

Research Report

KSTS/RR-05/001

Mar. 28, 2005

**On the Littlewood-Paley g function
and the Lusin area function on real rank 1
semisimple Lie groups**

by

Takeshi Kawazoe

Takeshi Kawazoe
Department of Mathematics
Keio University at Fujisawa

Department of Mathematics
Faculty of Science and Technology
Keio University

©2005 KSTS
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan

On the Littlewood-Paley g function and the Lusin area function on real rank 1 semisimple Lie groups

Takeshi KAWAZOE *

Abstract

Let G be a real rank one connected semisimple Lie group with finite center. Using the spherical Fourier transform and the classical one, we shall consider a pull back on G of $H^1(\mathbf{R})$ and introduce a real Hardy space $W_-(\mathcal{M}_{C_\rho}(H^1(\mathbf{R})))$ on G as a subspace of $L^1(G//K)$. We also define the Lusin area function $S_+(f)$ and the Littlewood-Paley g function $g(f)$ on G as analogues of the classical theory. We show that S_+ and g are bounded from $W_-(\mathcal{M}_{C_\rho}(H^1(\mathbf{R})))$ to $L^1(G//K)$.

1. Notation. Let G be a real rank one connected semisimple Lie group with finite center and $G = KAN = K\overline{A^+}K$ respectively an Iwasawa and the Cartan decompositions of G . Let \mathfrak{a} be the Lie algebra of A and $\mathcal{F} = \mathfrak{a}^*$ the dual space of \mathfrak{a} . Let γ be the positive simple root of (G, A) determined by N and H the unique element in \mathfrak{a} satisfying $\gamma(H) = 1$. Let m_1 and m_2 denote the multiplicities of γ and 2γ respectively. We put

$$\alpha = \frac{m_1 + m_2 - 1}{2}, \quad \beta = \frac{m_2 - 1}{2}, \quad \rho = \alpha + \beta + 1.$$

We parameterize each element in A , \mathfrak{a} , and \mathcal{F} as $a_x = \exp(xH)$, xH , and $x\gamma$ ($x \in \mathbf{R}$) respectively, and identify A , \mathfrak{a} , and \mathcal{F} with \mathbf{R} . In this paper we shall treat only K -bi-invariant functions on G . Since $A^+ = \{a_x; x > 0\}$, all K -bi-invariant functions can be identified with even functions on \mathbf{R} .

Let $dg = e^{2\rho x} dk dx dn = \Delta(x) dk dx dk'$ denote the decompositions of a Haar measure dg on G respectively corresponding to the Iwasawa and Cartan

*Supported by Grant-in-Aid for Scientific Research (C), No. 16540168, Japan Society for the Promotion of Science

^o2000 Mathematics Subject Classification. Primary 22E30; Secondary 43A30, 43A80

decompositions of G , where dk , dx , dn denote Haar measures on K , A , N respectively, and $\Delta(x)$, $x \geq 0$, is explicitly given as

$$\Delta(x) = 2^{2\rho} (\operatorname{sh} x)^{2\alpha+1} (\operatorname{ch} x)^{2\beta+1}.$$

We extend this function on \mathbf{R}_+ as an even function on \mathbf{R} . Let $L^p(G//K)$ denote the space of K -bi-invariant functions on G with finite L^p -norm: $\|f\|_p = (\int_0^\infty |f(x)|^p \Delta(x) dx)^{1/p}$ and $L^1_{\text{loc}}(G//K)$ the space of locally integrable, K -bi-invariant functions on G . Let $C_c^\infty(G//K)$ be the space of compactly supported C^∞ , K -bi-invariant functions on G . We denote by \hat{f} the spherical Fourier transform of f and by $f * h$ the convolution of f, h in $L^1(G//K)$ (cf. [2], [9, Chap.9]). Similarly, we denote by \tilde{F} and $F \otimes H$ the Euclidean Fourier transform of F and the convolution of F, H in $L^1(\mathbf{R})$ respectively.

2. Real Hardy spaces. We shall introduce a real Hardy space on G by using a radial maximal function on G . Let ϕ be a positive compactly supported C^∞ , K -bi-invariant function on G with $\|\phi\|_1 = 1$. We define the dilation ϕ_t , $t > 0$, of ϕ as

$$\phi_t(x) = \frac{1}{t} \frac{1}{\Delta(x)} \Delta\left(\frac{x}{t}\right) \phi\left(\frac{x}{t}\right). \quad (1)$$

Since this dilation has the same properties as in the Euclidean case; $\|\phi_t\|_1 = \|\phi\|_1$ and $\{\phi_t; t > 0\}$ approximates the identity in $L^p(G//K)$, $0 < p \leq \infty$, it is quite natural to introduce a radial maximal function $M_\phi f$ on G as

$$(M_\phi f)(g) = \sup_{0 < t < \infty} |(f * \phi_t)(g)|, \quad g \in G.$$

As shown in [3, Theorem 3.4], this maximal operator M_ϕ satisfies the so-called maximal theorem: M_ϕ is bounded on $L^p(G//K)$ ($1 < p \leq \infty$) and satisfies the weak type L^1 estimate. Analogously as the definition of the real Hardy space $H^1(\mathbf{R})$ on \mathbf{R} , we define the real Hardy space on G by

$$H^1(G//K) = \{f \in L^1_{\text{loc}}(G//K) ; M_\phi f \in L^1(G//K)\}$$

and the norm by $\|f\|_{H^1(G)} = \|M_\phi f\|_1$. Then $H^1(G//K) \subset L^1(G//K)$ (see [5, §4]). For $f \in C_c^\infty(G//K)$, we define the Abel transform F_f^s , $s \in \mathbf{R}$, of f as

$$F_f^s(x) = e^{\rho(1+s)x} \int_N f(a_x n) dn.$$

For simplicity, we put $W_+(f) = F_f^1$ and we denote by W_- the inverse operator of W_+ . As shown in [6, §3], W_\pm are explicitly given by a composition of the generalized Weyl type fractional integral transforms. We recall (cf. [6, (3.7)])

that both \hat{f} and $(F_f^s)^\sim$ are holomorphic functions on \mathbf{C} of exponential type and they satisfy

$$\hat{f}(\lambda + is\rho) = (F_f^s)^\sim(\lambda), \quad \lambda \in \mathbf{C}. \quad (2)$$

Let $C(\lambda)$ denote Harish-Chandra's C -function (cf. [6, (2.6)]) and \mathcal{M}_{C_ρ} the Euclidean Fourier multiplier corresponding to $C_\rho(\lambda) = C(-(\lambda + i\rho))$, that is, $\mathcal{M}_{C_\rho}(F)^\sim(\lambda) = C(-(\lambda + i\rho))\hat{F}(\lambda)$. We define

$$W_-(H^1(\mathbf{R})) = \{f \in L^1_{\text{loc}}(G//K) ; W_+(f) \in H^1(\mathbf{R})\}$$

and the norm by $\|f\|_{W_-} = \|W_+(f)\|_{H^1(\mathbf{R})}$. We also define $W_-(\mathcal{M}_{C_\rho}(H^1(\mathbf{R})))$ by replacing the condition that $W_+(f) \in H^1(\mathbf{R})$ in the above definition with $\mathcal{M}_{C_\rho}^{-1} \circ W_+(f) \in H^1(\mathbf{R})$ and the norm by $\|f\|_{W_-^{C_\rho}} = \|\mathcal{M}_{C_\rho}^{-1} \circ W_+(f)\|_{H^1(\mathbf{R})}$.

We note that $f * \phi_t = W_-(W_+(f * \phi_t)) = W_-(F \otimes W_+(\phi_t))$, where $F = W_+(f)$. Hence the H^1 -norm $\|f\|_{H^1(G)}$ of f on G may be related to an L^1 -norm of $F = W_+(f)$ on \mathbf{R} . Actually, let $\alpha - \beta = [\alpha - \beta] + \delta$ and $\beta + 1/2 = [\beta + 1/2] + \delta'$, where $[\cdot]$ is the Gauss symbol, and set $\underline{n} = [\alpha - \beta] + [\beta - 1/2]$ and $\underline{D} = \{0, \delta, \delta', \delta + \delta'\}$. Then it follows from [5, Theorem 4.6] that

$$\|f\|_{H^1(G)} \sim \sum_{m=0}^{\underline{n}} \sum_{\xi \in \underline{D}} \|M_\phi^{\mathbf{R}} \circ W_{-(m+\xi)}^{\mathbf{R}}(F)(x)(\text{th}x)^{m+\xi}\|_{L^1(\mathbf{R})}, \quad (3)$$

where $W_{-\gamma}^{\mathbf{R}}$ is the Weyl type fractional integral transform on \mathbf{R} and $M_\phi^{\mathbf{R}}$ is the maximal operator on \mathbf{R} defined by

$$(M_\phi^{\mathbf{R}} F)(x) = \sup_{0 < t < \infty} |(F \otimes W_+(\phi_t))(x)|, \quad x \in \mathbf{R}.$$

From the equivalence (3) it follows that

$$W_-(\mathcal{M}_{C_\rho}(H^1(\mathbf{R}))) \subset H^1(G//K) \subset W_-(H^1(\mathbf{R}))$$

(see [5, Remark 4.7(1) and Corollary 4.3]).

3. Estimate of W_- . We retain the previous notations. In the process to deduce (3) we use a relation between the Weyl type fractional integral transforms W_- on G and $W_{-\gamma}^{\mathbf{R}}$ on \mathbf{R}_+ . As shown in [5, Proposition 4.5, Lemma 4.4], if F is smooth, then $W_-(F)$ is estimated as follows. For $x > 0$,

$$\begin{aligned} |W_-(F)(x)| &\leq c\Delta(x)^{-1} \sum_{m=0}^{\underline{n}} \sum_{\xi \in \underline{D}} \left(|W_{-(m+\xi)}^{\mathbf{R}}(F)(x)| \right. \\ &\quad \left. + \int_x^\infty |W_{-(m+\xi)}^{\mathbf{R}}(F)(s)| A_{m,\xi}(x,s) ds \right), \end{aligned} \quad (4)$$

where $A_{m,0}(x, s) \equiv 0$, $A_{m,\xi}(x, s) \geq 0$ and there exists a constant c such that $\int_0^s A_{m,\xi}(x, s) dx \leq c$ for all $s \geq 0$. More precisely, $A_{m,\xi}(x, s)$ is dominated by $\chi_{[0,\infty)}(s-x)\chi_{[0,1]}(s)$ or $B_{m,\xi}(s-x)$, where $B_{m,\xi}(x)$ is integrable on \mathbf{R}_+ .

Let $f \in W_-(\mathcal{M}_{C_\rho}(H^1(\mathbf{R})))$ and put $F = W_+(f)$. By the definition, $\mathcal{M}_{C_\rho}^{-1}(F)$ belongs to $H^1(\mathbf{R})$. We note that $C(-(\lambda + i\rho)) \sim (1 + |\lambda|)^{-(\alpha+1/2)}$ (cf. [3, Theorem 2]) and $(i\lambda)^\gamma/(\lambda + i\rho)^{\alpha+1/2}$, $0 \leq \gamma \leq \alpha + 1/2$, satisfies the Hörmander condition (cf. [8, p.318]). Therefore, $W_{-\gamma}^{\mathbf{R}}(F)$ belongs to $H^1(\mathbf{R})$ (cf. [8, p.363]). Since $m + \xi \leq \underline{n} + \delta + \delta' = \alpha + 1/2$, each $W_{-(m+\xi)}^{\mathbf{R}}(F)$ in (3) and (4) belongs to $H^1(\mathbf{R})$, that is,

$$\|W_{-(m+\xi)}^{\mathbf{R}}(F)\|_{H^1(\mathbf{R})} \leq c \|f\|_{W_-^{C_\rho}} \quad (5)$$

for all $0 \leq m \leq \underline{n}$ and $\xi \in \underline{D}$.

4. g and area functions. Let p_t denote the Poisson kernel on G , which is a K -bi-invariant function on G given by

$$\hat{p}_t(\lambda) = e^{-t\sqrt{\lambda^2 + \rho^2}}.$$

We define the Littlewood-Paley g function $g(f)$ on G , $f \in C_c^\infty(G//K)$, as

$$g(f)(x) = \left(\int_0^\infty \left| t \frac{\partial}{\partial t} f * p_t(x) \right|^2 \frac{dt}{t} \right)^{1/2}.$$

As shown in [1], [7] and [8], g satisfies the maximal theorem. We define the Lusin area function $S(f)$ on G as an analogue of the classical theory (cf. [9, p.314]). Let $B(t)$ denote the ball on G with radius t centered at the origin and $|B(t)|$ the volume of the ball. Let $\chi_{B(t)}$ denote the characteristic function of $B(t)$ and put

$$\chi_t(x) = \frac{1}{|B(t)|} \chi_{B(t)}(x).$$

We define the Lusin area function $S(f)$ on G as

$$S(f)(x) = \left(\int_0^\infty \chi_t * \left| t \frac{\partial}{\partial t} p_t * f(x) \right|^2 \frac{dt}{t} \right)^{1/2}.$$

As shown in [7], S is bounded on $L^p(G//K)$, $0 < p < \infty$. We also define the modified one as

$$S_+(f)(x) = \left(\int \int_{\{\sigma(y) \geq \sigma(x)\}} \chi_t(xy^{-1}) \left| t \frac{\partial}{\partial t} f * p_t(y) \right|^2 dy \frac{dt}{t} \right)^{1/2},$$

where σ is the distance function on G (cf. [10, 8.1.2]). Our main theorem is the following.

Theorem. g and S_+ are bounded from $W_-(\mathcal{M}_{C_\rho}(H^1(\mathbf{R})))$ to $L^1(G//K)$.

5. Sketch of the proof. We suppose that $f \in W_-(\mathcal{M}_{C_\rho}(H^1(\mathbf{R})))$ and put $F = W_+(f)$. For simplicity we denote $K_t = t(\partial/\partial t)p_t$. Since $t(\partial/\partial t)f * p_t = f * K_t = W_-(W_+(f * K_t)) = W_-(F * W_+(K_t))$, it follows from (4) that

$$\|g(f)\|_1 \leq c \sum_{m=0}^n \sum_{\xi \in \underline{D}} \int_0^\infty \left(\int_0^\infty |W_{-(m+\xi)}^{\mathbf{R}}(F) \circledast W_+(K_t)(x)|^2 \frac{dt}{t} \right)^{1/2} dx,$$

because

$$\begin{aligned} & \int_0^\infty \left(\int_0^\infty \left| \int_x^\infty H(s, t) A(x, s) ds \right|^2 \frac{dt}{t} \right)^{1/2} dx \\ & \leq \int_0^\infty \int_s^\infty \left(\int_0^\infty |H(s, t)|^2 \frac{dt}{t} \right)^{1/2} A(x, s) ds dx \\ & = \int_0^\infty \left(\int_0^\infty |H(s, t)|^2 \frac{dt}{t} \right)^{1/2} \int_0^s A(x, s) dx ds \\ & \leq c \int_0^\infty \left(\int_0^\infty |H(s, t)|^2 \frac{dt}{t} \right)^{1/2} ds. \end{aligned}$$

We here put

$$g_{\mathbf{R}}(H)(x) = \left(\int_0^\infty |H \circledast W_+(K_t)(x)|^2 \frac{dt}{t} \right)^{1/2}, \quad H \in C_c^\infty(\mathbf{R}).$$

Then

$$\|g(f)\|_1 \leq c \sum_{m=0}^n \sum_{\xi \in \underline{D}} \int_0^\infty g_{\mathbf{R}}(W_{-(m+\xi)}^{\mathbf{R}}(F))(x) dx.$$

Since each $W_{-(m+\xi)}^{\mathbf{R}}(F)$ belongs to $H^1(\mathbf{R})$ (see (5)), it follows from the $(1, \infty, 1)$ -atomic decomposition of $H^1(\mathbf{R})$ that it is enough to show that there exists a constant C such that for all $(1, \infty, 1)$ -atoms A on \mathbf{R} ,

$$\int_0^\infty g_{\mathbf{R}}(A)(x) dx \leq C. \quad (6)$$

Obviously, we may suppose that A is centered, that is, A is supported on $[-r, r]$, $\|A\|_\infty \leq (2r)^{-1}$ and $\int_{-\infty}^\infty A(x)x^k dx = 0$, $k = 0, 1$. First we shall prove

that $g_{\mathbf{R}}$ is bounded on $L^2(\mathbf{R})$: For $H \in L^2(\mathbf{R})$,

$$\begin{aligned}
 \|g_{\mathbf{R}}(H)\|_{L^2(\mathbf{R})}^2 &= \int_0^\infty \|H \circledast W_+(K_t)\|_{L^2(\mathbf{R})}^2 \frac{dt}{t} \\
 &= \int_0^\infty \|\tilde{H} \cdot W_+(K_t)^\sim\|_{L^2(\mathbf{R})}^2 \frac{dt}{t} \\
 &= \int_0^\infty \|\tilde{H}(\lambda) \cdot t\sqrt{\lambda(\lambda+2i\rho)}e^{-t\sqrt{\lambda(\lambda+2i\rho)}}\|_{L^2(\mathbf{R})}^2 \frac{dt}{t} \\
 &= \int_{-\infty}^\infty |\tilde{H}(\lambda)|^2 \left(\int_0^\infty t|\lambda(\lambda+2i\rho)|e^{-2t\Re\sqrt{\lambda(\lambda+2i\rho)}} dt \right) d\lambda \\
 &= \int_{-\infty}^\infty |\tilde{H}(\lambda)|^2 \left(\int_0^\infty t e^{-2t\sqrt{\lambda}\cos(\theta/2)} dt \right) d\lambda \\
 &\leq c \int_{-\infty}^\infty |\tilde{H}(\lambda)|^2 d\lambda = c\|H\|_{L^2(\mathbf{R})}^2,
 \end{aligned}$$

where we set $\lambda(\lambda+2i\rho) = re^{i\theta}$ and we used the fact that $\cos \theta \geq 0$ and $\cos(\theta/2) = \sqrt{(\cos \theta + 1)/2} \geq 1/\sqrt{2}$. Hence, by Schwarz' inequality, we have

$$\int_0^{2r} g_{\mathbf{R}}(A)(x) dx \leq c\|A\|_{L^2(\mathbf{R})} (2r)^{1/2} \leq C. \quad (7)$$

Next we suppose that $x \geq 2r$. We recall $W_+(K_t)(x) = te^{\rho x}(\partial/\partial t)F_{p_t}^0(x)$ and $F_{p_t}^0(x) = Ct(t^2+x^2)^{-1/2}\mathcal{K}_1(\rho(t^2+x^2)^{1/2})$, where \mathcal{K}_ν is the modified Bessel function (see [1], p. 289). Since $\mathcal{K}_\nu(x) = O(x^{-1/2}e^{-x})$ if $x \rightarrow \infty$, and $O(x^{-\nu})$ if $x \rightarrow 0$, and $x-y \geq x-r > r$ if $|y| \leq r$, it follows that

$$\begin{aligned}
 |A \circledast W_+(K_t)(x)| &= \left| \int_{-\infty}^\infty A(y)W_+(K_t)(x-y) dy \right| \\
 &\leq c \int_{-\infty}^\infty |A(y)| t^3 (t^2 + (x-y)^2)^{-3/4-1/2-\epsilon} e^{-\rho(t^2+(x-y)^2)^{1/2}} e^{\rho(x-y)} dy \\
 &\leq ct(t^2 + (x-r)^2)^{-3/4} \leq ct(x-r)^{-3/2},
 \end{aligned} \quad (8)$$

where $\epsilon = 0$ if $t^2 + (x-y)^2 \geq 1$, and $\epsilon = 1/4$ if $t^2 + (x-y)^2 < 1$. Actually, when $\epsilon = 0$, we used the fact that $t^{2\ell}e^{-\rho(t^2+(x-y)^2)^{1/2}}$, $\ell \in \mathbf{R}$, has the maximum $O((x-y)^\ell e^{-\rho(x-y)})$ at $t \sim (x-y)^{1/2}$. Thereby, letting $\ell = 1$, we see that $t^2(t^2 + (x-y)^2)^{-1/2}e^{-\rho(t^2+(x-y)^2)^{1/2}} \leq t^2(x-y)^{-1}e^{-\rho(t^2+(x-y)^2)^{1/2}} \leq ce^{-\rho(x-y)}$. When $\epsilon = 1/4$, we used the fact that $t^2(t^2 + (x-y)^2)^{-3/4} \leq t^2(t^2 + (x-y)^2)^{-1} \leq 1$. Next we note the moment condition of A , which implies that $B(x) = \int_{-\infty}^x \int_{-\infty}^u A(v) dv du$ is supported on $[-r, r]$ and $\|B\|_\infty \leq 2r$.

Since $(d/dx)^k(K_\nu(x)e^x) = O(x^{-1/2-k})$ if $x \rightarrow \infty$, and $O(x^{-\nu-k})$ if $x \rightarrow 0$, integration by parts yields that

$$\begin{aligned} & |A \circledast W_+(K_t)(x)| \\ & \leq c \int_{-\infty}^{\infty} |B(y)| t^3 (t^2 + t(x-y) + (x-y)^2) \\ & \quad \times (t^2 + (x-y)^2)^{-3/4-1/2-2-\epsilon} e^{-\rho(t^2+(x-y)^2)^{1/2}} e^{\rho(x-y)} dy \\ & \leq cr^2 t^{-2} (t^2 + (x-r)^2)^{-1} \leq cr^2 t^{-2} (x-r)^{-2}, \end{aligned} \quad (9)$$

where $\epsilon = 0$ if $t^2 + (x-y)^2 \geq 1$, and $\epsilon = 5/4$ if $t^2 + (x-y)^2 < 1$. Actually, when $\epsilon = 0$, letting $\ell = 5/2$, we see that $t^5(t^2 + (x-y)^2)^{-5/4} e^{-\rho(t^2+(x-y)^2)^{1/2}} \leq e^{-\rho(x-y)}$ and when $\epsilon = 5/4$, we have $t^5(t^2 + (x-y)^2)^{-5/2} \leq 1$. Hence, from (8) and (9) we see that

$$\begin{aligned} & \int_0^{\infty} |A \circledast W_+(K_t)(x)|^2 \frac{dt}{t} \\ & \leq c(x-r)^{-3} \int_0^{\sqrt{r}} t dt + cr^4(x-r)^{-4} \int_{\sqrt{r}}^{\infty} t^{-5} dt \\ & \leq cr(x-r)^{-3} + cr^2(x-r)^{-4} \end{aligned}$$

and thus

$$\int_{2r}^{\infty} g_{\mathbf{R}}(A)(x) dx \leq c \int_{2r}^{\infty} (r^{1/2}(x-r)^{-3/2} + r(x-r)^{-2}) dx \leq C. \quad (10)$$

Then (7) and (10) imply the desired estimate (6).

As for the area function $S_+(f)$, it follows from (4) that it is enough to show that for all centered $(1, \infty, 1)$ -atoms A on \mathbf{R} ,

$$\int_0^{\infty} S_{\mathbf{R}}^1(A)(x) dx \leq C \quad \text{and} \quad \int_0^{\infty} S_{\mathbf{R}}^2(A)(x) dx \leq C, \quad (11)$$

where

$$\begin{aligned} S_{\mathbf{R}}^1(H)(x) &= \left(\int_0^{\infty} \int_{\{y \geq |x|\}} \int_K \chi_t(a_x k a_y^{-1}) dk \right. \\ &\quad \times \Delta(y)^{-1} |H \circledast W_+(K_t)(y)|^2 dy \left. \frac{dt}{t} \right)^{1/2} \Delta(x). \end{aligned}$$

and

$$\begin{aligned} S_{\mathbf{R}}^2(H)(x) &= \left(\int_0^{\infty} \int_{\{y \geq |x|\}} \int_K \chi_t(a_x k a_y^{-1}) dk \right. \\ &\quad \times \Delta(y)^{-1} \left| \int_y^{\infty} H \circledast W_+(K_t)(s) A(y, s) ds \right|^2 dy \left. \frac{dt}{t} \right)^{1/2} \Delta(x). \end{aligned}$$

Here $A(y, s) \geq 0$ and $\int_0^s A(y, s) dy \leq c$ for all $s \geq 0$. More precisely, $A(y, s)$ is dominated by $\chi_{[0, \infty)}(s - y)\chi_{[0, 1]}(s)$ or $B(s - y)$, where $B(y)$ is integrable on \mathbf{R}_+ . First we shall estimate $S_{\mathbf{R}}^1(A)$. Since $\Delta(y)^{-1} \leq \Delta(x)^{-1}$ if $y \geq |x|$ and $\int_0^\infty \int_K \chi_t(a_x k a_y^{-1}) dk \Delta(x) dx = \int_G \chi_t(g a_y) dg = \|\chi_t\|_1 = 1$, it follows that for $H \in C_c^\infty(\mathbf{R})$,

$$\begin{aligned} & \|S_{\mathbf{R}}^1(H)\|_{L^2(\mathbf{R})}^2 \\ & \leq \int_0^\infty \int_0^\infty \left(\int_0^\infty \int_K \chi_t(a_x k a_y^{-1}) dk \Delta(x) dx \right) |H \otimes W_+(K_t)(y)|^2 dy \frac{dt}{t} \\ & = \|g_{\mathbf{R}}(H)\|_{L^2(\mathbf{R})}^2 \end{aligned}$$

and thus, $S_{\mathbf{R}}^1$ is bounded on $L^2(\mathbf{R})$. Then $\int_0^{2r} S_{\mathbf{R}}^1(A)(x) dx \leq C$ as before. We suppose that $x \geq 2r$. We recall that, if $y \geq |x|$, then $\Delta(y)^{-1}\Delta(x)^2 \leq \Delta(y)$ and $|A \otimes W_+(K_t)(y)|$ is dominated by $t(x - r)^{-3/2}$ and $r^2 t^{-2}(x - r)^{-2}$. Since $\|\chi_t\|_1 = 1$, as in the case of $g_{\mathbf{R}}$, $S_{\mathbf{R}}^1(A)(x)$ is estimated as $r^{1/2}(x - r)^{-3/2} + r(x - r)^{-2}$ and then $\int_{2r}^\infty S_{\mathbf{R}}^1(A)(x) dx \leq C$. Therefore, we can deduce (11) for $S_{\mathbf{R}}^1$. Next we shall estimate $S_{\mathbf{R}}^2$. As before, we have

$$\|S_{\mathbf{R}}^2(H)\|_{L^2(\mathbf{R})}^2 \leq \left\| \int_y^\infty g_{\mathbf{R}}(H)(s) A(y, s) ds \right\|_{L^2(\mathbf{R})}^2.$$

When $A(y, s)$ is dominated by $\chi_{[0, \infty)}(s - y)\chi_{[0, 1]}(s)$, we see that $0 \leq |x| \leq y \leq s \leq 1$ and thus,

$$\|S_{\mathbf{R}}^2(H)\|_{L^2(\mathbf{R})}^2 \leq \left(\int_0^1 g_{\mathbf{R}}(H)(s) \|A(\cdot, s)\|_{L^2(\mathbf{R})} ds \right)^2 \leq c \|g_{\mathbf{R}}(H)\|_{L^2(\mathbf{R})}^2$$

by Schwarz's inequality. When $A(y, s)$ is dominated by $B(s - y)$, we change the variable s to $s + y$ and thus,

$$\begin{aligned} \|S_{\mathbf{R}}^2(H)\|_{L^2(\mathbf{R})}^2 & \leq \left\| \int_0^\infty g_{\mathbf{R}}(H)(s + y) B(s) ds \right\|_{L^2(\mathbf{R})}^2 \\ & \leq c \|g_{\mathbf{R}}(H)\|_{L^2(\mathbf{R})}^2 \left(\int_0^\infty B(s) ds \right)^2 \leq c \|g_{\mathbf{R}}(H)\|_{L^2(\mathbf{R})}^2. \end{aligned}$$

Hence $S_{\mathbf{R}}^2$ is bounded on $L^2(\mathbf{R})$ and $\int_0^{2r} S_{\mathbf{R}}^2(A)(x) dx \leq C$ as before. We suppose that $x \geq 2r$. When $A(y, s)$ is dominated by $\chi_{[0, \infty)}(s - y)\chi_{[0, 1]}(s)$, we see that $2r \leq x \leq y \leq s \leq 1$ and thus, $A \otimes W_+(K_t)(s)$ is estimated as $t(x - r)^{-3/2}$ and $r^2 t^{-2}(x - r)^{-2}$. Moreover, $\Delta(y)^{-1}\Delta(x)^2 \leq \Delta(y)$, $\|\chi_t\|_1 = 1$, and $\int_y^\infty A(y, s) ds \leq 1$. Therefore, $S_{\mathbf{R}}^2(A)(x)$ is dominated by $r^{1/2}(x - r)^{-3/2} + r(x - r)^{-2}$ and thereby, $\int_{2r}^\infty S_{\mathbf{R}}^2(A)(x) dx \leq C$ as in the case of $g_{\mathbf{R}}(A)$. When $A(y, s)$ is dominated by $B(s - y)$, we change the variable s to $s + (y - x)$.

We recall that, since $s + (y - x) \geq s \geq x > 2r$, $|A \circledast W_+(K_t)(s + (y - x))|$ is dominated by $H(t, s, r) = \min\{t(s - r)^{-3/2}, r^2 t^{-2}(s - r)^{-2}\}$, which is independent of x, y . Therefore, noting $\Delta(y)^{-1}\Delta(x)^2 \leq \Delta(y)$, $\|\chi_t\|_1 = 1$ and $A(y, s + (y - x)) \leq B(s - x)$, we can deduce that

$$S_{\mathbf{R}}^2(A)(x) \leq \left(\int_0^\infty \left| \int_x^\infty H(t, s, r) B(s - x) ds \right|^2 \frac{dt}{t} \right)^{1/2}.$$

Since $\int_0^\infty |H(t, s, r)|^2 dt/t \leq r(s - r)^3 + r^2(s - r)^{-4}$ as before, it follows that

$$\begin{aligned} & \int_{2r}^\infty S_{\mathbf{R}}^2(A)(x) dx \\ & \leq \int_{2r}^\infty \int_x^\infty (r^{1/2}(s - r)^{3/2} + r(s - r)^{-2}) B(s - x) ds dx \\ & = \int_{2r}^\infty (r^{1/2}(s - r)^{3/2} + r(s - r)^{-2}) \left(\int_{2r}^s B(s - x) dx \right) ds \leq C. \end{aligned}$$

Therefore, we have (11) for $S_{\mathbf{R}}^2$. This completes the proof of the theorem.

Remark. We put $D_x = W_- \circ (d/dx) \circ W_+$. Then the operators g' and S'_+ defined by replaced $t(d/dt)p_t$ in the definitions of g and S_+ with $tD_x p_t$ are also bounded from $W_-(\mathcal{M}_{C_p}(H^1(\mathbf{R})))$ to $L^1(G//K)$. Moreover, in the definition of S_+ we may replace χ_t with ϕ_t in (1).

References

- [1] Anker, J.-Ph., *Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces*. Duke Math. J., Vol. 65, 1992, pp. 257-297.
- [2] Flensted-Jensen, M., *Paley-Wiener type theorems for a differential operator connected with symmetric spaces*. Ark. Mat., Vol. 10, 1972, pp. 143-162.
- [3] Kawazoe, T., *Atomic Hardy spaces on semisimple Lie groups*. Japanese J. Math., Vol. 11, 1985, pp. 293-343.
- [4] Kawazoe, T., *L^1 estimates for maximal functions and Riesz transform on real rank 1 semisimple Lie groups*. J. Funct. Analysis, Vol. 157, 1998, pp. 327-527.
- [5] Kawazoe, T., *Real Hardy spaces on real rank 1 semisimple Lie groups*. Manuscript, 2004.

- [6] Koornwinder, T., *A new proof of a Paley-Wiener type theorem for the Jacobi transform.* Ark. Mat., Vol. 13, 1975, pp. 145-159.
- [7] Lohoue, N., *Estimation des fonctions de Littlewood-Paley-Stein sur les variétés Riemanniennes à courbure non positive.* Ann. scient. Éc. Norm. Sup., Vol. 20, 1987, pp. 505-544.
- [8] Stein, E.M., Topics in Harmonic Analysis. Related to the Littlewood-Paley Theory. Annals of Mathematics Studies, 63, Princeton University Press, New Jersey, 1970.
- [9] Torchinsky, A., Real-variable Methods in Harmonic Analysis. Pure and Applied Mathematics, 123, Academic Press, Orlando, Florida, 1986.
- [10] Warner, G., Harmonic Analysis on Semi-Simple Lie Groups II. Springer-Verlag, New York, 1972.

Present addresses:

Takeshi Kawazoe
Department of Mathematics, Keio University at Fujisawa,
Endo, Fujisawa, Kanagawa, 252-8520, Japan.
e-mail: kawazoe@sfc.keio.ac.jp