop an efficient algorithm which can be applied
for very high dimensional data or many ordered categorical data vectors. Also,
introduction of dynamic display or interactive display mentioned in [8] or [9]
is necessary to improve user interface. We leave such problems for further
investigation.
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