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Abstract. The paper provides the generalized inverse trinomial (GIT) distri-

bution as a univariate discrete distribution generated from a modified random

walk on the half-plane. The inverse distribution of the GIT with respect to the

cumulant generating function is also generated from a modified random walk

on the half-plane. The GIT includes twenty-two possible distributions in total.

Special cases are the binomial, negative binomial, shifted geometric, inverse bi-

nomial, inverse trinomial distributions. A subclass GIT8 is represented by the

independent sum of binomial and negative binomial. Compound or generalized

(stopped sum) distributions are studied and some properties of inflated models

are given.

Key words and phrases : Binomial, inflated model, inverse binomial, negative

binomial, random walk, shifted geometric distribution.

1. Introduction

The univariate inverse trinomial (IT) distribution (Shimizu and Yanagimoto, 1991;

Shimizu et al., 1997) is a discrete distribution generated from a modified random walk
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on the line. Here a particle starts from the origin and steps +1, 0, -1 with probabilities

p, q, r (p, q, r ≥ 0; p + q + r = 1) respectively until it first reaches the barrier n (positive

integer) at the xth step (Fig. 1). A random variable X for the number of steps x has the

proper IT, denoted by IT(n; p, q, r) in this paper, when p ≥ r. The probability generating

function (pgf) of IT(n; p, q, r) is provided by

Gn(t) = E(tX) =


1 − qt −

√
(1 − qt)2 − 4prt2

2rt




n

and the probability function (pf) by

fn(x) =
[(x−n)/2]∑

k=0

n

x




x

n + k, x − n − 2k, k


 pn+k qx−n−2k rk(1.1)

for x = n, n + 1, n + 2, . . ., where [a] in (1.1) denotes the integral part of the number a

and




x

x1, x2, x3


 = x!/(x1!x2!x3!), the trinomial coefficient under the assumption x =

x1 + x2 + x3. The IT(n; p, q, r) reduces to the inverse binomial (Yanagimoto, 1989) or

equivalently lost-games distribution (Kemp and Kemp, 1969) if q = 0 and to the negative

binomial if r = 0.

�
nO

��
���

q

� �
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Fig. 1. Random walk for the inverse trinomial on the line

Fig. 2 shows another view of the random walk for the IT on the half-plane (x ≥ 0).

Here a particle starts from the origin and, for non-negative integer x and integer y

(0 ≤ y ≤ n − 1), the particle moves from (x, y) to (x + 1, y + 1), (x + 1, y), (x + 1, y − 1)

with probabilities p, q, r respectively until it first reaches the barrier y = n. Notice that
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the particle moves from (x, y) to (x+1, y+1) and (x+1, y−1) directly with probabilities

p and r without calling at (x + 1, y). When the particle first reaches the barrier, the

coordinate x coincides with the number of steps in Fig. 1, and thus the IT is produced

from the random walk pictured in Fig. 2. This readily leads to a generalization of the IT if

probabilities from (x, y) to (x, y+1) and (x, y−1) are added to the transition probabilities

for the IT. The proposed model with transition probabilities p1, p2, p3, p4, p5 (pi ≥ 0 for

i = 1, . . . , 5;
∑5

i=1 pi = 1) and barrier at y = n (positive integer) is shown in Fig. 3. The

resulting family of distributions is called the generalized inverse trinomial distribution

and denoted by GIT(n; p1, p2, p3, p4, p5) or simply GIT.

�
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O x

absorbing barrier

Fig. 2. Random walk for the inverse

trinomial on the half-plane
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Fig. 3. Random walk for the generalized

inverse trinomial

Section 2 provides the pgf and pf of the GIT. The pgf is given by solving the cor-

responding difference equation with boundary conditions and the pf by expanding the

pgf. The proof is lengthy and is placed in Appendix A. The inverse distribution of the

GIT with respect to the cumulant generating function is studied in Section 3 with proof

in Appendix B. The GIT includes twenty-two possible distributions in total except one-

trasition cases; not only the negative binomial, inverse binomial, inverse trinomial but

also binomial and shifted geometric distributions. A subclass GIT(n; p1, p2, 0, 0, 0) is de-
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noted by GIT1(n; p1, p2) as an example. The sub number ranges from 1 to 22. Section 4

shows that a distribution GIT8(n; p1, p2, p3) of the GIT family is represented as the sum of

independent binomial and negative binomial. The reproductive property, moments and

approximations of GIT8(n; p1, p2, p3) are also studied in Section 4. Finally, Section 5 deals

with compound or generalized (stopped sum) distributions (Johnson, Kotz and Kemp,

1992). The inflated-parameter binomial, negative binomial and Poisson distributions by

Minkova (2002) are extended in the section.

2. GIT: Generalized inverse trinomial distribution

The concept of a modified random walk on the half-plane to generate the GIT is

introduced in Section 1 (Fig. 3). A particle starts from the origin and moves on the lattice

of the half-plane as follows. For non-negative integer x and integer y, the particle moves

from (x, y) to (x, y +1), (x+1, y+1), (x+1, y), (x+1, y−1), (x, y−1) with probabilities

p1, p2, p3, p4, p5 (pi ≥ 0 for i = 1, . . . , 5;
∑5

i=1 pi = 1) respectively. The process ends once

the particle reaches the barrier y = n (positive integer). The GIT(n; p1, p2, p3, p4, p5) is the

distribution of a random variable X which represents the coordinate of the horizontal

axis when the trials end. The probability function fn(x) of X satisfies the difference

equation

fn(x) = p1fn−1(x) + p2fn−1(x − 1) + p3fn(x − 1) + p4fn+1(x − 1) + p5fn+1(x)

with boundary conditions f0(0) = 1, fn(−1) = 0, n ≥ 0, f0(x) = 0, x ≥ 1.

The pgf Gn(t) of fn(x) is defined by

Gn(t) =
∞∑

x=0

fn(x)tx, n ≥ 1,
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which satisfies the recurrence relation

Gn(t) = p1Gn−1(t) + p2tGn−1(t) + p3tGn(t) + p4tGn+1(t) + p5Gn+1(t)

or

(p4t + p5)Gn+1(t) + (−1 + p3t)Gn(t) + (p1 + p2t)Gn−1(t) = 0,(2.1)

with boundary condition G0(t) = 1. If p1 + p2 > 0, then the solution of (2.1) is provided

by

Gn(t) =


1 − p3t −

√
(1 − p3t)2 − 4(p1 + p2t)(p4t + p5)

2(p4t + p5)




n

=


 2(p1 + p2t)

1 − p3t +
√

(1 − p3t)2 − 4(p1 + p2t)(p4t + p5)




n

(2.2)

for 0 ≤ t ≤ 1. Its proof is in Appendix A. Note that

Gn(1) =




1, p1 + p2 ≥ p4 + p5,

p1+p2

p4+p5
, p1 + p2 < p4 + p5,

from which the condition for which (2.2) gives a proper distribution is p1 + p2 ≥ p4 + p5

and then (2.2) is the pgf of the GIT. If p1+p2 < p4 +p5, (2.2) does not provide a pgf since

∑∞
x=0 fn(x) = (p1 + p2)/(p4 + p5) < 1. In this case the distribution is improper. However,

(2.2) with p1 + p2 < p4 + p5 gives a distribution if a probability 1− (p1 + p2)/(p4 + p5) is

added at x = ∞.

The pf of the GIT is provided by

fn(x) =
x∑

k=0

∞∑
l=0

m∑
i=0

n

n + x − i + k + 2l




n + x − i + k + 2l

n − i + k + l, i, x − i − k, k, l


(2.3)

×pn−i+k+l
1 pi

2 px−i−k
3 pk

4 pl
5,

which is obtained from the expansion of (2.2) about t, where m = min(n+k+l, x−k) and
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


x

x1, x2, x3, x4, x5


 = x!/(x1!x2!x3!x4!x5!) , which is the multinomial coefficient under the

assumption x = x1 + x2 + x3 + x4 + x5.

A model (Fig. 4) is considered by adding a stay probability p6 (0 < p6 < 1) from

(x, y) to (x, y) to the GIT model above, where
∑6

i=1 pi = 1. However, this model does

not produce an extended family of distributions different from the GIT. The reason is as

follows. Apparent new pf fn(x) and pgf Gn(t) satisfy the difference equation

fn(x) = p1fn−1(x) + p2fn−1(x − 1) + p3fn(x − 1) + p4fn+1(x − 1) + p5fn+1(x) + p6fn(x)

and recurrence relation

(1 − p6)Gn(t) = p1Gn−1(t) + p2tGn−1(t) + p3tGn(t) + p4tGn+1(t) + p5Gn+1(t)

respectively, from which division of both side by 1 − p6 leads to

Gn(t) = p
′
1Gn−1(t) + p

′
2tGn−1(t) + p

′
3tGn(t) + p

′
4tGn+1(t) + p

′
5Gn+1(t),

where p′i = pi/(1−p6) for i = 1, . . . , 5. This recurrence relation is the same type as (2.1).
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p6

n absorbing barrier

O x

y

x

Fig. 4. Random walk for the generalized inverse trinomial with added stay-probability

6



3. Inverse family of the GIT

When X is distributed as the GIT and its cumulant generating function (cgf) is

C(t) = log E(e−tX), the inverse distribution of the GIT is defined by the distribution

whose cgf is given by the inverse function C−1(t) of C(t). Since the cgf of GIT(n; p1, p2, p3, p4, p5)

is

C(t) = −n log


1−p3e

−t +
√

(1−p3e−t)2−4(p1+p2e−t)(p4e−t+p5)

2(p1+p2e−t)


 ,(3.1)

its inverse function is provided by

C−1(t) = log

[
p2e

−2t/n + p3e
−t/n + p4

−p1e−2t/n + e−t/n − p5

]
.(3.2)

Consider the following modified random walk. A particle starts from the origin and, for

intergers x and y (0 ≤ y ≤ m−1), moves from (x, y) to (x+1, y), (x+1, y+1), (x, y+1), (x−

1, y + 1), (x− 1, y) with probabilities p1, p2, p3, p4, p5 (pi ≥ 0 for i = 1, . . . , 5;
∑5

i=1 pi = 1)

respectively until it first reaches the barrier y = m (Fig. 5). If we denote a random

variable Z which represents the coordinate x of the horizontal axis when the trials end,

then a random variable Z/n in the case m = 1 has a distribution whose cgf is C−1(t) in

(3.2). See Appendix B for details.

�

�

� p1�
�

��
p2

�
p3

�
�

��
p4

�p5

m

O
x

y
absorbing barrier

Fig. 5. Random walk for the inverse family of the generalized inverse trinomial
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4. Subclasses of the GIT

4.1 Some examples

There exist twenty-two possible distributions of the GIT in total if one or some of

p1, p2, p3, p4, p5 are substituted by zero except one-transition cases where p1 = 1, p2 =

p3 = p4 = p5 = 0 and p2 = 1, p1 = p3 = p4 = p5 = 0. Table 1 summarizes the possibility

of the distributions. Some known classical distributions which belong to the family are

below. If p3, p4, p5 = 0 for example, the distribuiton is denoted by GIT1(n; p1, p2).

(a) Binomial GIT1(n; p1, p2), also denoted by B(n, p2).

Gn(t) = (p1 + p2t)
n,

fn(x) =




n

x


 px

2 pn−x
1

for x = 0, 1, . . . , n.

(b) Negative binomial GIT2(n; p1, p3), also denoted by NB(n, p3).

Gn(t) =

(
p1

1 − p3t

)n

,

fn(x) =




n + x − 1

x


 px

3 pn
1

for x = 0, 1, . . .

(c) Shifted geometric GIT3(1; p2, p3).

Gn(t) =

(
p2t

1 − p3t

)
,

fn(x) = p2 px−1
3
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for x = 1, 2, . . .

(d) Inverse binomial GIT6(n; p2, p4).

Gn(t) =

[
1 −√

1 − 4p2p4t2

2p4t

]n

,

fn(x) =
n

x




x

x−n
2


 p

n+x
2

2 p
x−n

2
4

for x = n, n + 2, n + 4, . . .

(e) Inverse trinomial GIT11(n; p2, p3, p4).

Gn(t) =


1 − p3t −

√
(1 − p3t)2 − 4p2p4t2

2p4t




n

,

fn(x) =
[(x−n)/2]∑

k=0

n

x




x

n + k, x − n − 2k, k


 pn+k

2 px−n−2k
3 pk

4

for x = n, n + 1, n + 2, . . .

4.2 Properties of GIT8(n; p1, p2, p3)

The distribution GIT8(n; p1, p2, p3) generalizes the binomial, negative binomial and

shifted geometric distributions. Actually the pgf of GIT8(n; p1, p2, p3)

Gn(t) =

(
p1 + p2t

1 − p3t

)n

(4.1)

reduces to the binomial pgf if p3 = 0, to the negative binomial pgf if p2 = 0 and to the

shifted geometric pgf if n = 1, p1 = 0. The pf of GIT8(n; p1, p2, p3) is given by

fn(x) =
min(n,x)∑

i=0

n

n + x − i




n + x − i

n − i, i, x − i


 pn−i

1 pi
2 px−i

3(4.2)

9



Table 1. Subclasses of the generalized inverse trinomial

2-transition

binomial

�
���

1

negative
binomial

�
�

2

shifted
geometric

��
��

3

�

�
��
4

1-point
distribution

�

	
5

inverse
binomial

�
��

�
��
6

�
��

	
7

3-transition

��
���

8

�
���

�
��
9

�
���

	
10

inverse
trinomial

��
��

�
��

11

��
��

	
12

�
�

�
��

13

�
�

	
14

�

�
��	

15

�
��

�
��	

16

4-transition

��
���

�
��

17

��
���

	
18

�
���

�
��	

19

�
�

�
��	

20

��
��

�
��	

21

5-transition

��
���

�
��	

22

for x = 0, 1, . . . Some properties of GIT8(n; p1, p2, p3) are summarized below except for

those of compound distributions, which are studied in Section 5. Here X indicates a

random variable having GIT8(n; p1, p2, p3).

(a) Reproductive property. If X1, X2 are independent random variables and distributed

as GIT8(n; p1, p2, p3) and GIT8(m; p1, p2, p3) respectively, then the sum X1 + X2 is dis-

tributed as GIT8(n + m; p1, p2, p3).

(b) The random variable X is expressible as the sum of two independent random variables

X1 and X2, where X1 has the binomial B(n, p2/(p1 + p2)) and X2 the negative binomial

NB(n, p3).
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(c) Poisson approximation. The distribution GIT8(n; p1, p2, p3) goes to a Poisson distri-

bution with parameter λ2 +λ3 as n tends to infinity remaining the relation np2 = λ2 and

np3 = λ3.

(d) The rth descending factorial moment of X is

E(X(X − 1) · · · (X − r + 1)) =
n

(p1 + p2)r

r∑
i=0




r

i




(n + r − i − 1)!

(n − i)!
pi

2p
r−i
3

for r ≥ 1.

(e) The mean and variance of X are obtainable from (d). They are also obtained by

using (b). Actually

E(X) = E(X1 + X2) = n
p2

p1 + p2
+ n

p3

1 − p3
= n

p2 + p3

p1 + p2
,

V (X) = V (X1 + X2) = n

(
p1

p1 + p2

)(
p2

p1 + p2

)
+ n

p3

(1 − p3)2
= n

p1p2 + p3

(p1 + p2)2
,

from which the index of dispersion (ID) is

ID =
V (X)

E(X)
=

p1p2 + p3

(p1 + p2)(p2 + p3)




> 1, p3 > p2,

< 1, p3 < p2.

If p2 = p3, then ID= 1. Note that GIT8(n; 1− 2p, p, p) with 0 < p < 1/2 is not a Poisson

distribution, but its ID is unity.

(f) Normal approximation. The distribution of (X − E(X))/
√

V (X) goes to a standard

normal distribution as n tends to infinity.

(g) The pf fn(x) of X satisfies the recurrence relation

fn(x) =

(
a +

b

x

)
fn(x − 1) + c

(
1 − 2

x

)
fn(x − 2)

for x ≥ 2 with initial conditions fn(0) = pn
1 , fn(1) = npn−1

1 (p1p3+p2), which is an example

of Sundt’s (1992) recursion, where a = (p1p3−p2)/p1, b = (n(p1p3 +p2)− (p1p3−p2))/p1,

11



c = (p2p3)/p1 with p1 > 0.

(h) The rth moment, µ
′
r = E(Xr), of X about zero satisfies the recurrence relation

µ
′
r =

r−1∑
j=0




r − 1

j


 {(a + 2r−j−1c)µ

′
j+1 + (a + b)µ

′
j}

for r ≥ 1 with initial condition µ
′
0 = 1 and the understanding that 0! = 1, where a, b

and c are given in (g). This is proved by using the recurrence relation of the pf in (g) as

follows

µ
′
r =

∞∑
x=1

xrf(x)

= f(1) +
∞∑

x=0

(x + 2)rf(x + 2)

=

(
a +

b

1

)
f(0) +

∞∑
x=0

(x + 2)r

(
a +

b

x + 2

)
f(x + 1) +

∞∑
x=0

(x + 2)rc
(
1 − 2

x + 2

)
f(x)

=
∞∑

x=0

(x + 1)r

(
a +

b

x + 1

)
f(x) +

∞∑
x=0

(x + 2)rc
(
1 − 2

x + 2

)
f(x)

=
∞∑

x=0

(x + 1)r

(
ax + (a + b)

x + 1

)
f(x) +

∞∑
x=0

(x + 2)rc
(

x

x + 2

)
f(x)

=
r−1∑
j=0

∞∑
x=0




r − 1

j


 {axj+1 + (a + b)xj}f(x) +

r−1∑
j=0

∞∑
x=0




r − 1

j


 2r−1−jcxj+1f(x).

5. Compound distributions

5.1 Inflated model

This section studies the distribution of the random variable S = X1 + · · · + XN

with the understanding that S = 0 when N = 0, where X1, X2, . . . are independent and

identically distributed (iid) as GIT8(1; q1, q2, q3), N as GIT(n; p1, p2, p3, p4, p5), and N is

independent of X1, X2, . . . Let GX(t) and GN(t) denote the pgf’s of Xi (i = 1, 2, . . .) and
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N respectively. Then, from (4.1) and (2.2), the pgf GS(t) of S is provided by

GS(t) = GN (GX(t))(5.1)

=


1 − α3t +

√
(1 − α3t)2 − 4(α1 + α2t)(α4t + α5)

2(α1 + α2t)



−n

,

which is the pgf of GIT(n; α1, α2, α3, α4, α5) for 0 ≤ t ≤ 1, where α1 = (p1 + p2q1)/(1 −

p3q1), α2 = (−p1q3 +p2q2)/(1−p3q1), α3 = (p3q2 + q3)/(1−p3q1), α4 = (p4q2−p5q3)/(1−

p3q1), α5 = (p4q1 + p5)/(1 − p3q1). Note that the range of parameters is extended to

α1 + α2 + α3 + α4 + α5 = 1, −1 ≤ α2, α4 ≤ 1, 0 ≤ α1, α3, α5 ≤ 1, α1α3 + α2 ≥ 0,

α4 + α3α5 ≥ 0, α1 + α2 > 0 and α1 + α2 ≥ α4 + α5, whereas pi ≥ 0 (i = 1, . . . , 5),

∑5
i=1 pi = 1, p1 + p2 > 0, p1 + p2 ≥ p4 + p5, and qj ≥ 0 (j = 1, 2, 3),

∑3
j=1 qj = 1.

Thus (5.1) is an inflated model of the GIT. As a particular case, if X1, X2, . . . are iid as

GIT8(1; q1, q2, q3) and N as GIT8(n; p1, p2, p3), and N is independent of X1, X2, . . ., then

S = X1 + · · ·+ XN has an inflated GIT8(n; γ1, γ2, γ3), where γ1 = (p1 + p2q1)/(1− p3q1),

γ2 = (−p1q3 +p2q2)/(1−p3q1), γ3 = (p3q2 + q3)/(1−p3q1), γ1 +γ2 +γ3 = 1, −1 ≤ γ2 ≤ 1,

0 ≤ γ1, γ3 ≤ 1. This shows that even the inflated GIT8 is closed under the generalization

by the inflated GIT8.

5.2 A comment

Minkova (2002) studied the family of inflated-parameter power series distributions

or a shifted geometric distribution generalized by the generalizing power series distribu-

tion. If X has a shifted geometric distribution and N the Poisson, binomial, negative

binomial, logarithmic series as a member of the power series distributions, then the dis-

tribution of S = X1 + · · · + XN is called the inflated-parameter Poisson (IPo), binomial

(IBi), negative binomial (INB), logarithmic series respectively. The inflated GIT8 in

13



Section 5.1 extends the IPo, IBi, INB because the GIT8 includes the shifted geometric

distribution GIT3(1; q2, q3) as well as the binomial GIT1(1; p1, p2) and negative binomial

GIT2(1; p1, p3). The inflated GIT in Section 5.1 is more extended.
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Appendix A: The probability function of the GIT

The pf of the GIT is found from the difference equation given by (2.1)

(p4t + p5)Gn+1(t) + (−1 + p3t)Gn(t) + (p1 + p2t)Gn−1(t) = 0

with boundary condition G0(t) = 1. We look for particular solutions Gn(t) of the form

Gn(t) = {λ(t)}n. Substitution of this expression into (2.1) gives the quadratic equation

(p4t + p5)λ
2(t) + (−1 + p3t)λ(t) + (p1 + p2t) = 0,(A.1)

which has the two roots

λ1(t) =
1 − p3t −

√
(1 − p3t)2 − 4(p4t + p5)(p1 + p2t)

2(p4t + p5)
,

λ2(t) =
1 − p3t +

√
(1 − p3t)2 − 4(p4t + p5)(p1 + p2t)

2(p4t + p5)
.

The range of t for which (1−p3t)
2−4(p4t+p5)(p1 +p2t) ≥ 0 is 0 ≤ t ≤ (b−√

b2 − ac)/a,

with a = p2
3−4p2p4, b = p2 +2p2p5−4p1p4, c = 1−4p1p5 and (b−√

b2 − ac)/a > 1. Since
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0 < λ1(t) < 1 and λ2(t) > 1 for 0 < t < 1, {λ2(t)}n is inappropriate for a solution and

Gn(t) = B(t){λ1(t)}n is a solution to (A.1). From the boundary condition G0(t) = 1, we

obtain B(t) = 1. Hence the solution is

Gn(t) = {λ1(t)}n.(A.2)

The pf is provided by expanding (A.2) about t. From the formula (Abramowitz and

Stegun, 1972 [15.1.13])

2F1

(
a,

1

2
+ a; 1 + 2a; z

)
= 22a{1 + (1 − z)1/2}−2a

for |z| < 1 where 2F1 stands for the Gauss hypergeometric function, (A.2) is transformed

into

Gn(t) =


1 − p3t +

√
(1 − p3t)2 − 4(p4t + p5)(p1 + p2t)

2(p1 + p2t)



−n

=

(
1 − p3t

2(p1 + p2t)

)−n

1 +

√√√√1 − 4(p1 + p2t)(p4t + p5)

(1 − p3t)2



−n

=

(
1 − p3t

2(p1 + p2t)

)−n

2F1

[
n

2
,
n + 1

2
; n + 1;

4(p1 + p2t)(p4t + p5)

(1 − p3t)2

]

=

(
1 − p3t

2(p1 + p2t)

)−n ∞∑
k=0

(
n
2

)
k

(
n+1

2

)
k

(n + 1)k k!

(
4(p4t + p5)(p1 + p2t)

(1 − p3t)2

)k

,

where (x)i = x(x + 1) · · · (x + i − 1) = Γ(x + i)/Γ(x). From the duplication formula for

the gamma function

Γ(2z) =
1

(2π)1/2
22z−1/2Γ(z)Γ(z + 1/2),

we obtain

Gn(t) =
∞∑

k=0

n

n + k




n + 2k − 1

k


 (p1 + p2t)

n+k(p4 + p5)
k

(
1

1 − p3t

)n+2k
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=
∞∑
j

∞∑
k

k∑
l

n+k∑
i

n

n + 2k + j




n + 2k + j

n + k − i, i, j, k − l, l


 pn+k−i

1 pi
2p

j
3p

k−l
4 pl

5t
i+j+k−l,

which leads to

∞∑
x

∞∑
k′

∞∑
l

n+k
′
+l∑

i

n

n + 2k′ + 2l + j




n + 2k
′
+ 2l + j

n + k
′
+ l − i, i, j, k

′
, l


 pn+k

′
+l−i

1 pi
2p

j
3p

k
′

4 pl
5t

i+j+k
′

after the replacement k − l = k
′
. The coefficient of tx, where x = i + j + k

′
, in Gn(t) is

(2.3), the pf of the GIT.

Appendix B: The inverse distribution of the GIT

We consider the distribution derived from the modified random walk defined in Sec-

tion 3 (Fig. 5). The difference equation of the pf is

hm(x) = p1hm(x − 1) + p2hm−1(x − 1) + p3hm−1(x) + p4hm−1(x + 1) + p5hm(x + 1)

with initial condition h0(x) = 1 if x = 0, 0 if x �= 0, and the recurrence relation of the

corresponding pgf is

Hm(t) = p1tHm(t) + p2tHm−1(t) + p3Hm−1(t) + p4t
−1Hm−1(t) + p5t

−1Hm(t)

with initial condition H0(t) = 1. From this we obtain the pgf

Hm(t) =

(
p2t

2 + p3t + p4

−p1t2 + t − p5

)m

.

On the other hand to get the inverse of (3.1), we set log E(e−tX) = s. Then

1 − p3e
−t −

√
(1 − p3e−t)2 − 4(p1 + p2e−t)(p4e−t + p5)

2(p1 + p2e−t)
= e−s/n.

If we set e−t = T and e−s/n = S, then we have

0 = S2(p2
1 + 2p1p2T + p2

2T
2) + S(p2p3T

2 + p1p3T − p2T − p1)(B.1)
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+(p2p4T
2 + p1p4T + p2p5T + p1p5)

= p2
2

(
S2 +

p3

p2

S +
p4

p2

)
T 2 + p1p2

{
2S2 +

(
p3

p2

− 1

p1

)
S +

(
p4

p2

+
p5

p1

)}
T

+p2
1

{
S2 − 1

p1
S +

p5

p1

}

= p2
2(S

2 + aS + c)T 2 + p1p2

{
2S2 + (a − b)S + (c + d)

}
T + p2

1(S
2 − bS + d)

= AT 2 + BT + C,

where a = p3/p2, b = 1/p1, c = p4/p2, d = p5/p1, A = p2
2(S

2 + aS + c), B = p1p2(2S
2 +

(s − b)S + (c + d)), C = p2
1(S

2 − bS + d). The solution of (B.1) is

T =
−B ±√

B2 − 4AC

2A

with B2 − 4AC = p2
1p

2
2 {(a + b)S + (c − d)}2 ≥ 0. We see that

T =
−p1p2{2S2 + (a − b)S + (c + d)} ± p1p2{(a + b)S + (c − d)}

2(p2
2S

2 + p2p3S + p2p4)

=
−p1S

2 + S − p5

p2S2 + p3S + p4
,
−p1p2S

2 − p1p3S − p1p4

p2
2S

2 + p2p3S + p2p4

and the second solution is inappropriate since it is negative. Thus we obtain (3.2).
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