Research Report

KSTS/RR-05/004

July 27, 2005

Algebraic independence of modified reciprocal
sums of products of Fibonacel numbers

by

Taka-aki Tanaka

Taka-aki Tanaka
Department of Mathematics

Keio University

Department of Mathematics
Faculty of Science and Technology

Keio University

©2005 KSTS
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan



KSTS/RR-05/004
July 27, 2005

Algebraic independence of modified reciprocal
sums of products of Fibonacci numbers*

Taka-aki TANAKA

Abstract

In this paper we establish, using Mahler’s method, the algebraic indepen-
dence of reciprocal sums of products of Fibonacci numbers including slowly
increasing factors in their numerators (see Theorems 1, 5, and 6 below). The-
orems 1 and 4 are proved by using Theorems 2 and 3 stating key formulas of
this paper, which are deduced from the crucial Lemma 2. Theorems 5 and 6
are proved by using different technique. From Theorems 2 and 5 we deduce
Corollary 2, the algebraic independence of the sum of a certain series and that
of its subseries obtained by taking subscripts in a geometric progression.

1 Introduction

Let {F,,}n>0 be the sequence of Fibonacci numbers defined by
F():O, F1 = 1, Fn+2:Fn+1+Fn (77,2 0) (1)
Brousseau [2] proved that for every k € N
00 k
B (- 1 (k(1—+5) Fo1
“’“_;FnFn+k_Fk > T E
Rabinowitz [8] proved that for every k € N

1
ZFF+2]€ FQkZFQn 1F2n

In this paper we consider the arithmetic nature of the sums of similarly constructed

series such as

i%ﬁm (deN\ {1}, ke N)

*Mathematics Subject Classification (2000): 11J81. D00 0OO0O0O0000OO0O0OODOOOOO
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and

[log,; n]
L8 1 e N\ {1}, keN),
> pp WeR\{), kem

where [z] denotes the largest integer not exceeding the real number z. These sums
are not only transcendental but also algebraically independent in contrast with the
sums o0y, and o}, which are algebraic numbers.

In what follows, let {R,},>0 be the binary linear recurrence defined by
Ryio=A1R, 11 + A2R, (n>0), (2)

where Aj, Ay are nonzero integers with A = A% +4A, > 0 and Ry, R; are integers
with RoRy # R? and Ay Ro(A1 Ry — 2R;) < 0. We can express { R, }n>0 as follows:

R, =aa™ +b8" (n>0),

where a, 3 (|a| > |3|) are the roots of ®(X) = X?— A, X — Ay and a,b € Q(v/A). Tt
is easily seen that |a| > |3] > 0. Since RyRy — R? = abA and A1 Ry(A1Ry — 2R;) =
(a? — B3%)(b* — a?), we see that |a] > [b] > 0. Therefore {R,},>0 is not a geometric
progression and R,, # 0 for any n > 1.

Theorem 1. The numbers

i(_g;{iﬁd”} (de N\ {1}, ke N)

n=1
are algebraically independent and so are the numbers

5llog, ]
——=>= - (de N\A{l}, keN).
> Fhe, @EN\0} ke

ExaMPLE 1. Let {F,},>0 be the sequence of the Fibonacci numbers defined
by (1). Then the numbers

i%ﬁm (deN\ {1}, ke N)

are algebraically independent and so are the numbers

[log, 1]

L5 (@eN\ {1}, keN).
> iy €NV} ke
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EXAMPLE 2. Let {L,},>0 be the sequence of Lucas numbers defined by
LO = 2, L1 = 1, Ln+2 = Ln+1 + Ln (TL 2 0) (3)

Then the numbers

o0

E:&%%%%%ﬂ-(deN\{u,keN)

are algebraically independent and so are the numbers

- log, n]

de N\ {1}, keN).
Ll SNV )

n=1

Theorem 1 is deduced from Theorems 2 and 3 below. The proof will be given in
Section 3.

Let f(x) be a real-valued function on x > 0 such that f'(x) > 0 for any z > 0
and f(N) C N. Let f~'(x) be the inverse function of f(z). For any k € N we put

Y

Go 3 CAIUT] o 5 A )

Rn Rn-‘,—]{; Ran-‘rk

n=f(1) n=£(1)

o S CAU )

Rn+k—1Rn+k

n=£(1) |
and -
U Z R(_AQ)f(n) '
= Ry Rym)+k
Let {F;},>0 be the Fibonacci type sequence defined by

Fr=0, Ff=1, F.,=AF

n+1—|—A2F; (77,20)

Theorem 2. For any k € N
T
Sp ==Y (=A)"'T
= AT

=1

and .
Ur = T (T1 - (—A2)ka+1) .
k
Hence the sets of the numbers {Si,...,Sky1}, {T1,...,Tk+1}, and {Si(=
Ty),Un, ..., U} generate the same vector space over Q.

3
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Theorem 3. If f(n) = f(1) (mod 2) for any n > 1, then

for any k € N. Hence the numbers {Sy | 1 < | < k} are expressed as linearly
independent linear combinations over Q of the numbers {T; | 1 <1 < 2k}.

Using Theorem 2, we prove also the following:

Theorem 4. The numbers

— 2 (deN\{1}, keN
> BB \ {1} )

n=1

are algebraically independent.

ExAMPLE 3. The numbers
ié (d e N\ {1}, ke N)

are algebraically independent and so are the numbers

o0

2.

n=1

de N\ {1}, k € N).
o @EN\{1) heN)

Using different technique to that used in the proof of Theorem 4, we prove the
following:

Theorem 5. Let d be an integer greater than 1. Then the numbers

> nlén(—Ay)?" —x )*[log, n]
Do 772 (¢eQ,1>0, keN) and 4
; Rgn Ran 4, (€@ Z R Bt (4)

are algebraically independent.
As a special case of Theorem 5 we have the following:

Corollary 1. Let d be an integer greater than 1. Then the numbers

N (= Az)” )" [log, n]
2 (keN), and
Z Rand"—I—k ; Rand"—I—k ( Z R R
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are algebraically independent.

Combining Corollary 1 and Theorem 2 with f(x) = d*, we immediately have the
following:

Corollary 2. Let d be an integer greater than 1. Then the numbers

— (=Ag)"[logyn] o~ n(=A9)"
, —— (keN
; Ry Ry Z Rign Ran ( )

n=1

are algebraically independent.

It is interesting that the second series of Corollary 2 is regarded as a subseries of
the first one obtained by replacing n by d". It seems difficult to find in literature the
results which assert the algebraic independence of the sum of a certain series and
that of its subseries with subscripts taken in a geometric progression. For example,
the algebraic independency of the numbers Y > | 1/F, and > >~ 1/F (d > 3) is
open. On the other hand, Lucas [3] showed that > o0 | 1/Fyn = (5 —+/5)/2. André-
Jeannin [1] proved the irrationality of Y °°  1/F,, while its transcendency is open.
Nishioka, Tanaka, and Toshimitsu [7] proved that the numbers Y > | 1/Fy (d > 3)
are algebraically independent.

ExXaMPLE 4. Let {F,},>0 be the sequence of the Fibonacci numbers defined
by (1) and d an integer greater than 1. Then the numbers

— (=D"[logyn]  §~_ n
E , E keN
S~ PP  Fyp Fan s ( )

are algebraically independent.

EXAMPLE 5. Let {L,,},>0 be the sequence of Lucas numbers defined by (3) and
d an integer greater than 1. Then the numbers

— (=D)"[loggn] =~ 7
—_— — (keN
Z LnLn-Hc Zl LdnLdn+k ( )

n=1 n=

are algebraically independent.

If A is not a perfect square, we can prove the algebraic independence of the sums
of the series (4) of Theorem 5 without the factor (—A)?" in their numerators as

follows:
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Theorem 6. Assume in addition that A is not a perfect square. Let d be an

integer greater than 1. Then the numbers

— n'¢" —x )" [logy 1]
> (£e€Q",1>0, keN) and 5
; R R (EeQ Z (5)

are algebraically independent.

2 Lemmas

The following lemma will be used in the proof of Theorems 1 and 4.

Lemma 1 (Tanaka [9]). Let {R,},>0 be as in Section 1. Then the numbers

< )
Z loganl e N\ 1}, ke
n-‘,—k an-Hc

n=d

are algebraically independent.
The following lemma plays an essential role in the proof of Theorems 2 and 3.

Lemma 2. Let f(z) be a real-valued function on x > 0 such that f'(x) > 0 for
any x > 0 and f(N) C N. Let f~*(z) be the inverse function of f(x). Let K be
any field of characteristic 0 endowed with an absolute value | |,. Let {a,}n>1 be a
sequence in K with |a,|, = o(1/f~*(n)). Suppose the sum Y .- |an|, converges in
R. Then in the completion K, of K we have

> )]s — ans) Zaf(h (6)

n=f(1)

PROOF. Let h € N and n € N. Since f'(z) > 0 for any z > 0, (f~*(z)) > 0
for any z > f(1). Hence, if f(h) < n < f(h+ 1), then h < f~'(n) < h+ 1 and so
[f~(n)] = h. Therefore, letting

x(n) = {é (n = f(h)) and Sp = Z x(k)

(otherwise)

we see that s, = [f~1(n)] for n > f(1). Then, letting H € N and N = f(H), we

have
H N
doam = Y x(nay
h=1 n=f(1)
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N-1

= Z Sn(an - an—l—l) + syan
n=f(1)
N-1
= D [ (an = @) + [ (NV)]an. (7)
n=f(1)
Since |anly = o(1/f7*(n)), [f~'(N)]an tends to 0 as N — oco. Since D7 |anl,

converges in R, the sum of the subseries > " asp) also converges in K,. Letting
H — o0 in (7), we have (6). This completes the proof of the lemma.

REMARK 1. The condition |a,|, = o(1/f7'(n)) of Lemma 2 is satisfied if
[anly = o(n™"), (8)

since we have [f~1(n)] = s, < n. We shall use the condition (8) instead in the proof
of Theorems 2 and 3.

The following lemma is a special case of Theorem 3.3.2 in Nishioka [5], since its
assumption is satisfied by Masser’s vanishing theorem [4].

Lemma 3. Let K be an algebraic number field and d an integer greater than 1.
Suppose that fij(z1,22) € Kl[z1,2])] (i=1,....,m, j=1,...,n(i)) are algebraically
independent over K (z1,29) and convergent in a polydisc U C C* around the origin.
Assume that, for every i, fi1(z1, 22), ..., finti)(21, 22) satisfy the system of functional
equations

fil(zla 22)

fm(i) (21, 22)

a; 0 e 0 fin (24, 24) bi (21, 22)
@) - - :
a21 a; - . : :
_ . + » (9
: . 0 : : ( )

where ai,ag? € K and bjj(z1,22) € K(z1,22). If (an,a0) € U is an algebraic point

with 0 < |oa],|as| < 1 such that ay, s are multiplicatively independent, then the

values fij(on,a2) (i =1,...,m, j=1,...,n(i)) are algebraically independent.
REMARK 2. It is not necessary in Lemma 3 to assume that b;;(ad", ad") (i =
L,...,m, j=1,...,n(i)) are defined for all £ > 0, which is satisfied by (9) and the

7
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fact that fij(&ﬁlk,&gk) (t=1,...,m, 7=1,...,n(i)) are defined for all k£ > 0 since
(o, ad) e U.

Lemma 4 (Theorem 3.2.1 in Nishioka [5]). Let C be a field of characteristic 0.
Suppose that fij(z1,22) € Cllz1,22)] (i =1,...,m, 7 =1....,n(i)) satisfy the func-
tional equations of the form (9) with ai,ag? €C,a; # (f],ag_1 #0 (2 < s < n(i)),
and bij(z1,22) € C(z1,22). If fij(z1,22) (i = 1,...,m, j = 1....,n(i)) are alge-

braically dependent over C(z1, z2), then there exists a non-empty subset {iy, ..., i}
of {1,...,m} with a;, = --- = a;, such that fi1,..., fi.1 are linearly dependent over
C' modulo C(z1, z2), that is, there ezist cy,. .., c. € C, not all zero, such that

cfir+ e fir € C(z1,22).

Lemma 5 (Nishioka [6, Lemmas 2, 3, and 6]). Let & be a nonzero complex number
and ay, ..., a, nonzero complex numbers satisfying |a;| # 1, |a;| # |a;| (i # j). Let
fi(z) € C[[z]] (0 <i < n) satisfy the functional equations

r

_ d c
folz) = &fo(2) + e
d Z :
A - A 1< <
RG) = €+ i)
wherer € N ande = £1. Ifd=E§ =2 ande =1, then fi(z) (1 <1i < n) are linearly
independent over C modulo C(2), otherwise so are fi(z) (0 <1 <n).

REMARK 3. If d=¢ =2 and € = 1, then

h
2hzr2

f0(2)221+zr2h - 1i G(C(Z),
h=0

Lemma 6 (A special case of Theorem 3.3.10 in Nishioka [5]). Let C be a field
and F' a subfield of C. If

f(Zl, 22) € C[[Zl, ZQH N F(Zl, 22),

then there exist A(z1,22), B(z1, 22) € F[z1, 22] such that

A(Zl, 22)

f(21722) = m>

B(0,0) # 0.
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3 Proof of Theorems 1, 2, 3, and 4

PROOF OF THEOREM 1. Let

Gy = S (A logn] _ 5 (—As) o

n—1 Ran-‘rk n—d Ran-‘rk ’
% - Ag[log, n] = A [log, ]
Sdk = B D p
' n—1 Ran-‘rk n—d Ran-‘rk
and
= (—A9)"logyn] & )*[log, n|
Typ = deN\ {1}, keN).
b ; Rn-‘,—k an-Hc % n-‘,—k an-Hc ( \ { } )

Letting f(z) = d* in Theorem 2, we see that for any fixed d

k
Sap = Fik D (=Ay)" Ty (keN).

=1
Hence the sets of the numbers {Sy; |2 < d<m, 1 <l <k}and {Ty; |2<d<
m, 1 <1 <k} generate the same vector space over Q for any fixed m € N\ {1} and
for any fixed k € N. Since the numbers Ty (d € N\ {1}, k € N) are algebraically
independent by Lemma 1, the numbers Sy (d € N\ {1}, k& € N) are algebraically
independent.

Again letting f(x) = d” and noting that f(n) = f(1) (mod 2) for any n € N,

we see by Theorem 3 that for any fixed d

Hence the numbers {S;;’Ql |2 < d <m, 1 <1 <k} are expressed as linearly
independent linear combinations over Q of the numbers {7,; |2 <d<m, 1 <1<
2k} for any m € N\ {1} and for any & € N. Since the numbers Ty (d € N\ {1}, k €
N) are algebraically independent by Lemma 1, the numbers S}, (d € N\{1}, k € N)
are algebraically independent, which completes the proof of the theorem.

Before stating the proof of Theorems 2 and 3, we recall that { R,, },,>0 is expressed

as
R, =aa™ +b8" (n>0),
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where o, 3 are the roots of ®(X) = X? — A; X — Ay such that |a| > |8] > 0 and
a,b € Q(v/A) satisty |a| > |b| > 0. Using the same a and 3, we can express the
sequence {F},>o defined before Theorem 2 by

B a® — Bn

Fr= p— (n>0).

PROOF OF THEOREM 2. Since R, = aa” + 05" (n > 0) and —Ay = aff, we
have

(=A9)" 1 ( 5" prk )

R.R, ik a(a® — BF) \aam +bn  aanth 4+ panth

B 1 ﬁn ﬂn-{-k
- () w

Hence, noting that n|3"/R,| — 0 as n — oo, we have by Lemma 2 with Remark 1

B 1 A . k-1 gt - k-1 gt
T

-0 Rn-i—l-l—l

(11)

Letting £ = 1 and replacing n by n+ 1 — 1 in (10), we have

(_A2>n+l—1 _ 1 (ﬁn-ﬁ-l—l B ﬂn-{—l)

Rn+l—1Rn+l B CL(Oé - B) Rn—l—l—l Rn-‘,—l

Hence by Lemma 2

—A 1-1 =° B ﬂn-‘,—l—l ﬁn-{—l
R D DI )] CoL TRy
n=f(1) n+l—1 n+l
(_A2)1—l o Bf(h)—&-l—l
= . 12
alo = B) = Ryny+i-1 12)
Therefore we have i
1
S = g 2 (AT
=1
Replacing n by f(h) in (10), we have
(—Ay)f " 1 (gf(h) 5f(h)+k) (13
RymyRemyen — alak =85 \ Ry Rpmyen)

10
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U, — 1 e (gf(h) B gf(h)Jrk)
alok = *) L=\ Ryny R+
and so

1
=

which completes the proof of the theorem.

U, = Ty — (—A2) Tis1)

PrROOF OoF THEOREM 3. Replacing k by 2k in (10) and multiplying its both
sides by (—1)", we have

I S (€ SRS
Ran-l—Qk: (04219 B2k) Rn+2kz
B 1 2k—1 (_ﬁ)m—l 2k-1 (_ﬁ)n-{—l-{—l

Hence, noting that n|3"/R,| — 0 as n — oo, we have by Lemma 2 with Remark 1
o 2%k—1 2%k—1
1 B (_ﬁ)n-I—l (_ﬁ)n-I—l-I—l
e = ————— [f~(n)] -~ - ~ L
2k a(a% — 5219) n;(I) ; Ry ; R
oo 2k—1 (_ﬁ)f(h)"!‘l

1
" ) 2

h=1 [=0

1 Sy
= a2 L

=0 h=1

Ryny+i

since f(h) = f(1) (mod 2) for any h > 1. Therefore we have by (12)

which completes the proof of the theorem.

PROOF OF THEOREM 4. Let

and
L (—Ay)"log,n] )*[log, n]
Ty, = deN\ {1}, keN).
d’k ; Rysr—1 R 2 Rysr1 R ( VU )

11
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Letting f(r) = d® in Theorem 2 and noting that (—1)¥" = (=1)¢ (n > 1), we see
that for any fixed d

00 A Jn 1
D) Vs = 2 Typ — (—A2)"T, ke N).
=X oy = g (= A Tas) (k€ )

Hence the numbers {Uy; | 2 < d < m, 1 <[ < k} are expressed as linearly
independent linear combinations over Q of the numbers {7,; |2 <d<m, 1 <1<
k+1} for any m € N\{1} and for any k& € N. Since the numbers T, ;. (d € N\{1}, k €
N) are algebraically independent by Lemma 1, the numbers Uy, (d € N\{1}, k € N)
are algebraically independent, which completes the proof of the theorem.

4 Proof of Theorems 5 and 6

REMARK 4. For Q(z1, 22) € C(z1, z2) with Q(0,0) = 0, we define
l' 21722 anQ Zlna <9 7

where x is a variable and d is an integer greater than 1. Letting D = xd/0x, we see
that

filw, 21, 29) := D' f(z, 21, 29) anaj”Q (24" 24" (1>0)

satisfy
fO(xa 21, Z2) = .I'f()(l', Zfa Zg) + Z'Q(Zf, Zg)
film, 21, 20) = wfi(x, 28 29) + xfo(x, 29, 29) + 2Q(24, 29),
" /m
fm(w, 21, 20) = Z l zfi(w, 24 29) + 2Q (24, 25).
1=0
Hence for a complex number x, the functions fo(z, 21, 22), . . ., fm(x, 21, 22) satisfy a

system of functional equations of the form (9).

PROOF OF THEOREM 5. Let ¢ =a™'h, v = o™, and

mn

d il . l k N
E n eQ >0, ke N).

12
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Then d
k n'€"(—A,)
N N : 14
f&lk( ) a’ 04 B Z R Rar o ( )
Using (11) in the proof of Theorem 2 and letting £ = 1, f(z) = d*, and g(z) =
220:1 Zdn/(l + CZdn), we have

)"lloggn] _ 1 g
; R nRosi ala=P) nz Ry a*(a— ) (15)

Therefore it is enough by (14) and (15) to prove the algebraic independence of the
values fer(y) (€ € Q°, 1 >0, k € N) and g(7). We see that each fer(2) (€ €
Q", keN ) satisfies the functional equation

d k.d
Jeor(2) = & feon(=") + € (1 —iczd 1 —:nykzd)

and fer(2) (I > 0) satisfy a system of functional equations of the form (9) for every
fixed £ and k by Remark 4. We see also that g(z) satisfies the functional equation

Zd

14 czd

g9(z) = g(=") +

Hence by Lemma 3 the values fei(y) (€ € Q,1>0 ke N) and g(y) are
algebraically independent if the functions fer(z) (6 € @, 1> 0, k € N) and g(2)
are algebraically independent over C(z).

We assert that for every fixed £ # 1 the functions feor(2) (K € N) are linearly
independent over C modulo C(z) and so are the functions fiox(2) (k € N) with g(z2),
which implies by Lemma 4 that the functions fgx(2) (€ € Q,1>0 ke N) and
g(z) are algebraically independent over C(z). Let
hgn

her(2) = (£eQ”, k>0).

— 1+ cykzd”

Then
feor(2) = heo(2) — hex(2)
for every fixed ¢ € Q and k € N and each he(2) (€ € @, k > 0) satisfies the

functional equation
hew(2) = Eher( d)+7€7k'2d
z) = z )
<k ok 1+ cybzd

Suppose there exists a £ # 1 such that feo1(2), ..., feor(2) are linearly dependent
over C modulo C(z) for some k. If d = £ = 2 and ¢ = 1, we see by Remark 3

13
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that hoo(2) = 222/(1 — 2%) € C(z) and s0 ha1(2),. .., ha(z) are linearly dependent
over C modulo C(2); otherwise, so are heo(2), he1(2), . .., hex(z), which contradicts
Lemma 5, since Hey(2) := £ 1y Fhg.(2) satisfies the functional equation

Zd

21 = EHep (2 + ——
er(2) =¢ Ek(z>+1+c,ykzd

Therefore, if far(z) (€ € Q, 1 >0, k € N) and g(z) = hio(2) are algebraically
dependent over C(z), then hig(z2), fi01(2), ..., fiox(z) are linearly dependent over C
modulo C(z) for some k, and hence so are hio(2), h11(2), ..., hix(z), which contra-
dicts Lemma 5. Therefore the functions fg(z) (6 € Q", 1 >0, k € N) and g(z) are
algebraically independent over C(z) and so the values fei () (€€ Q, 1 >0, k € N)
and g() are algebraically independent, which completes the proof of the theorem.

PROOF OF THEOREM 6. First we consider the case where «, § are multiplica-
tively dependent. Then there exist integers m,n, not both zero, with ™" = 1.
Since o and (3 are field conjugates in the quadratic number field Q(\/Z), Bma™ =1
must also hold. This implies

(@)™ = (a/B)" " = 1.

Since |a/f| > 1, we have m = n # 0, and hence a5 must be a real root of unity,
i.e., —Ay = a3 = £1. Therefore this case is proved by Theorem 5 since (—A3)?" =
(—A2)? (n > 1).

Secondly we consider the case where «, 3 are multiplicatively independent. De-
fine

= 2 vz o~
Y = n n m G Y l 2 0’ k e N !
fan(21, 22) ;nﬁ (1 +ezft 1+ eyka ) cel |

where ¢ = a™'b and v = a~!3. Then

0 len
a2 ~) = a*(a* — g* n'§ '
feu( 20) ( B );1 R Rair

Using (11) in the proof of Theorem 2 and letting k = 1, f(z) = d*, and g(z1, 22) =
Soo2 297 /(1 + c28"), we have

n=1

-2

— (=A9)"[loggn] 1 BT glan)
Z R.R, 1 ~ala—p) ; Ry a2(a— )

n=1

14
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Therefore it is enough to prove the algebraic independence of the values
far(@™2,7) (€ €Q", 1> 0, ke N)and g(a2,7). We see that each feox (21, 22) (€ €
Q", keN ) satisfies the functional equation

d k.d
21 V2 )

d _d
21, 22) = 21, %9) + -
f§0k( 1 2) fffOk( 1 2) 5(1+ng 1+C,ykzg

and far(z1,22) (I > 0) satisfy a system of functional equations of the form (9) for
every fixed ¢ and k by Remark 4. We see also that g(z1, z2) satisfies the functional

equation

%

1+ czg

g('zl: ZQ) = g(’zfa Zg) +

Hence, noting that a2, v are multiplicatively independent, we see by Lemma 3 that
the values fer(a27y) (€ € Q°, 1 > 0, k € N) and g(a2,7) are algebraically
independent if the functions fe(z1,22) (§ € Q°,1>0, ke N) and g(z1, 22) are
algebraically independent over C(z1, z2). We assert that for every fixed £ # 1 the
functions feor(21,22) (K € N) are linearly independent over C modulo C(z1, 2z2) and
so are the functions fiox(z1,22) (k € N) with g(z1, 22), which implies by Lemma 4
that the functions fey(21,22) (€ € Q" 1>0, ke N) and g(z1, z2) are algebraically
independent over C(z1, 22).

Suppose there exists a £ # 1 such that feo1(21,22), ..., feor(21, 22) are linearly
dependent over C modulo C(z1, 29) for some k. Thus there are complex numbers
ci,...,Ck, not all zero, such that

C1f501(21, Zz) + -+ CkffOk(Zla Z2) € C(Zh 22)-

Since  feo1(21, 22), .- -, feou(21,22) €  Cl[[z1,22)], by Lemma 6 there exist
A(z1, 22), B(z1, 22) € C[z1, 22 such that

A(Zl, 22)

Blor, )’ B(0,0) # 0.

c1feor (21, 22) + -+ - + i feon(21, 22) =
Letting z; = 29 = 2, we have

c1feor(z,2) + -+ + ek feor(z, 2) € C(2),

which contradicts Lemma 5 by the same way as in the proof of Theorem 5.
Therefore, if fer(z1,22) (§ € Q, 1l >0 k € N) and g(z1,22) are alge-
braically dependent over C(z1, 23), then g(z1, 22), fi01(21, 22), - - -, fiox(21, 22) are lin-
early dependent over C modulo C(z1, 2z2) for some k. By the same way as above
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9(z,2), fi1(z, 2), ..., fiox(z, z) are linearly dependent over C modulo C(z), which

again contradicts Lemma 5. Therefore the functions fei(z1,22) (£ € QY 1>

0, k

€ N) and g(z1, 22) are algebraically independent over C(z1, z2) and so the val-

ues fap(a™2,7) (6 €Q", 1 >0, k € N) and g(a~2, ) are algebraically independent,
which completes the proof of the theorem.
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