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Algebraic independence of modified reciprocal
sums of products of Fibonacci numbers∗

Taka-aki Tanaka

Abstract

In this paper we establish, using Mahler’s method, the algebraic indepen-
dence of reciprocal sums of products of Fibonacci numbers including slowly
increasing factors in their numerators (see Theorems 1, 5, and 6 below). The-
orems 1 and 4 are proved by using Theorems 2 and 3 stating key formulas of
this paper, which are deduced from the crucial Lemma 2. Theorems 5 and 6
are proved by using different technique. From Theorems 2 and 5 we deduce
Corollary 2, the algebraic independence of the sum of a certain series and that
of its subseries obtained by taking subscripts in a geometric progression.

1 Introduction

Let {Fn}n≥0 be the sequence of Fibonacci numbers defined by

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn (n ≥ 0). (1)

Brousseau [2] proved that for every k ∈ N

σk =
∞∑

n=1

(−1)n

FnFn+k
=

1

Fk

(
k(1−√

5)

2
+

k∑
n=1

Fn−1

Fn

)
.

Rabinowitz [8] proved that for every k ∈ N

σ∗k =
∞∑

n=1

1

FnFn+2k
=

1

F2k

k∑
n=1

1

F2n−1F2n
.

In this paper we consider the arithmetic nature of the sums of similarly constructed

series such as ∞∑
n=1

(−1)n[logd n]

FnFn+k
(d ∈ N \ {1}, k ∈ N)

∗Mathematics Subject Classification (2000): 11J81. 　　　　　　　　　　　　　　　　　　　
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and ∞∑
n=1

[logd n]

FnFn+2k
(d ∈ N \ {1}, k ∈ N),

where [x] denotes the largest integer not exceeding the real number x. These sums

are not only transcendental but also algebraically independent in contrast with the

sums σk and σ∗k which are algebraic numbers.

In what follows, let {Rn}n≥0 be the binary linear recurrence defined by

Rn+2 = A1Rn+1 + A2Rn (n ≥ 0), (2)

where A1, A2 are nonzero integers with ∆ = A2
1 + 4A2 > 0 and R0, R1 are integers

with R0R2 	= R2
1 and A1R0(A1R0 − 2R1) ≤ 0. We can express {Rn}n≥0 as follows:

Rn = aαn + bβn (n ≥ 0),

where α, β (|α| ≥ |β|) are the roots of Φ(X) = X2−A1X−A2 and a, b ∈ Q(
√
∆). It

is easily seen that |α| > |β| > 0. Since R0R2 −R2
1 = ab∆ and A1R0(A1R0 − 2R1) =

(α2 − β2)(b2 − a2), we see that |a| ≥ |b| > 0. Therefore {Rn}n≥0 is not a geometric

progression and Rn 	= 0 for any n ≥ 1.

Theorem 1. The numbers

∞∑
n=1

(−A2)
n[logd n]

RnRn+k
(d ∈ N \ {1}, k ∈ N)

are algebraically independent and so are the numbers

∞∑
n=1

An
2 [logd n]

RnRn+2k
(d ∈ N \ {1}, k ∈ N).

Example 1. Let {Fn}n≥0 be the sequence of the Fibonacci numbers defined

by (1). Then the numbers

∞∑
n=1

(−1)n[logd n]

FnFn+k
(d ∈ N \ {1}, k ∈ N)

are algebraically independent and so are the numbers

∞∑
n=1

[logd n]

FnFn+2k
(d ∈ N \ {1}, k ∈ N).
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Example 2. Let {Ln}n≥0 be the sequence of Lucas numbers defined by

L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln (n ≥ 0). (3)

Then the numbers

∞∑
n=1

(−1)n[logd n]

LnLn+k
(d ∈ N \ {1}, k ∈ N)

are algebraically independent and so are the numbers

∞∑
n=1

[logd n]

LnLn+2k
(d ∈ N \ {1}, k ∈ N).

Theorem 1 is deduced from Theorems 2 and 3 below. The proof will be given in

Section 3.

Let f(x) be a real-valued function on x ≥ 0 such that f ′(x) > 0 for any x > 0

and f(N) ⊂ N. Let f−1(x) be the inverse function of f(x). For any k ∈ N we put

Sk =
∞∑

n=f(1)

(−A2)
n[f−1(n)]

RnRn+k
, S∗

k =
∞∑

n=f(1)

An
2 [f

−1(n)]

RnRn+k
,

Tk =

∞∑
n=f(1)

(−A2)
n[f−1(n)]

Rn+k−1Rn+k
,

and

Uk =
∞∑

n=1

(−A2)
f(n)

Rf(n)Rf(n)+k

.

Let {F ∗
n}n≥0 be the Fibonacci type sequence defined by

F ∗
0 = 0, F ∗

1 = 1, F ∗
n+2 = A1F

∗
n+1 + A2F

∗
n (n ≥ 0).

Theorem 2. For any k ∈ N

Sk =
1

F ∗
k

k∑
l=1

(−A2)
l−1Tl

and

Uk =
1

F ∗
k

(
T1 − (−A2)

kTk+1

)
.

Hence the sets of the numbers {S1, . . . , Sk+1}, {T1, . . . , Tk+1}, and {S1(=

T1), U1, . . . , Uk} generate the same vector space over Q.
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Theorem 3. If f(n) ≡ f(1) (mod 2) for any n ≥ 1, then

S∗
2k =

(−1)f(1)

F ∗
2k

2k∑
l=1

Al−1
2 Tl

for any k ∈ N. Hence the numbers {S2l | 1 ≤ l ≤ k} are expressed as linearly

independent linear combinations over Q of the numbers {Tl | 1 ≤ l ≤ 2k}.

Using Theorem 2, we prove also the following:

Theorem 4. The numbers

∞∑
n=1

Adn

2

RdnRdn+k
(d ∈ N \ {1}, k ∈ N)

are algebraically independent.

Example 3. The numbers

∞∑
n=1

1

FdnFdn+k
(d ∈ N \ {1}, k ∈ N)

are algebraically independent and so are the numbers

∞∑
n=1

1

LdnLdn+k
(d ∈ N \ {1}, k ∈ N).

Using different technique to that used in the proof of Theorem 4, we prove the

following:

Theorem 5. Let d be an integer greater than 1. Then the numbers

∞∑
n=1

nlξn(−A2)
dn

RdnRdn+k
(ξ ∈ Q

×
, l ≥ 0, k ∈ N) and

∞∑
n=1

(−A2)
n[logd n]

RnRn+1
(4)

are algebraically independent.

As a special case of Theorem 5 we have the following:

Corollary 1. Let d be an integer greater than 1. Then the numbers

∞∑
n=1

(−A2)
dn

RdnRdn+k
,

∞∑
n=1

n(−A2)
dn

RdnRdn+k
(k ∈ N), and

∞∑
n=1

(−A2)
n[logd n]

RnRn+1
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are algebraically independent.

Combining Corollary 1 and Theorem 2 with f(x) = dx, we immediately have the

following:

Corollary 2. Let d be an integer greater than 1. Then the numbers

∞∑
n=1

(−A2)
n[logd n]

RnRn+k
,

∞∑
n=1

n(−A2)
dn

RdnRdn+k
(k ∈ N)

are algebraically independent.

It is interesting that the second series of Corollary 2 is regarded as a subseries of

the first one obtained by replacing n by dn. It seems difficult to find in literature the

results which assert the algebraic independence of the sum of a certain series and

that of its subseries with subscripts taken in a geometric progression. For example,

the algebraic independency of the numbers
∑∞

n=1 1/Fn and
∑∞

n=1 1/Fdn (d ≥ 3) is

open. On the other hand, Lucas [3] showed that
∑∞

n=1 1/F2n = (5−√
5)/2. André-

Jeannin [1] proved the irrationality of
∑∞

n=1 1/Fn, while its transcendency is open.

Nishioka, Tanaka, and Toshimitsu [7] proved that the numbers
∑∞

n=1 1/Fdn (d ≥ 3)

are algebraically independent.

Example 4. Let {Fn}n≥0 be the sequence of the Fibonacci numbers defined

by (1) and d an integer greater than 1. Then the numbers

∞∑
n=1

(−1)n[logd n]

FnFn+k
,

∞∑
n=1

n

FdnFdn+k
(k ∈ N)

are algebraically independent.

Example 5. Let {Ln}n≥0 be the sequence of Lucas numbers defined by (3) and

d an integer greater than 1. Then the numbers

∞∑
n=1

(−1)n[logd n]

LnLn+k

,
∞∑

n=1

n

LdnLdn+k

(k ∈ N)

are algebraically independent.

If ∆ is not a perfect square, we can prove the algebraic independence of the sums

of the series (4) of Theorem 5 without the factor (−A2)
dn

in their numerators as

follows:
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Theorem 6. Assume in addition that ∆ is not a perfect square. Let d be an

integer greater than 1. Then the numbers

∞∑
n=1

nlξn

RdnRdn+k
(ξ ∈ Q

×
, l ≥ 0, k ∈ N) and

∞∑
n=1

(−A2)
n[logd n]

RnRn+1
(5)

are algebraically independent.

2 Lemmas

The following lemma will be used in the proof of Theorems 1 and 4.

Lemma 1 (Tanaka [9]). Let {Rn}n≥0 be as in Section 1. Then the numbers

∞∑
n=d

(−A2)
n[logd n]

Rn+k−1Rn+k
(d ∈ N \ {1}, k ∈ N)

are algebraically independent.

The following lemma plays an essential role in the proof of Theorems 2 and 3.

Lemma 2. Let f(x) be a real-valued function on x ≥ 0 such that f ′(x) > 0 for

any x > 0 and f(N) ⊂ N. Let f−1(x) be the inverse function of f(x). Let K be

any field of characteristic 0 endowed with an absolute value | |v. Let {an}n≥1 be a

sequence in K with |an|v = o(1/f−1(n)). Suppose the sum
∑∞

n=1 |an|v converges in

R. Then in the completion Kv of K we have

∞∑
n=f(1)

[f−1(n)](an − an+1) =
∞∑

h=1

af(h). (6)

Proof. Let h ∈ N and n ∈ N. Since f ′(x) > 0 for any x > 0, (f−1(x))′ > 0

for any x ≥ f(1). Hence, if f(h) ≤ n < f(h + 1), then h ≤ f−1(n) < h + 1 and so

[f−1(n)] = h. Therefore, letting

χ(n) =

{
1 (n = f(h))
0 (otherwise)

and sn =
n∑

k=1

χ(k),

we see that sn = [f−1(n)] for n ≥ f(1). Then, letting H ∈ N and N = f(H), we

have

H∑
h=1

af(h) =

N∑
n=f(1)

χ(n)an
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=

N−1∑
n=f(1)

sn(an − an+1) + sNaN

=
N−1∑

n=f(1)

[f−1(n)](an − an+1) + [f−1(N)]aN . (7)

Since |an|v = o(1/f−1(n)), [f−1(N)]aN tends to 0 as N → ∞. Since
∑∞

n=1 |an|v
converges in R, the sum of the subseries

∑∞
h=1 af(h) also converges in Kv. Letting

H → ∞ in (7), we have (6). This completes the proof of the lemma.

Remark 1. The condition |an|v = o(1/f−1(n)) of Lemma 2 is satisfied if

|an|v = o(n−1), (8)

since we have [f−1(n)] = sn ≤ n. We shall use the condition (8) instead in the proof

of Theorems 2 and 3.

The following lemma is a special case of Theorem 3.3.2 in Nishioka [5], since its

assumption is satisfied by Masser’s vanishing theorem [4].

Lemma 3. Let K be an algebraic number field and d an integer greater than 1.

Suppose that fij(z1, z2) ∈ K[[z1, z2]] (i = 1, . . . , m, j = 1, . . . , n(i)) are algebraically

independent over K(z1, z2) and convergent in a polydisc U ⊂ C2 around the origin.

Assume that, for every i, fi1(z1, z2), . . . , fin(i)(z1, z2) satisfy the system of functional

equations


fi1(z1, z2)
...
...

fin(i)(z1, z2)




=




ai 0 · · · 0

a
(i)
21 ai

. . .
...

...
. . . 0

a
(i)
n(i) 1 · · · a(i)

n(i) n(i)−1 ai







fi1(z
d
1 , z

d
2)

...

...
fin(i)(z

d
1 , z

d
2)


+




bi1(z1, z2)
...
...

bin(i)(z1, z2)


 , (9)

where ai, a
(i)
st ∈ K and bij(z1, z2) ∈ K(z1, z2). If (α1, α2) ∈ U is an algebraic point

with 0 < |α1| , |α2| < 1 such that α1, α2 are multiplicatively independent, then the

values fij(α1, α2) (i = 1, . . . , m, j = 1, . . . , n(i)) are algebraically independent.

Remark 2. It is not necessary in Lemma 3 to assume that bij(α
dk

1 , α
dk

2 ) (i =

1, . . . , m, j = 1, . . . , n(i)) are defined for all k ≥ 0, which is satisfied by (9) and the
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fact that fij(α
dk

1 , α
dk

2 ) (i = 1, . . . , m, j = 1, . . . , n(i)) are defined for all k ≥ 0 since

(αdk

1 , α
dk

2 ) ∈ U .

Lemma 4 (Theorem 3.2.1 in Nishioka [5]). Let C be a field of characteristic 0.

Suppose that fij(z1, z2) ∈ C [[z1, z2]] (i = 1, . . . , m, j = 1. . . . , n(i)) satisfy the func-

tional equations of the form (9) with ai, a
(i)
st ∈ C, ai 	= 0, a

(i)
s s−1 	= 0 (2 ≤ s ≤ n(i)),

and bij(z1, z2) ∈ C(z1, z2). If fij(z1, z2) (i = 1, . . . , m, j = 1. . . . , n(i)) are alge-

braically dependent over C(z1, z2), then there exists a non-empty subset {i1, . . . , ir}
of {1, . . . , m} with ai1 = · · · = air such that fi1 1, . . . , fir 1 are linearly dependent over

C modulo C(z1, z2), that is, there exist c1, . . . , cr ∈ C, not all zero, such that

c1fi1 1 + · · ·+ crfir 1 ∈ C(z1, z2).

Lemma 5 (Nishioka [6, Lemmas 2, 3, and 6]). Let ξ be a nonzero complex number

and a1, . . . , an nonzero complex numbers satisfying |ai| 	= 1, |ai| 	= |aj| (i 	= j). Let

fi(z) ∈ C[[z]] (0 ≤ i ≤ n) satisfy the functional equations

f0(z) = ξf0(z
d) +

zr

1 + εzr
,

fi(z) = ξfi(z
d) +

zr

1 + aizr
(1 ≤ i ≤ n),

where r ∈ N and ε = ±1. If d = ξ = 2 and ε = 1, then fi(z) (1 ≤ i ≤ n) are linearly

independent over C modulo C(z), otherwise so are fi(z) (0 ≤ i ≤ n).

Remark 3. If d = ξ = 2 and ε = 1, then

f0(z) =
∞∑

h=0

2hzr2h

1 + zr2h =
zr

1− zr
∈ C(z).

Lemma 6 (A special case of Theorem 3.3.10 in Nishioka [5]). Let C be a field

and F a subfield of C. If

f(z1, z2) ∈ C [[z1, z2]] ∩ F (z1, z2),

then there exist A(z1, z2), B(z1, z2) ∈ F [z1, z2] such that

f(z1, z2) =
A(z1, z2)

B(z1, z2)
, B(0, 0) 	= 0.
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3 Proof of Theorems 1, 2, 3, and 4

Proof of Theorem 1. Let

Sd,k =
∞∑

n=1

(−A2)
n[logd n]

RnRn+k
=

∞∑
n=d

(−A2)
n[logd n]

RnRn+k
,

S∗
d,k =

∞∑
n=1

An
2 [logd n]

RnRn+k
=

∞∑
n=d

An
2 [logd n]

RnRn+k
,

and

Td,k =
∞∑

n=1

(−A2)
n[logd n]

Rn+k−1Rn+k
=

∞∑
n=d

(−A2)
n[logd n]

Rn+k−1Rn+k
(d ∈ N \ {1}, k ∈ N).

Letting f(x) = dx in Theorem 2, we see that for any fixed d

Sd,k =
1

F ∗
k

k∑
l=1

(−A2)
l−1Td,l (k ∈ N).

Hence the sets of the numbers {Sd,l | 2 ≤ d ≤ m, 1 ≤ l ≤ k} and {Td,l | 2 ≤ d ≤
m, 1 ≤ l ≤ k} generate the same vector space over Q for any fixed m ∈ N \ {1} and

for any fixed k ∈ N. Since the numbers Td,k (d ∈ N \ {1}, k ∈ N) are algebraically

independent by Lemma 1, the numbers Sd,k (d ∈ N \ {1}, k ∈ N) are algebraically

independent.

Again letting f(x) = dx and noting that f(n) ≡ f(1) (mod 2) for any n ∈ N,

we see by Theorem 3 that for any fixed d

S∗
d,2k =

(−1)f(1)

F ∗
2k

2k∑
l=1

Al−1
2 Td,l (k ∈ N).

Hence the numbers {S∗
d,2l | 2 ≤ d ≤ m, 1 ≤ l ≤ k} are expressed as linearly

independent linear combinations over Q of the numbers {Td,l | 2 ≤ d ≤ m, 1 ≤ l ≤
2k} for anym ∈ N\{1} and for any k ∈ N. Since the numbers Td,k (d ∈ N\{1}, k ∈
N) are algebraically independent by Lemma 1, the numbers S∗

d,2k (d ∈ N\{1}, k ∈ N)

are algebraically independent, which completes the proof of the theorem.

Before stating the proof of Theorems 2 and 3, we recall that {Rn}n≥0 is expressed

as

Rn = aαn + bβn (n ≥ 0),

9
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where α, β are the roots of Φ(X) = X2 − A1X − A2 such that |α| > |β| > 0 and

a, b ∈ Q(
√
∆) satisfy |a| ≥ |b| > 0. Using the same α and β, we can express the

sequence {F ∗
n}n≥0 defined before Theorem 2 by

F ∗
n =

αn − βn

α− β (n ≥ 0).

Proof of Theorem 2. Since Rn = aαn + bβn (n ≥ 0) and −A2 = αβ, we

have

(−A2)
n

RnRn+k
=

1

a(αk − βk)

(
βn

aαn + bβn
− βn+k

aαn+k + bβn+k

)

=
1

a(αk − βk)

(
βn

Rn
− βn+k

Rn+k

)
. (10)

Hence, noting that n|βn/Rn| → 0 as n→ ∞, we have by Lemma 2 with Remark 1

Sk =
1

a(αk − βk)

∞∑
n=f(1)

[f−1(n)]

(
k−1∑
l=0

βn+l

Rn+l
−

k−1∑
l=0

βn+l+1

Rn+l+1

)

=
1

a(αk − βk)

∞∑
h=1

k−1∑
l=0

βf(h)+l

Rf(h)+l

. (11)

Letting k = 1 and replacing n by n+ l − 1 in (10), we have

(−A2)
n+l−1

Rn+l−1Rn+l

=
1

a(α− β)
(
βn+l−1

Rn+l−1

− βn+l

Rn+l

)
.

Hence by Lemma 2

Tl =
(−A2)

1−l

a(α − β)
∞∑

n=f(1)

[f−1(n)]

(
βn+l−1

Rn+l−1
− βn+l

Rn+l

)

=
(−A2)

1−l

a(α − β)
∞∑

h=1

βf(h)+l−1

Rf(h)+l−1

. (12)

Therefore we have

Sk =
1

F ∗
k

k∑
l=1

(−A2)
l−1Tl.

Replacing n by f(h) in (10), we have

(−A2)
f(h)

Rf(h)Rf(h)+k

=
1

a(αk − βk)

(
βf(h)

Rf(h)

− βf(h)+k

Rf(h)+k

)
. (13)

10
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Hence

Uk =
1

a(αk − βk)

∞∑
h=1

(
βf(h)

Rf(h)

− βf(h)+k

Rf(h)+k

)

and so

Uk =
1

F ∗
k

(
T1 − (−A2)

kTk+1

)
,

which completes the proof of the theorem.

Proof of Theorem 3. Replacing k by 2k in (10) and multiplying its both

sides by (−1)n, we have

An
2

RnRn+2k
=

1

a(α2k − β2k)

(
(−β)n
Rn

− (−β)n+2k

Rn+2k

)

=
1

a(α2k − β2k)

(
2k−1∑
l=0

(−β)n+l

Rn+l

−
2k−1∑
l=0

(−β)n+l+1

Rn+l+1

)
.

Hence, noting that n|βn/Rn| → 0 as n→ ∞, we have by Lemma 2 with Remark 1

S∗
2k =

1

a(α2k − β2k)

∞∑
n=f(1)

[f−1(n)]

(
2k−1∑
l=0

(−β)n+l

Rn+l
−

2k−1∑
l=0

(−β)n+l+1

Rn+l+1

)

=
1

a(α2k − β2k)

∞∑
h=1

2k−1∑
l=0

(−β)f(h)+l

Rf(h)+l

=
1

a(α2k − β2k)

2k−1∑
l=0

(−1)l+f(1)

∞∑
h=1

βf(h)+l

Rf(h)+l
,

since f(h) ≡ f(1) (mod 2) for any h ≥ 1. Therefore we have by (12)

S∗
2k =

(−1)f(1)

F ∗
2k

2k∑
l=1

Al−1
2 Tl,

which completes the proof of the theorem.

Proof of Theorem 4. Let

Ud,k =
∞∑

n=1

Adn

2

RdnRdn+k

and

Td,k =

∞∑
n=1

(−A2)
n[logd n]

Rn+k−1Rn+k
=

∞∑
n=d

(−A2)
n[logd n]

Rn+k−1Rn+k
(d ∈ N \ {1}, k ∈ N).

11
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Letting f(x) = dx in Theorem 2 and noting that (−1)d
n
= (−1)d (n ≥ 1), we see

that for any fixed d

(−1)dUd,k =
∞∑

n=1

(−A2)
dn

RdnRdn+k
=

1

F ∗
k

(
Td,1 − (−A2)

kTd,k+1

)
(k ∈ N).

Hence the numbers {Ud,l | 2 ≤ d ≤ m, 1 ≤ l ≤ k} are expressed as linearly

independent linear combinations over Q of the numbers {Td,l | 2 ≤ d ≤ m, 1 ≤ l ≤
k+1} for anym ∈ N\{1} and for any k ∈ N. Since the numbers Td,k (d ∈ N\{1}, k ∈
N) are algebraically independent by Lemma 1, the numbers Ud,k (d ∈ N\{1}, k ∈ N)

are algebraically independent, which completes the proof of the theorem.

4 Proof of Theorems 5 and 6

Remark 4. For Q(z1, z2) ∈ C(z1, z2) with Q(0, 0) = 0, we define

f(x, z1, z2) =
∞∑

n=1

xnQ(zdn

1 , z
dn

2 ),

where x is a variable and d is an integer greater than 1. Letting D = x∂/∂x, we see

that

fl(x, z1, z2) := D
lf(x, z1, z2) =

∞∑
n=1

nlxnQ(zdn

1 , z
dn

2 ) (l ≥ 0)

satisfy

f0(x, z1, z2) = xf0(x, z
d
1, z

d
2) + xQ(z

d
1 , z

d
2),

f1(x, z1, z2) = xf1(x, z
d
1, z

d
2) + xf0(x, z

d
1 , z

d
2) + xQ(z

d
1, z

d
2),

...

fm(x, z1, z2) =
m∑

l=0

(
m

l

)
xfl(x, z

d
1 , z

d
2) + xQ(z

d
1, z

d
2).

Hence for a complex number x, the functions f0(x, z1, z2), . . . , fm(x, z1, z2) satisfy a

system of functional equations of the form (9).

Proof of Theorem 5. Let c = a−1b, γ = α−1β, and

fξlk(z) =
∞∑

n=1

nlξn
(

zdn

1 + czdn − γkzdn

1 + cγkzdn

)
(ξ ∈ Q

×
, l ≥ 0, k ∈ N).
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Then

fξlk(γ) = a
2(αk − βk)

∞∑
n=1

nlξn(−A2)
dn

RdnRdn+k
. (14)

Using (11) in the proof of Theorem 2 and letting k = 1, f(x) = dx, and g(z) =∑∞
n=1 z

dn
/(1 + czdn

), we have

∞∑
n=1

(−A2)
n[logd n]

RnRn+1
=

1

a(α− β)
∞∑

n=1

βdn

Rdn

=
g(γ)

a2(α − β). (15)

Therefore it is enough by (14) and (15) to prove the algebraic independence of the

values fξlk(γ) (ξ ∈ Q
×
, l ≥ 0, k ∈ N) and g(γ). We see that each fξ0k(z) (ξ ∈

Q
×
, k ∈ N) satisfies the functional equation

fξ0k(z) = ξfξ0k(z
d) + ξ

(
zd

1 + czd
− γkzd

1 + cγkzd

)

and fξlk(z) (l ≥ 0) satisfy a system of functional equations of the form (9) for every

fixed ξ and k by Remark 4. We see also that g(z) satisfies the functional equation

g(z) = g(zd) +
zd

1 + czd
.

Hence by Lemma 3 the values fξlk(γ) (ξ ∈ Q
×
, l ≥ 0, k ∈ N) and g(γ) are

algebraically independent if the functions fξlk(z) (ξ ∈ Q
×
, l ≥ 0, k ∈ N) and g(z)

are algebraically independent over C(z).

We assert that for every fixed ξ 	= 1 the functions fξ0k(z) (k ∈ N) are linearly

independent over C modulo C(z) and so are the functions f10k(z) (k ∈ N) with g(z),

which implies by Lemma 4 that the functions fξlk(z) (ξ ∈ Q
×
, l ≥ 0, k ∈ N) and

g(z) are algebraically independent over C(z). Let

hξk(z) =
∞∑

n=1

γkξnzdn

1 + cγkzdn (ξ ∈ Q
×
, k ≥ 0).

Then

fξ0k(z) = hξ0(z)− hξk(z)

for every fixed ξ ∈ Q
×

and k ∈ N and each hξk(z) (ξ ∈ Q
×
, k ≥ 0) satisfies the

functional equation

hξk(z) = ξhξk(z
d) +

ξγkzd

1 + cγkzd
.

Suppose there exists a ξ 	= 1 such that fξ01(z), . . . , fξ0k(z) are linearly dependent

over C modulo C(z) for some k. If d = ξ = 2 and c = 1, we see by Remark 3
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that h20(z) = 2z2/(1 − z2) ∈ C(z) and so h21(z), . . . , h2k(z) are linearly dependent

over C modulo C(z); otherwise, so are hξ0(z), hξ1(z), . . . , hξk(z), which contradicts

Lemma 5, since Hξk(z) := ξ
−1γ−khξk(z) satisfies the functional equation

Hξk(z) = ξHξk(z
d) +

zd

1 + cγkzd
.

Therefore, if fξlk(z) (ξ ∈ Q
×
, l ≥ 0, k ∈ N) and g(z) = h10(z) are algebraically

dependent over C(z), then h10(z), f101(z), . . . , f10k(z) are linearly dependent over C

modulo C(z) for some k, and hence so are h10(z), h11(z), . . . , h1k(z), which contra-

dicts Lemma 5. Therefore the functions fξlk(z) (ξ ∈ Q
×
, l ≥ 0, k ∈ N) and g(z) are

algebraically independent over C(z) and so the values fξlk(γ) (ξ ∈ Q
×
, l ≥ 0, k ∈ N)

and g(γ) are algebraically independent, which completes the proof of the theorem.

Proof of Theorem 6. First we consider the case where α, β are multiplica-

tively dependent. Then there exist integers m, n, not both zero, with αmβn = 1.

Since α and β are field conjugates in the quadratic number field Q(
√
∆), βmαn = 1

must also hold. This implies

(αβ)m+n = (α/β)m−n = 1.

Since |α/β| > 1, we have m = n 	= 0, and hence αβ must be a real root of unity,

i.e., −A2 = αβ = ±1. Therefore this case is proved by Theorem 5 since (−A2)
dn

=

(−A2)
d (n ≥ 1).

Secondly we consider the case where α, β are multiplicatively independent. De-

fine

fξlk(z1, z2) =
∞∑

n=1

nlξn
(

zdn

1

1 + czdn

2

− γkzdn

1

1 + cγkzdn

2

)
(ξ ∈ Q

×
, l ≥ 0, k ∈ N),

where c = a−1b and γ = α−1β. Then

fξlk(α
−2, γ) = a2(αk − βk)

∞∑
n=1

nlξn

RdnRdn+k
.

Using (11) in the proof of Theorem 2 and letting k = 1, f(x) = dx, and g(z1, z2) =∑∞
n=1 z

dn

2 /(1 + cz
dn

2 ), we have

∞∑
n=1

(−A2)
n[logd n]

RnRn+1
=

1

a(α− β)
∞∑

n=1

βdn

Rdn

=
g(α−2, γ)

a2(α − β).
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Therefore it is enough to prove the algebraic independence of the values

fξlk(α
−2, γ) (ξ ∈ Q

×
, l ≥ 0, k ∈ N) and g(α−2, γ). We see that each fξ0k(z1, z2) (ξ ∈

Q
×
, k ∈ N) satisfies the functional equation

fξ0k(z1, z2) = ξfξ0k(z
d
1 , z

d
2) + ξ

(
zd
1

1 + czd
2

− γkzd
1

1 + cγkzd
2

)

and fξlk(z1, z2) (l ≥ 0) satisfy a system of functional equations of the form (9) for

every fixed ξ and k by Remark 4. We see also that g(z1, z2) satisfies the functional

equation

g(z1, z2) = g(z
d
1 , z

d
2) +

zd
2

1 + czd
2

.

Hence, noting that α−2, γ are multiplicatively independent, we see by Lemma 3 that

the values fξlk(α
−2, γ) (ξ ∈ Q

×
, l ≥ 0, k ∈ N) and g(α−2, γ) are algebraically

independent if the functions fξlk(z1, z2) (ξ ∈ Q
×
, l ≥ 0, k ∈ N) and g(z1, z2) are

algebraically independent over C(z1, z2). We assert that for every fixed ξ 	= 1 the

functions fξ0k(z1, z2) (k ∈ N) are linearly independent over C modulo C(z1, z2) and

so are the functions f10k(z1, z2) (k ∈ N) with g(z1, z2), which implies by Lemma 4

that the functions fξlk(z1, z2) (ξ ∈ Q
×
, l ≥ 0, k ∈ N) and g(z1, z2) are algebraically

independent over C(z1, z2).

Suppose there exists a ξ 	= 1 such that fξ01(z1, z2), . . . , fξ0k(z1, z2) are linearly

dependent over C modulo C(z1, z2) for some k. Thus there are complex numbers

c1, . . . , ck, not all zero, such that

c1fξ01(z1, z2) + · · ·+ ckfξ0k(z1, z2) ∈ C(z1, z2).

Since fξ01(z1, z2), . . . , fξ0k(z1, z2) ∈ C[[z1, z2]], by Lemma 6 there exist

A(z1, z2), B(z1, z2) ∈ C[z1, z2] such that

c1fξ01(z1, z2) + · · ·+ ckfξ0k(z1, z2) =
A(z1, z2)

B(z1, z2)
, B(0, 0) 	= 0.

Letting z1 = z2 = z, we have

c1fξ01(z, z) + · · ·+ ckfξ0k(z, z) ∈ C(z),

which contradicts Lemma 5 by the same way as in the proof of Theorem 5.

Therefore, if fξlk(z1, z2) (ξ ∈ Q
×
, l ≥ 0, k ∈ N) and g(z1, z2) are alge-

braically dependent over C(z1, z2), then g(z1, z2), f101(z1, z2), . . . , f10k(z1, z2) are lin-

early dependent over C modulo C(z1, z2) for some k. By the same way as above
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g(z, z), f101(z, z), . . . , f10k(z, z) are linearly dependent over C modulo C(z), which

again contradicts Lemma 5. Therefore the functions fξlk(z1, z2) (ξ ∈ Q
×
, l ≥

0, k ∈ N) and g(z1, z2) are algebraically independent over C(z1, z2) and so the val-

ues fξlk(α
−2, γ) (ξ ∈ Q

×
, l ≥ 0, k ∈ N) and g(α−2, γ) are algebraically independent,

which completes the proof of the theorem.
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