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On the Littlewood-Paley g function
and the Lusin area function on real rank 1
semisimple Lie groups

Takeshi KAWAZOE *

Abstract

Let G be a real rank one connected semisimple Lie group with
finite center. Using the spherical Fourier transform and the classical
one, we shall consider a pull back on G of H*(R) and introduce a real
Hardy space W_(Mc, (H'(R))) on G as a subspace of L'(G//K). We
also define the Lusin area function Sy (f) and the Littlewood-Paley ¢
function g(f) on G as analogues of the classical theory. We show that
Sy and g are bounded from W_(Mc¢, (H'(R))) to L'(G//K).

1. Notation. Let GG be a real rank one connected semisimple Lie group
with finite center and G = KAN = K AT K respectively an Iwasawa and the
Cartan decompositions of GG. Let a be the Lie algebra of A and F = a* the
dual space of a. Let v be the positive simple root of (G, A) determined by N
and H the unique element in a satisfying v(H) = 1. Let m; and my denote
the multiplicities of v and 2y respectively. We put

m1+m2—1 m2—1

=T P

p=a+p+1.

We parameterize each element in A, a, and F as a, = exp(zH), H, and
zvy (z € R) respectively, and identify A, a, and F with R. In this paper we
shall treat only K-bi-invariant functions on G. Since A" = {a,;z > 0}, all
K-bi-invariant functions can be identified with even functions on R.

Let dg = e***dkdzdn = A(z)dkdrdk' denote the decompositions of a
Haar measure dg on G respectively corresponding to the Iwasawa and Cartan
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decompositions of G, where dk, dx, dn denote Haar measures on K, A, N
respectively, and A(z), = > 0, is explicitly given as

A(z) = 2% (shz)?** (cha)?P L,

We extend this function on R as an even function on R. Let LP(G//K) de-
note the space of K-bi-invariant functions on G' with finite LP-norm: || f||, =

(S5 1f (2)|PA(z)dz) 7 and L\ .(G//K) the space of locally integrable, K-
bi-invariant functions on G. Let C°(G//K) be the space of compactly sup-
ported C'*°, K-bi-invariant functions on G. We denote by f the spherical
Fourier transform of f and by f x h the convolution of f,hin L'(G//K) (cf.
2], [9, Chap.9]). Similarly, we denote by F' and F @ H the Euclidean Fourier
transform of F' and the convolution of F, H in L'(R) respectively.

2. Real Hardy spaces. We shall introduce a real Hardy space on G
by using a radial maximal function on G. Let ¢ be a positive compactly
supported C*°, K-bi-invariant function on G' with ||¢||; = 1. We define the

dilation ¢y, t > 0, of ¢ as

bu(s) = %ﬁA (%) s (%) (1)

Since this dilation has the same properties as in the Euclidean case; ||¢y||; =
|¢||1 and {¢y;t > 0} approximates the identity in LP(G//K), 0 < p < oo, it
is quite natural to introduce a radial maximal function Myf on G as

(Myf)(g) = sup |(f*d)(9)l, g€G.

0<t<oo

As shown in [3, Theorem 3.4], this maximal operator M, satisfies the so-
called maximal theorem: A/, is bounded on LP(G//K) (1 < p < o0) and
satisfies the weak type L' estimate. Analogously as the definition of the real
Hardy space H'(R) on R, we define the real Hardy space on G by

HY(G//K) ={f € Li,(G//K) ; Myf € L'(G//K)}

and the norm by ||f||g (@) = ||[Msf||1. Then HY(G//K) C L'(G//K) (see
[5, §4]). For f € C°(G//K), we define the Abel transform F}, s € R, of f
as

Fi(z) = e”(H's)’”/ f(agn)dn.
N

For simplicity, we put W, (f) = F } and we denote by W_ the inverse operator
of W,. As shown in [6, §3], W, are explicitly given by a composition of the
generalized Weyl type fractional integral transforms. We recall (cf. [6, (3.7)])
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that both f and (F7)~ are holomorphic functions on C of exponential type
and they satisfy

f+isp) = (Fp)~(\), AeC. (2)
Let C()) denote Harish-Chandra’s C-function (cf. [6, (2.6)]) and M, the
Euclidean Fourier multiplier corresponding to C,(A\) = C'(—(A+1ip)), that is,

M, (F)~(A) = C(= (A +ip))F(N). We define
W_(H'(R)) = {f € L,.(G//K) ; W,(f) € H'(R)}

and the norm by || fllw_ = [[W4(f)||m:(r)- We also define W_(M¢, (H'(R)))
by replacing the condition that W, (f) € H'(R) in the above definition with
Mg, oW, (f) € H'(R) and the norm by [|fll;,0, = [|Mc, o We(f)lmm).

We note that fx ¢, = W_ (Wi (f*x¢) =W _(F®W,(¢)), where F =
W (f). Hence the H'-norm || f||g1(q) of f on G may be related to an L'-
norm of F'=W,(f) on R. Actually,let « — 3 =[a— ]+ and 8+ 1/2 =
[8+1/2] + 6", where [ ] is the Gauss symbol, and set n = [ — ]+ [3 — 1/2]
and D = {0,6,0",0 + 6'}. Then it follows from [5, Theorem 4.6] that

Il ~ D D IMEE o WE L (F) (@) (tha)™ | 1w, (3)

m=0¢eD

where VVE{7 is the Weyl type fractional integral transform on R and M, f is
the maximal operator on R defined by

(MGIF)(x) = sup |(F®W,(d)(2)l, =€R.

0<t<oo

From the equivalence (3) it follows that
W_(Mc,(H'(R))) C HY(G//K) c W_(H'(R))

(see [5, Remark 4.7(1) and Corollary 4.3]).

3. Estimate of W_. We retain the previous notations. In the process
to deduce (3) we use a relation between the Weyl type fractional integral
transforms W_ on G and WEY on R;. As shown in [5, Proposition 4.5,
Lemma 4.4], if F' is smooth, then W_(F') is estimated as follows. For z > 0,

W (F)@)] < A3 (IWRg(F)@)

m=0£eD

T (P el its), @
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where A, 0(z,s) =0, Ame(r,s) > 0 and there exists a constant ¢ such that
Jy Ame(x, s)dz < ¢ for all s > 0. More precisely, Ap, ¢(z, s) is dominated by
X[0,00) (8 — Z)X[0,1](8) Or B ¢(s — x), where B, ¢(z) is integrable on R .

Let f € W_(Mc,(H'(R))) and put F = W,(f). By the definition,
ng(F) belongs to H'(R). We note that C(—(\ +ip)) ~ (1 + |\|)~ (w+1/2)
(cf. [3, Theorem 2]) and (i)\)?/(A +ip)®+H2 0 < v < a + 1/2, satisfies the
Hormander condition (cf. [8, p.318]). Therefore, W (F) belongs to H'(R)
(cf. [8, p.363]). Since m+& <n+0+d =a+ 1/2 each w (m+£)(F) in (3)
and (4) belongs to H'(R), that is,

W) (Pl wy < ell 1l (5)

forall0 <m <nand¢ € D.
4. g and area functions. Let p; denote the Poisson kernel on G, which is
a K-bi-invariant function on G given by

pe(N) = e VA

We define the Littlewood-Paley ¢ function g(f) on G, f € C*(G//K), as

. 2 1/2
g(f)(fr)=</0 g o Cf) .

As shown in [1], [7] and [8], g satisfies the maximal theorem. We define the
Lusin area function S(f) on G as an analogue of the classical theory (cf. [9,
p.314]). Let B(t) denote the ball on G with radius ¢ centered at the origin
and |B(t)| the volume of the ball. Let x () denote the characteristic function
of B(t) and put

1
xe(r) = B B0 (2).

We define the Lusin area function S(f) on G as

o dt
S()() = (/ o t)

As shown in [7], S is bounded on L?(G//K), 0 < p < oo. We also define the

modified one as
1/2
dt
dy_ )
(/ /{U )>o(z)} ) t)

0
tapt*f()

t—f * py(y)




KSTS/RR-05/001
March 28, 2005

where o is the distance function on G (cf. [10, 8.1.2]). Our main theorem is
the following.

Theorem. g and Sy are bounded from W_(Mc,(H'(R))) to L'(G//K).
5. Sketch of the proof. We suppose that f € W_(Mc,(H'(R))) and put

F =W,(f). For simplicity we denote K; = t(0/0t)p;. Since t(0/0t)f * p; =
[ K, =W (W (f*Ky))=W_(FxW,(K;)), it follows from (4) that

< [ (g e wmEY)

m=0 ¢eD
because
1
0o 0o 0o Zdt /2
H(s,t)A(x,s)ds| — dx
0 0 T 3
00 00 00 dt 1/2
< / / (/ |H(s,t)|2—> Az, s)dsdz
0 s 0 3
%) %) dt 1/2 s
:/ (/ |H(s,t)|2—> /A(x,s)dxds
0 0 t 0
o0 o0 dt 1/2
< c/ (/ |H(s,t)|2—> ds.
0 0 t
We here put

wmimie = ([T mewawrt) ", e,

Then
Dl < eSS / " (VR o (F))(w)de.

m=0£eD

Since each Wf‘(erg)(F) belongs to H'(R) (see (5)), it follows from the

(1, 00, 1)-atomic decomposition of H'(R) that it is enough to show that there
exists a constant C' such that for all (1, 00, 1)-atoms A on R,

/000 gr(A)(z)dz < C. (6)

Obviously, we may suppose that A is centered, that is, A is supported on
[—r,7], |Alloe < (2r) ' and [ A(z)a*dz =0, k = 0,1. First we shall prove
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that ggr is bounded on L?(R): For H € L*(R),

o0 dt
mammsztA|W®wmmmaR—
x L dt

= W e T

o . i dt
- A 1) - 1/A0 + 2ip)e VAR 2,
_ / ()2 ( / t|A(A+27;p)|e—2t%VA<A+2iP>dt> i\

00 0

= / |H(\)|? ( /0 trthﬁCOSw/Z)dt> d\

c/ V2N = ¢ H|[,

o0

IN

where we set A(\ + 2ip) = re? and we used the fact that cosf > 0 and

cos(0/2) = \/(cosf + 1)/2 > 1/+/2. Hence, by Schwarz’ inequality, we have
2r
/ gr(A) (2)d < e All ey (2r) 2 < C (7)
0

Next we suppose that z > 2r. We recall W, (K;)(x) = te’*(0/0t)F) ()
and F (z) = Ct(t*+2%) 7' /2K, (p(t*+2%)'/?), where K, is the modified Bessel
function (see [1], p. 289). Since K, (z) = O(z~"/2e7%) if  — oo, and O(z™")
ifx —0,and z —y >x —r>rif |y| <r, it follows that

AW ()@ = | [~ AWK~ )iy
< c/oo |A(y) |2 (2 + (x — y)2)—3/4—1/2—56_,,@2+(x_y)2)1/zep(x_y)dy
< ct(t* + (v — T)2)73/4 < ct(z — r)*?’/?, )

where e = 0if t* + (x —y)?> > 1, and € = 1/4if752 (x—y) < 1. Actu-
ally, when € = 0, we used the fact that ¢2fe—P(t*+(@— e , ! € R, has the
maximum O((z — y)le @) at t ~ (zv — y)'/2. Thereby, letting ¢ = 1,
we see that t2(t2 + (z — y)Z)*1/2€*P(t2+($fy)2)1/2 < 2z — y)—1efp(thr(anfy)%l/2
< ce Ty, When € = 1/4, we used the fact that t?(t2 + (v — y)?)~3/* <
(2 + (z — y) )~! < 1. Next we note the moment condition of A, which im-
plies that B(z) = [*__ [* _ A(v)dvdu is supported on [—r,r] and || B|| < 2r.
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Since (d/dx)*(K,(z)e*) = O(z~Y27%) if + — oo, and O(z7**) if z — 0, in-
tegration by parts yields that

|A @ Wi (K) ()]
< o[ IBWIE it - )+ - o))
h X (% + (z — y)2)—3/4—1/2—2—6e—p(t2+(w—y)2)1/2ep(x—y)dy
< et (r—r)) < er*t P o —r) 2 9)

where ¢ = 0 if t? + (z —y)? > 1, and e = 5/4 if 1 + (v — y)? < 1. Actually,
when € = 0, letting £ = 5/2, we see that *(£2 + (x — y)2?) /4¢P Ha=1))"/?
< e ?@=¥) and when ¢ = 5/4, we have ¢*(t> 4 (z — y)?)™>/2 < 1. Hence, from
(8) and (9) we see that

/0 T A® WL (K)()

VT 00
c(x — r)3/ tdt + er'(x — 7")4/ todt
0

cr(z —r) 2 +er?(o — 7")’4

t

IN

IN

and thus

/200 gr(A)(z)dx < c/oo(rl/Z(x — 7“)73/2 +r(r—r1r) Hdx < C. (10)

r 2r
Then (7) and (10) imply the desired estimate (6).
As for the area function S, (f), it follows from (4) that it is enough to
show that for all centered (1,00, 1)-atoms A on R,

/oo SL(A)(z)dz < C and /oo S2(A)(z)dz < C, (11)

0

<) H @ W (K) )Py D) " A)

where

and

sum@ = ([ [ etaka s

<[ T H o WL () (5)Aly, s)ds| dy™

dy?>1/2A(m).
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Here A(y,s) > 0 and [ A(y, s)dy < c for all s > 0. More precisely, A(y, s)
is dominated by x[o,00)(5 — y)X[ 1)(s) or B(s — y), where B(y) is integrable
on R,. First we shall estimate Sk (A). Since A(y)™! < A(z) ' ify > ||
and [ [ xi(agka, ") dkA(z)dx = [, x:(g9ay)dg = ||x:|ls = 1, it follows that
for H € C*(R),

1SR (H) 122 r)
< / / (/ /Xt azkay " )dkA(z )dx> \H & W, (K,)(y )|dyﬁ
= lgr(H)|72(x,

and thus, Sg is bounded on L*(R). Then fzr Sk (A)(z)dz < C as before. We
suppose that > 2r. We recall that, if y > |x| then A(y)™'A(z)? < A(y)
and |A® W, (K;)(y)| is dominated by t(z —r)~*/? and r?t~2(x — r) 2. Since
Ix¢|li = 1, as in the case of gr, Sk(A)(x) is estimated as r'/?(z — r)=3/2 +
r(z —r)"% and then [ S§(A)(z)dz < C. Therefore, we can deduce (11) for
Sk. Next we shall estimate Sg. As before, we have

ISR (H) 12y < II/ gr(H)(s)A(y, s)ds|| 7w,
Y

When A(y,s) is dominated by x0,0)(5 — ¥)X[0,11(5), we see that 0 < |z| <
y < s <1 and thus,

ISy < ([ omUEDEIAC myds) < clon () my

by Schwarz’s inequality. When A(y, s) is dominated by B(s — y), we change
the variable s to s +y and thus,

ISR (H) |72y < ||/0 gr(H)(s +y)B(s)ds| 12w,

0 2
cllgm (H) 132z / B(s)ds )" < cllgr(H) |22z,

IN

suppose that x > 2r. When A(y, s) is domlnated by X, )(s — ¥)X[0,1](5),
we see that 2r < x <y < s <1 and thus, A® W+(Kt)( is estimated as
t(x —r)=32 and r?t~2(x — r)~2. Moreover, A(y)'A(z)? < A(y), ||x|: =1,
and fyoo A(y, s)ds < 1. Therefore, S (A)(x) is dominated by r'/2(z—r)=3/2 +
r(z —r)~% and thereby, [, Sk(A)(z)dz < C as in the case of gr(A). When
A(y, s) is dominated by B(s — y), we change the variable s to s + (y — z).

Hence S% is bounded on L%*(R) and f% SE(A)(z)dx < C as before. We
)
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We recall that, since s + (y —x) > s >z > 2r, |[A® W (K;)(s + (y —
x))| is dominated by H(t,s,r) = min{t(s — r)~%/2,r*t=%(s — r)~2}, which is
independent of z,y. Therefore, noting A(y) *A(z)* < A(y), [|x:|l: =1 and
A(y,s+ (y —x)) < B(s — x), we can deduce that

t

s < ([

Since [|H(t,s,r)*dt/t <r(s—7)>+r?(s — r)~* as before, it follows that

2 dt>1/2‘

/:O H(t,s,r)B(s — x)ds

" S2(A) (x)da

IN

/:f)o /;0(7«1/2(5 =) 4 r(s — 1) *)B(s — 2)dsdz
— /Z:O(rl/Q(S — )2 4 (s —1)7?) (/28 B(s — x)da;) ds < C.

T

Therefore, we have (11) for S&. This completes the proof of the theorem.

Remark. We put D, = W_ o (d/dx) o W,. Then the operators ¢’ and
S’ defined by replaced t(d/dt)p, in the definitions of ¢ and S} with tDyp,
are also bounded from W_(M (H'(R))) to L'(G//K). Moreover, in the
definition of S, we may replace x; with ¢, in (1).
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