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Abstract

This paper proposes a new method to reconstruct the re�ection coe�cient of the ground surface from

synthetic aperture radar signal� The received signal is modeled in more general and natural form than the

point targets model� By introducing a polar coordinate system and analyzing the model rigorously� two

kinds of operators are derived� The reconstruction method consists of applying these operators to received

signal in order� The new method is superior to the conventional pulse compression technique in three points�

the simplicity of the calculation for reconstruction itself� built�in correction function without post process�

and shape recovery with high resolution� The theoretical background of the method is proved rigorously and

numerical examples are presented to show the advantages of the method� The sensitivity to noise is also

investigated through obtaining the upper bound of the noise level theoretically and a numerical work�

Keyword � SAR signal� Ground re�ection coe�cient� Shape recovery� Pulse compression� Additive noise
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� Introduction

Synthetic aperture radar �SAR� has been used in various �elds such as geology� oceanography� botany�

agriculture� meteorology� disaster prediction� and so forth� and now we can make use of information about

them easily� Since SAR system was developed by C� Wiley in �	� ������� so many new technologies and

countless research papers have been presented� Inverse SAR� Interferometric SAR and Polarimetric SAR are

examples of the former ����� �	��� and the theory of the pulse compression technique for higher resolution is

one of the most important results of the latter ����� ���� ���� �	��� Research works are still going on accompanied

by the rapid progress of computer technologies and electronic devices� For example� a method of detecting

a ground moving target by using an eigendecomposition of the multi�channel covariance matrix is presented

in ����� new techniques to improve the geometric resolution for polarimetric SAR images are proposed in ����

as an application of parametric spectral estimates� and so on�

As seen in ���� ���� ���� and some papers above� various methods have been developed in the framework

of the pulse compression technique� The fundamental assumption in the technique is the point targets

model� This model expresses received signal as a sum of returned signals from each target point� so that

the manipulation of received signal for higher resolution� such as matched �ltering and compression by using

Doppler frequency� becomes easy� In the recent usage of satellite SAR system� however� targets on the ground

are usually objects having shapes and areas rather than points� In this case� the point targets model is not

necessarily appropriate because it discretizes the re�ection coe�cient of the ground surface by points and

therefore fails to preserve the information about shapes and areas� That kind of information is recovered

in post process such as distortion correction� location correction� and modi�cation by prior information�

From a di�erent point of view� this fact suggests that shapes and areas can be recovered to some extent

without post process if the re�ection coe�cient is modeled so as to preserve the information of those and

the reconstruction method is derived based on such a model�

Then we begin our argument with modeling of the re�ection coe�cient in more appropriate form than

point targets model� Our modeling preserves the information dropped in the point target model� since we do

not discretize the re�ection coe�cient� Analyzing the model rigorously on the polar coordinate system� we

derive two kinds of di�erence�based operators� The reconstruction method consisting of these operators has

advantages over the conventional pulse compression technique in the following points� the simplicity of the

calculation for reconstruction itself� built�in correction function without post process� and shape recovery

with high resolution� The method is quite simple� Essentially we have only to make di�erence calculations

of received signal�

The rest of this paper is organized as follows� In Section �� formulation of the problem including the

modeling of SAR signal is described� In Section �� we state main theoretical results in the form of two

theorems and propose a method to reconstruct the re�ection coe�cient based on these theorems� Section

� gives numerical examples by using the parameters of a SAR system satellite operated practically� In this

section� the comparison with the conventional range and azimuth compression technique is made and the

sensitivity to noise is also investigated� Then we close the argument by concluding remarks in Section �

The proofs of the theorems and a preliminary result are given in Appendices separately�

�
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� Formulation of the problem

��� Basic Geometry

Let us introduce an orthogonal three dimensional coordinate system �x� y� z�� We suppose that the location

of the satellite is denoted by �x� �� h��� where h� � � is the height of the satellite and we assume that x � �

by letting the starting point of the satellite be x � ��

�Figure �� Relationship between the satellite and a point on the ground �

For simplicity� let the ground surface be xy�plain� Then the re�ection coe�cient of the ground is described

as a function of two variables �x� y�� therefore we denote the re�ection coe�cient at the point �x� y� by A�x� y��

We may assume y � � also from the property of sideway looking radar system�

��� Modeling of the Radar Signal

Let the signal transmitted at time t be

s�t� �� expfi���t
 �t��gI���T ��t�� ���

where ������� � � is the carrier frequency� � is the modulation� T is the pulse duration� and

I���T ��t� �

�
� if t � ��� T �
� otherwise

�

We denote the wave speed by c� and de�ne the round trip delay between �x�� �� h�� and �x� y� �� by

�� �x� y�x�� ��
�

c

q
�x� x��� 
 y� 
 h��� ���

Let Ex� be the irradiated area in xy�plain when the satellite is at the point �x�� �� h��� Then� since the wave

speed is much faster than the satellite�s� at time t� the satellite receives the returned signal from each point

�x� y� � Ex� in the form

A�x� y�s�t � �� �x� y�x����

The received signal at time t is the mixture of the return from all �x� y� � Ex� � so that we have an expression

of the received signal at t�

H�x�� t� �

ZZ
Ex�

A�x� y�s�t � �� �x� y� x��� dxdy� ���

Remark � Consider the case where A�x� y� has the form

A�x� y� �
mX
k��

�k 	�x � xk� y � yk� ���

in particular� where �k � �� k � �� �� � � � �m� are constants and

	�x� y� �

�
� if �x� y� � ��� ��
� otherwise

�

�
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If we assume that Z �

��

Z �

��

	�x� y� dxdy � �� ��

then ��� becomes

H�x�� t� �
X

�xk�yk��Ex�

�k s�t � �� �xk� yk�x���� ���

This agrees with the conventional discrete point targets model �see ���� for example�� Therefore the model

��� is more general expression of the received signal�

The well�known pulse compression technique for higher resolution is based on the point targets model

���� The model is natural when we review the development of radar system� In the early days of radar�

targets were in e�ect points such as aircraft and missiles� But the model is not necessarily appropriate if the

target objects have shapes and areas� which are common in SAR� Since objects on the ground are expressed

by a point or a set of points in the modeling� the information about shapes and areas is not su�ciently

preserved� Such information is recovered by the post process� distortion correction� location correction� and

so on� We note also that �� holds in the sense of distribution rigorously� not in ordinal sense� Then what

if we impose a condition on ��� so as to preserve the information about shapes and areas and analyze such

��� without ��� We can expect that a method is derived in which recovering shapes and areas is possible

without the post process�

To accomplish the purpose� we introduce a local polar coordinate system�
x � r sin 
 
 x�
y � r cos 


���

with the domain

E � f�r� 
� � r� � r � r�� j
j � 
�g�
The interval �r�� r�� denotes the scan range and 
� � ��� ���� gives the scan angle� The angle of �x� y� ��

under the local coordinate system ��� is de�ned by 
 � ������ ���� satisfying

cos 
 �
yp

�x� x��� 
 y�

together with 
 � � if x � x� and 
 � � if x � x� �see Figure ���

�Figure �� Local polar coordinate system�

The coordinate system ��� makes it possible to rewrite �� as a function of r only�

���x� y�x�� �
�

c

q
�x� x��� 
 y� 
 h��

�
�

c

q
r� 
 h�� �� � �r��

So hence

H�x�� t� �

ZZ
E

A�r sin 
 
 x�� r cos 
� s�t � � �r��

������x� y���r� 
�

���� d
dr
�

Z r�

r�

�Z ��

���

A�r sin 
 
 x�� r cos 
� d


�
s �t� � �r�� r dr� ���
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The argument below is based on this representation�

The coordinate system ��� is the key to derive our reconstruction method in the next section� Recon�

structing the re�ection coe�cient is nothing but extracting the integrand A�x� y� from the integral H�x�� t��

Then it is reasonable to calculate the di�erence of the integral� and the operators composing our method is

essentially de�ned by the di�erences in r�direction and 
�direction� The coordinate system ��� simpli�es the

calculation since it changes the irradiated area Ex� into the rectangle E of �r� 
�� It is intuitively natural as

well since the irradiated area can be well approximated by a sector�

We impose a condition about the re�ection coe�cient as Condition A�

Condition A The re�ection coe�cient A�x� y� has the form

A�x� y� �
�X
k��

�k IBk
�x� y��

where

Bi �Bj � � �i �� j��
��
k��

Bk � R� � xy�plane�

and the boundary �Bk of each Bk is parallel to x�axis or y�axis�

Remark � The mesh model used often satis�es Condition A� So does the re�ection coe�cient ��� in point

target model by regarding isolated points as parallel to both x and y axes�

� Main Results

We now state the main theoretical results� For simple description� put

�A�x�� r� �

Z ��

���

A�r sin 
 
 x�� r cos 
� d
�

then

H�x�� t� �

Z r�

r�

�A�x�� r� s�t � � �r�� r dr

by ���� We set � � � in the transmitted signal ��� since the modulation parameter � is controllable� The

modulation is originally introduced to improve the resolution in the range direction� But our approach is

di�erent from the range compression so that modulating the transmitted signal is not needed� The following

theorems de�ne two kinds of operators and describe their characteristics� Theorem � is to extract �A�x�� r�

from H�x�� t�� and Theorem � is to calculate A�x� y� approximately from �A�x�� r��

Theorem � Suppose that Condition A holds and the satellite is at �x�� �� h��� Put

D�tH�x�� t� ��
�

c�

n
e�i���t��H�x�� t
�t���� ei���t��H�x�� t��t���

o
� t � R� �t � ��

and for every r� � �r�� r�� de�ne t� � � �r�� and

SH��t�x�� t
�� ��

�

t��t

mX
k��

D�tH �x�� t
� � �m � k�T � ei�m�k���T � �	�

�
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where m is an integral part of �t� � � �r����T � Then

lim
�t���

SH��t�x�� t
��

�

�����
�A�x�� r�� if r� is a continuous point of �A�x�� r�

�

�

	
�A�x�� r

� � �� 
 �A�x�� r
� 
 ��



otherwise�

Remark � This theorem requires the existence of the right�side and the left�side limits �A�x�� r� � �� �

lim
r�r���

�A�x�� r�� It is ensured by Lemma in Appendix ��

Before stating Theorem �� we introduce some notations� Suppose that Condition A holds and a satellite

is at �x� �� h��� When r � �r�� r�� is �xed� a set of angles

��x� r� �� f
 � 
�x� r� � j
j � 
�� �r sin 
 
 x� r cos 
� � �Bk for some kg

is de�ned �see Figure ���

�Figure � � Relation between 
k�x� r� and objects on the ground surface�

where each Bk is a set in Condition A and �Bk denotes the boundary of Bk� Under Condition A� if the

number p of elements in ��x� r��

� � p � p�x� r� �� ��x� r��

is �nite� then we may assume that

�
� � 
��x� r� � 
��x� r� � � � �� 
p���x� r� � 
p�x� r� � 
�

for ��x� r� � f
k�x� r�gpk�� �see Figure � again for detail�� We proceed to Theorem ��

Theorem � Suppose that Condition A holds� For every x � R and r � �r�� r��� de�ne

P 	A��x�x� r� ��
r

�x
f �A�x
�x� r�� �A�x� r�g

with �x � � and

P 	A�x� r� �� lim
�x���

P 	A��x�x� r��

Let x � R and r � �r�� r�� be arbitrarily given� p � ��x� r� be �nite� and

A�r sin 
 
 x� r cos 
� �

���
�� if �
� � 
 � 
��x� r�
�k if 
k�x� r� � 
 � 
k���x� r�� for k � �� �� � � � � p� �
�p if 
p�x� r� � 
 � 
�

�

where f�kgpk�� are nonnegative constants and ��x� r� � f
k�x� r�gpk��� Then an approximation about a

di�erence of A��� ���

A�r sin 
� 
 x� r cos 
�� �A��r sin 
� 
 x� r cos 
�� � P 	A�x� r� 
 ��x� r� ����

holds together with the evaluation of the error term

j��x� r�j � 
��
�� 
��

pX
k��

j�k�� � �kj� ����

�
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The reconstruction method derived by Theorem � and Theorem � is theoretically as follows� Replace

�r sin 
� 
 x and r cos 
� by x and y respectively in ����� and suppose that 
� � � is so small that ��x� r� is

negligible in ���� by ����� Then we have

A�x 
 �y tan 
�� y� 	 A�x� y� 
 P 	A

�
x
 y tan 
��

y

cos 
�

�
����

for �x� y� � ���
�� �r� cos 
�� r� cos 
��� This can be regarded as an update formula of A��� �� by P 	A��� ��� The
values fP 	A��� ��g are calculated from observations in the following manner� Suppose that continuous received

signal fH�x� t� � x � �� � �r�� � t � � �r��g is observed�

The �rst thing� apply D�t to H�x� t� and calculate SH��t�x� t�� then we have a set

f �A�x� r� � x � �� r� � r � r�g � f �A�x� ����t�� � x � �� � �r�� � t � � �r��g ����

by �A�x� r� � lim
�t���

SH��t�x� t� as long as r � � �t� is a continuous point of �A�x� r�� Assuming that the set

���� is obtained correctly for all r� we then obtain a set�
P 	A

�
x�

y

cos 
�

�
� x � �� r� cos 
� � y � r� cos 
�


� fP 	A�x� r� � x � �� r� � r � r�g ����

by applying the operator P 	A��x to �A and take the limit P 	A�x� r� � lim
�x���

P 	A��x�x� r��

Suppose also that the initial value set R� of A�x� y� is given by

R� �� fA�x� y� � � � x � �y tan 
�� r� cos 
� � y � r� cos 
�g� ���

and let y � �r� cos 
�� r� cos 
�� be �xed� Then it follows from ���� and ��� that a set of reconstruction

results bA�x� y� of A�x� y��
R�y� �� �� f bA�x� y� � �y tan 
� � x � �y tan 
�g�

is obtained� Similarly� the iterative use of the update formula ���� yields that

R�y� k� �� f bA�x� y� � �ky tan 
� � x � ��k 
 ��y tan 
�g� k � �� �� � � � �

subsequently� Considering this procedure for all y � �r� cos 
�� r� cos 
��� we �nally have the whole recon�

struction result ��
y

�
k

R�y� k�

��
R� � f bA�x� y� � x � �� r� cos 
� � y � r� cos 
�g�

In practice� however� the continuous observation cannot be obtained� neither can the limits lim
�t���

SH��t�t� x�

and lim
�x���

P 	A��x� Therefore the observations should be discrete� and the calculation of the limits has to

be replaced by approximations with �t and �x �xed su�ciently small� Numerical examples using such

approximations are given in Section ��

In the pulse compression technique� the re�ection coe�cient A�x� y� is discretized by point targets and

the information of each target is recovered by using sinc function� Point targets are isolated points and

they are regarded as singular points� Then we can say that the mathematical interpretation of the pulse

compression technique is gathering the information about A�x� y� in the singular point of A�x� y� by Dirichlet

kernel� On the other hand� our method focuses on extracting A�x� y� from H�x� t� in the continuous points

�
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�regular points� of A�x� y�� Discontinuous points �singular points� of A�x� y� cause discontinuity of �A�x� r�

with respect to r �see the proof of Lemma in Appendix ��� and as seen in Theorem �� extracting �A�x� r�

correctly in the discontinuous points is rather di�cult�

� Numerical Examples

��� Fixed Increments Approximation

As mentioned in the previous section� we �x the increment �t and �x su�ciently small and substitute SH��t

and P 	A��x for these limits as �t� �x� 
� when we apply our method in practice�

Based on Theorem �� Theorem � and ����� choose �t and �x so small that the following approximations

hold�

A�x
 �y tan 
�� y�

	 A�x� y� 
 P 	A��x

�
x
 �y tan 
��

y

cos 
�

�
� A�x� y�



�

�x
� y

cos 
�

�
�A

�
x
�x
 �y tan 
��

y

cos 
�

�
� �A

�
x
 �y tan 
��

y

cos 
�

�
� ����

�A�x� r� 	 SH��t�x� t�� r � ����t�� ����

Rigorously the last approximation holds if r � y� cos 
� is a continuous point of �A�x 
 �x 
 �y tan 
�� r�

and �A�x 
 �y tan 
�� r� in the light of Theorem � � For �xed �t and �x� where �t is chosen so that T��t

is an integer� suppose that su�cient amount of discrete observations

fH�xi� tij� � xi � �� � �r�� � tij � � �r��� xi�� � xi � �x� tij�� � tij � �tg

are obtained to calculate SH��t�xi� tij� in ����� Then f �A�xi� rij� � rij � ����tij�g is derived and thus the

reconstruction results f bA�xi� yij�g as an approximation of fA�xi� yij�g are subsequently obtained by �����

We now show some numerical examples to observe the reconstruction results in our proposing method

and make comparison with the pulse compression technique� In this subsection� we deal with noiseless cases

to see the characteristic of the method itself�

The �rst thing we consider the case where the re�ection coe�cient A�x� y� has the form

A�x� y� �

���
� if x � ���			� ����� and y � ��					� �������
� if x � ���			� ����� and y � ������	� �������
� otherwise

����

in accordance with Condition A� This correspond with the situation that there are two ��m� � ��m� size

square objects on a range�direction line ���m� distance apart with respect to their centers� In the application

of the pulse compression� A�x� y� has to be modeled in the form ��� as point targets� Since the objects are

small� we express each object as a point� Then

A�x� y� � 	������ ������� 
 	������ ������� ��	�
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is assumed for the pulse compression� The parameters of the radar are taken from the satellite JERS��

operated practically from �		� to �		� �see Appendix � for detail�� In this case� 
� 	 ������ ���� and the

upper bound of the error term ��x� r� in ���� becomes ����� ���
 �
X
k

j�k�� � �kj� Hence the error term

is negligible if the variation of f�kg is not so large�

�Figure �� Ground image reconstructed by the pulse compression� �Figure � Ground image

reconstructed by our method�

One pixel has ��m�� ��m� size in both �gures� Figure � is the reconstruction result from the pulse compression

technique� which consists of the range compression� the azimuth compression and three�multilook processing�

Figure  is that from our method� where the increments are set �t � �������m� and �x � ��m�� and we

assume that A�x� y�  � on the initial value set R� because of ����� There seems to be only one target object

in Figure � since the pulse compression cannot separate the echoes from the two target points� In fact� the

highest resolution of SAR system in JERS�� was ���m�� Therefore it is hard task to discriminate two objects

���m� distance apart� In our method� �t and �x set as above give ��m� resolution at the highest� Then we

can see clearly in Figure  that there are two objects apart on the ground�

We show a little complicated example� Suppose that A�x� y� is given by

A�x� y� �

���
� if x � ���			� ����� and y � ��				� ������
� if x � ������ ���� and y � ��					� �������
� otherwise

� ����

This means that there are two rectangular objects� One is long along x�axis and the other is along y�axis�

Similarly to ��	�� the re�ection coe�cient ���� must be reformulated in terms of point targets� Since the

objects are rectangles� we represent them by two points respectively� Hence we replace ���� by

A�x� y� � f	������ �				��
 	������ �������g
 f	����	� �������
 	������ �������g

for the pulse compression�

�Figure �� the pulse compression� �Figure �� our method�

Figure � is obtained by the pulse compression and Figure � is obtained by our method with A�x� y�  �

on R�� Figure � implies that a marked characteristic of our method is shape recovery as well as re�ection

coe�cient reconstruction� It is impossible to recognize the shape in Figure �� We note that any corrections

as the post process� such as distortion correction and location correction� are not made to obtain Figure �

�and Figure  also�� This di�erence from the pulse compression technique comes from how to model the

re�ection coe�cient A�x� y� at the beginning� Once the point targets model is assumed to apply the pulse

compression� the re�ection coe�cient is discretized by a set of isolated points� Then the model fails to

preserve the information about shapes and areas of objects in rigorous sense� Therefore correction works are

indispensable in the post process to recover the dropped information� By contrast� Condition A on which

our method is based does not require discretization of the re�ection coe�cient� so that the information about

shapes and areas are preserved in the model ���� Thus our method derived from ��� makes it possible to

recover the shapes and areas without correction works afterwards if �t and �x are su�ciently small�

��
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��� Sensitivity to Noise

We consider the problem of the sensitivity to noise in this subsection� Suppose that the received signal

H�x�� t� is contaminated by random additive noise ��x�� t��

G�x�� t� �� H�x�� t� 
 � ��x�� t��

where � � � is the noise level �standard deviation� and we suppose that E���x�� t�� � � and Var���x�� t�� �

E�f��x�� t�g�� � � for all �x�� t��

The pulse compression technique is robust against additive noise� In the case of the range compression�

for example� the received signal G�x�� t� is transformed by the matched �lter h�t� � exp��i�t��I���T ��t� as
�

T
�G � h��t� �

�

T
�H � h��t� 
 �

T
�� � h��t�

	 expfi���t� �� �g sinf�T �t� �� �g
�T �t � �� �

I����T��� ���T����t�



�

T

Z T

�
��x�� u�h�t� u� du� ����

where �� � �� �x� y� �x�� is the round trip delay ��� and the symbol  � denotes convolution� The approximation

in ���� holds when j�jT � is su�ciently large� Then we have��E
��������T

Z T

�

��x�� u�h�t� u� du

�����
�
���A���

� �

T

�Z T

�

Z T

�
E�j��x�� u� ��x�� v�j� jh�t� u�h�t � v�j dudv

����

� �

T
� T � �� ����

which means the noise level is less than or equal to the original one� The same holds true in the azimuth

compression� Then the upper bound can be reduced to ��
p
n at the sacri�ce of the resolution a little if the

SAR adopts n�multilook system�

On the other hand� our proposing method essentially consists of di�erence�based operators� Di�erence

calculations are de�cient in the robustness against additive noise in general� and it holds true for our method

unfortunately� Suppose that each ��x�� t� is independently and identically distributed in accordance with

a probability distribution with mean zero and variance one� and calculate SH��t�x�� t
�� of �	� replaced by

G�x�� t��

SH��t�x�� t
�� �

�

t��t

mX
k��

D�tH�x�� t
� � �m� k�T � ei�m�k���T



�

t��t

mX
k��

D�t ��x�� t
� � �m � k�T � ei�m�k���T � ����

Then the noise level of the second term in the right�hand side becomes��E
������� �

t��t

mX
k��

D�t ��x�� t
� � �m� k�T � ei�m�k���T

�����
�
���A���

�
�
p
��m 
 ���

c� t��t
�

��
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Therefore� when we apply ����� the upper bound of the noise level is �nally given by�
�
p
� �b�� �r��� � �r����T c 
 ��

c� � �r���t

��
� r�
�x

�
�� ����

where b�c is an integral part of �� This bound diverges to in�nity as �t or �x tends to zero though the

resolution becomes higher in that case� We face the trade�o� relation between the resolution and the noise

level analogously to the multilook noise reduction method�

In the practical use� however� the increments �t and �x are chosen su�ciently small and �xed� Then

the bound ���� is useful to determine the appropriate resolution by taking the in�uence of the noise into

account� Using the JERS�� parameters� for instance� we can further rewrite ���� into

������ ����

�t�x
�� ���

Set �t � �������s� and �x � ��m� in the same way as Subsection ���� then the resolution is ��m� and the

upper bound ��� becomes ��	��� �� The three�multilook system adopted in JERS�� can reduce the noise

level to smaller ������ �� But the resolution of JERS�� is six times larger ���m�� and the upper bound of

the noise level in our method does not increase at least as long as we �x ��m� resolution� The upper bound

���� implies also that the �exible adjustment between the resolution and the noise level is possible since �t

and �x are both continuous variables� whereas the adjustment is made in the unit of look numbers only in

the n�multilook system�

We show a numerical example of randomly contaminated case and compare the result with that of pulse

compression� Suppose that the re�ection coe�cient A�x� y� has the form ���� and the corresponding point

target model is ��	�� The parameters and the increments are also the same as those in Subsection ����

�Figure �� the pulse compression� �Figure 	� our method�

Figure � and Figure 	 are the reconstruction results in the case of the noise level � � ���� The former is

the result from the pulse compression and the latter is that from our method� One pixel has ��m� � ��m�

size in the both �gures� and it is assumed that each ��x�� t� is independent and has the standard normal

distribution N ��� �� for simplicity�

Observing Figure 	� we know that there are two objects apart and they have long shape furthermore�

The pulse compression technique can detect the two objects also according to Figure �� The comparison of

Figure � with Figure � proves that the pulse compression technique is robust against additive random noise

since both �gures are almost the same� The three�multilook system seems to work well to reduce the noise

level� But the shape of the objects is not clear� Thus� as long as the examples above� our method gives

better reconstruction results� shape recovery and clear image� than the pulse compression does in the case

contaminated by random additive noise� too�

� Concluding Remarks

We proposed a new di�erence�based method to reconstruct the re�ection coe�cient of the ground surface�

The essential di�erence between our method and the conventional pulse compression technique is how to

��
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model the re�ection coe�cient A�x� y�� We are interested in target objects having shapes and areas on the

ground� So that it is necessary to model the re�ection coe�cient so as to preserve that kind of information�

Then our method derived from such modeling makes it possible to recover shapes and areas without post�

correction works if the increment �t and �x are su�ciently small� The �gures in Subsection ��� prove that�

Thus reconstruction process becomes simple since we have only to calculate the di�erence of the received

signal in essence�

Generally speaking� di�erence�based method is de�cient in the robustness against additive noise� Sam�

pling in small interval and di�erence calculation cause the increase of the noise level� Unfortunately our

method is not free from the rule� But as shown in Subsection ���� the upper bound of the noise level can be

small by adjusting the resolution� The �gures in Subsection ��� show in e�ect that our method still performs

shape recovery with higher resolution than the pulse compression technique even in the case contaminated

randomly by white noise� We note also that our method is not an edge detector though it consists of the

di�erence�based operators� Our di�erence calculation is not for edge detection but for extracting the in�

tegrand A�x� y� from the multiple integral H�x� t� with respect to the continuous points of A�x� y�� That

seems to be one of the reasons why our method is not so in�uenced by additive noise�

In the analysis of SAR signal� eliminating the multiplicative speckle noise is an important problem ����� ���

�	�� ����� for example�� The papers discussing this problem are based on point targets model and probability

distributions of noise are assigned to each target point� But� as we stated repeatedly� the re�ection coe�cient

is not discretized in our model to preserve the information about shapes and areas� so that how to assign

the probability distribution of multiplicative noise is completely di�erent and it must be deeply studied from

scratch� Then this problem in our method is left for further research�

Appendices

Appendix � � Preliminary Lemma

The following lemma ensures the statement of Theorem � holds�

Lemma Let x� be arbitrarily �xed� Then for every r� � �r�� r��� both the right�side and the left�side limits

�A�x�� r
� � �� � lim

r�r���
�A�x�� r�

exist and they are �nite� provided that only the right�side or the left�side limit is considered when r� � r�

or r� � r��

Proof� For every 
 � ��
�� 
��� Condition A yields that the limits

lim
r�r���

A�r sin 
 
 x�� r cos 
� �� a��
� r��

exist for every r� � �r�� r��� Then it follows from bounded convergence theorem that

� � lim
r�r���

�A�x�� r� � lim
r�r���

Z ��

���

A�r sin 
 
 x�� r cos 
� d
 �

Z ��

���

a��
� r�� d
 �
�

��
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Appendix � � Proof of Theorem �

The �rst thing we rewrite ��� for simple description� Let u � � �r�� tk � � �rk�� k � �� �� and ��u� �

����u�� then

H�x�� t� �

Z t�

t�

�A�x�� ��u�� s�t � u� ��u� ���u� du

�
c�

�

Z �

��

�A�x�� ��u�� expfi���t� u�g I�t�T�t���t�� t���u�u du� ����

where we have used in the second equality that ��u� ���u� � c�u�� derived from

��u� �
c

�

�
u� � �h��

c�

����

and ���u� �
cu

�

�
u� � �h��

c�

�����
�

For every �t � �� the representation ���� yields that

�

c�
e�i���t��H�x�� t��t���

� e�i���t��
Z �

��

�A�x�� ��u�� exp fi���t��t��� u�gu I�t�T��t��� t��t�����t�� t���u� du

�

Z �

��

�A�x�� ��u�� exp fi���t � u�gu I�t�T��t��� t��t�����t�� t���u� du� ����

Letting �t� � later� we may assume that � � �t � T � Then it follows from ���� that

D�tH�x�� t� �
�

c�

n
e�i���t��H�x�� t
�t���� ei���t��H�x�� t��t���

o

�

Z �

��

�A�x�� ��u�� expfi���t� u�g u I�t��t��� t��t�����t�� t���u� du

�
Z �

��

�A�x�� ��u�� exp fi���t � u�g u I�t�T��t��� t�T��t�����t�� t���u� du� ����

Let r� � �r�� r�� be given and m � � be the integer satisfying t� 
 mT � t� � t� 
 �m 
 ��T � Then� for

t� � � �r�� and every k � �� �� � � � �m� the equation ���� gives that

D�tH �t� � �m � k�T� x��

� e�i���m�k�T
�Z �

��

�A�x�� ��u�� exp fi���t� � u�gu I�t���m�k�T��t��� t���m�k�T��t�����t�� t���u� du

�
Z �

��

�A�x�� ��u�� exp fi���t� � u�gu I�t���m�k���T��t��� t���m�k���T��t�����t�� t���u� du

� ��	�

Therefore� by choosing �t � ��� T � so small that �t� ��t��� t� 
�t��� � �t�� t���

mX
k��

D�tH �t� � �m� k�T� x�� e
i�m�k���T

��
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�

Z �

��

�A �x�� ��u�� exp fi�� �t� � u�gu I�t���t��� t���t�����t�� t���u� du

�
Z �

��

�A �x�� ��u�� exp fi�� �t� � u�gu I�t���m���T��t��� t���m���T��t�����t�� t���u� du

�

Z t���t��

t���t��

�A �x�� ��u�� exp fi�� �t� � u�gu du

�
Z �

��

�A �x�� ��u�� exp fi�� �t� � u�gu I�t�� t����T��t�����t�� t���u� du� ����

where � � ��� T � is the residual � � t�� t��mT � When we choose �t to be less than or equal to ��T ���

in addition to �t � ��� T �� the second integral on the right hand side of ���� vanishes� Thus

SH��t�x�� t
�� �

�

t��t

mX
k��

D�tH �t� � �k �m�T� x�� e
i�m�k���T

�
�

t��t

Z t���t��

t���t��

�A �x�� ��u�� exp fi�� �t� � u�gu du� ����

If r� is a continuous point of �A�x�� r�� then ���� yields that

lim
�t���

SH��t�x�� t
�� � �A�x�� ��t

��� � �A�x�� r
��

since ��u� is a continuous function and r� � ����t�� � ��t��� Suppose contrarily that r� is a discontinuous

point of �A�x�� r�� Then� writing the right�hand side of ���� as

�

t��t

�Z t�

t���t��

�A �x�� ��u�� exp fi�� �t� � u�gudu




Z t���t��

t�

�A �x�� ��u�� exp fi�� �t� � u�gudu
�

and noting that ��u� is monotone increasing� we obtain

lim
�t���

SH��t�x�� t
�� �

�

�

	
�A�x�� ��t

� � ��� 
 �A�x�� ��t
� 
 ���



�

�

�

	
�A�x�� r

� � �� 
 �A�x�� r
� 
 ��



�

This completes the proof of Theorem ��

Appendix � � Proof of Theorem �

Suppose that Condition A is satis�ed� Then for given ��x� r� � f
k�x� r�gpk�� and su�ciently small

�x � �� there exists f
k�x
�x� r� � j
k�x
�x� r�j � 
�� k � �� �� � � �� pg such that

r sin 
k�x� r� 
 x � r sin 
k�x
�x� r� 
 x
�x �� xk� k � �� �� � � � � p� ����

�
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and

P 	A��x�x� r�

�
r

�x
f �A�x
�x� r�� �A�x� r�g

�
r

�x

��Z ���x��x� r�

���




p��X
k��

Z �k���x��x� r�

�k�x��x� r�




Z ��

�p�x��x� r�

�
A�r sin 
 
 x� r cos 
� d


�
�Z ���x� r�

���




p��X
k��

Z �k���x� r�

�k�x� r�




Z ��

�p�x� r�

�
A�r sin 
 
 x� r cos 
� d


�

�
r

�x

��
��

Z ���x��x� r�

���

d
 


p��X
k��

�k

Z �k���x��x� r�

�k�x��x� r�

d
 
 �p

Z ��

�p�x��x� r�

d


�

�
�
��

Z ���x� r�

���

d
 


p��X
k��

�k

Z �k���x� r�

�k�x� r�

d
 
 �p

Z ��

�p�x� r�

d


��

�
r

�x

h
��f
��x
�x� r�� 
��x� r�g � �pf
p�x
�x� r�� 
p�x� r�g




p��X
k��

�kf�
k���x
�x� r�� 
k���x� r��� �
k�x 
�x� r�� 
k�x� r��g
�

�
r

�x

pX
k��

��k�� � �k�f
k�x
�x� r�� 
k�x� r��g� ����

It follows from ���� and mean value theorem that

r

�x
f
k�x
�x� r�� 
k�x� r�g �

r

�x

�
arcsin

xk � x��x

r
� arcsin

xk � x

r



� �
�
��

�
xk � x� �k

r

��
�����

�� � �k � �x�

� �
�
��

�
xk � x

r

��
�����

� � �

cos 
k�x� r�
����

as �x� 
� for all k � �� �� � � � � p� Combining ���� and ����� we obtain

P 	A�x� r� � lim
�x���

P 	A��x�x� r� �

pX
k��

�k � �k��
cos 
k�x� r�

� ���

By taking it into account that

A�r sin 
� 
 x� r cos 
�� �A�r sin��
�� 
 x� r cos 
�� � �p � �� �

pX
k��

��k � �k����

��
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the equation ��� yields that

j��x� r�j � jfA�r sin 
� 
 x� r cos 
�� �A��r sin 
� 
 x� r cos 
��g � P 	A�x� r�j

�

�����
pX

k��

��k � �k���

�
�� �

cos 
k�r� x�

������ �
�

�

cos 
�
� �

� pX
k��

j�k � �k��j

� 
��
�� 
��

pX
k��

j�k � �k��j�

where we have used that sup
�	k	p

j
k�x� r�j � 
� � ��� in the �rst inequality and cos 
� � ��
���� in the second

inequality� Thus the proof of Theorem � has been completed�

Appendix � � JERS��

JERS�� �Japanese Earth Resources Satellite��� is the satellite launched and operated by former National

Space Development Agency of Japan �reorganized as Japan Aerospace Exploration Agency in ����� from

�		� to �		�� The mission was to conduct national agricultural and forestry surveys and also to prevent

people from possible natural disasters� It carried two observational equipments� synthetic aperture radar

optical sensor� The parameters of the SAR system are as follows�

Carrier frequency ��� �GHz�
Pulse duration � ��s�
Band width � �MHz�
Range resolution ���m�
Azimuth resolution ���m� �three�multilook�
Height of the satellite �� �km�
Speed of the satellite �� �km�s�
Length of antenna �� �m�
Swath center ��� �km�
Swath width � �km�

Then we have

�� � �� � ����� ��� �Hz�
� � ��� � ������ ���� �Hz�s�
r� � ����� ��� �m�
r� � ����� ��� �m�

The swath center is at ������ ����m� along the ground range� that is� �r� 
� � ������� ���� ��� Since the

length of antenna is ���m�� the width of the swath center along azimuth direction is �������
�m�� Therefore

we may assume that


� � arctan

�
����� ��
 � �

������ ���

�
	 ������ �����

�Figure ��� Ground surface area irradiated by radar beam�

Three�multilook system adopted by JERS�� �xes the range and azimuth resolution at ���m�� and reduces

the noise level to ����� times smaller compared with single�look case �see ��� for detail��

��
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