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Abstract

We first show that the cut-off integral on non integer order classical symbols extends
to symbol valued forms and obeys Stokes’ property on non integer order classical
symbol valued forms. Similarly, the Wodzicki residue extends to classical symbol
valued forms and we show it relates to the complex residue of cut-off integrals of
holomorphic symbol valued forms. The extended Wodzicki residue yields a cycle on
classical symbol valued forms, the residue cycle.

Secondly, given a deformed algebra (A[[v]], ), where (4, -) is a unital commutative
complex algebra, we investigate antisymmetrized 2k-cochains (which we refer to as
trace forms)

1

Al (a0, -+, 001) == gy 3 0Tl % o) %+~ % g2,
T o€

where T(Y ;o ap v*) = > 7o, Ti(a) V¥ is a C[[v]] extension to N := N{[[v]] of some
linear form 7( defined on some vector space N C A. We give a local description of
these cochains when A = C'*°(W) where W is a Poisson manifold, equipped with a
star product compatible with the Poisson structure. Whenever 7, : a +— 7((A"F, ar)),
where A is the Poisson tensor, satisfies a Stokes’ property, we show that Altiysy is a
closed b-cocycle.

We finally combine cut-off integrals with the Moyal, resp. the left product on
the algebra C'S. .(IR") of classical symbols on IR" with constant coefficients to build
meromorphic families of trace forms, the residue of which yields a cyclic b-cocycle.
We show that the n 4+ 1-trace form built this way is proportional to the character as-
sociated with the residue cycle on classical symbol valued forms on IR™ with constant
coefficients.

Introduction

The paper is organised in three parts. In Part 1, we prove Stokes’ formula for cut-
off integrals on non integer order classical symbol valued forms. In Part 2, we give
the abstract setting to build cyclic Hochschild cocycles associated with star products
using a Stokes’ type formula. In Part 3,using the results of Part 1, we apply the gen-
eral construction described in Part 2 to build closed Hochschild cocycles on classical
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symbols.

The first part of the paper is devoted to Stokes’ property on symbols. We first define
cut-off integrals to non integer order classical symbol valued forms on M and show
that the cut-off integral extended to forms satisfies Stokes’ property (see Theorem 3).
Similarly, we extend the Wodzicki residue to all classical symbol valued forms. We
show that the relation between complex residues and the Wodzicki residue extends
to symbols valued forms (see Theorem 1):

Res._., ]/ w(z) = ———res(w(z0)),

o’ (20)

where w(z) is a holomorphic family of classical symbol valued forms of order «(z)
and res(w(zg)) the Wodzicki residue of w(zg).

The extended Wodzicki residue also satisfies Stokes’ property and therefore yields a
closed linear form on classical symbol valued forms on a closed manifold M thereby
giving rise to a cycle (QCS(M),d,res) (see Theorem 2) which we refer to as the
residue cycle.

Let us now describe the contents of the second part of the paper. Given an algebra
A over some ring R, equipped with an associative product x and some R-linear form
T:A— R, we consider trace forms

U, (ag, - an) =T (ag*x a1 *ag %+ *Ap_1 *ap) (1)

which provide R-valued n+ 1- multilinear maps on .A. We consider the corresponding
antisymmetrized trace forms:

1
Alt \Ijn(a(h e 7an) = ﬁ Z 6(0’)\I/n (aOa Ao(1)y """ ao(n)) .
’ oeEYX,

We check (see Proposition 6) that the traciality of T w.r. to %, i.e. the fact that T'
vanishes on x-brackets:
T ([a,b]«) =0 VYa,be A

is equivalent on one hand to the cyclicity of Alt W9, and on the other hand to the
vanishing of the trace forms investigated by Helton and Howe [HH]:

Alt Uop(ar,- -, aok) =T ([a1,- -, a2k]x)

where we have set

1
[a1, -, agk)s := W Z E(J)ag(l) * ek Qg (2k)

oEY oy

for all £ € IN. If A has unit 1, Helton and Howe’s trace forms correspond in this
context to Alt Uai(1, a1, -, an).

Specialising to a deformation (A = A[[v]],*) with unit 1 € A of a commutative
algebra (A4,-), we can either see A as a complex algebra taking R = € or see A
as a C[[v]] -algebra taking R = C[[v]]. Writing T(3> "o ar v®) = > pe Th(a) V¥,
in the first case the tracial property of T' : A — C[[v]] translates to the strong
closedness of x w.r. to T. In the second case, the tracial property of Tj : A —
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C translates to the closedness of x w.r. to T} [F]. In this setting, we show (see
Proposition 9) that antisymmetrised trace forms Alt Wo considered here coincide
with the antisymmetrised cochains Alt @55 built from the cochains considered in
[CFS], [H]:

®oi(ao, - -+, agk) =T (ag x B(a1,az) * - - - % O(azx—1, azk)) - (2)
From this it follows that
Alt ¢2k(a0, ceey, agk) = Alt Tk (ao * A1 kA K Kk Ak—1 *ak)

and
Alt (b%(ao, s ,agk) = Alt Tk (ao * 9(@1, CLQ) * -tk H(agk_l, agk))

coincide. When T is a C[[v]]-linear extension of a C-linear map 7y then (see Propo-
sition 10)

Altahoy(ag, -, asr) = 27 Alt 7o (ag - {ar, a2} -+ - {ask—1, a2t })

where {a, b} is the Poisson bracket associated with *.
We further specialise to a star product associated with a Poisson structure on a
Poisson manifold W, and show (Theorem 4) that if T is the C[[v]]-linear extension
of a C-linear form 7y defined on a subspace of A then

Althar(fo, fr,- -+, far) = 7o (A, fodfy A+ A dfar)) (3)

where f; are smooth functions on W for which the expression on the r.h.s. makes
sense, i.e. whenever <AA’“7 fodfi A+ A dfag) lies in N. Here A stands for the Poisson
bracket associated with the Poisson structure. Taking fy = 1 yields back a formula
similar to results by Helton and Howe obtained in a different context [HH]:

T ([f1s -, foule) = 7o (A, dfs Ao A dfar)) -

It follows from there that if
(o) = 79 (<AAk70¢>)

satisfies Stokes’ property:
Tr(dB) =0

for any (2k—1)-form 3 on W such that (A"* dB) € N, then Alt 1), = Alt ¢oy, is cyclic
and closed for the Hochschild coboundary operator b induced by the commutative
product on functions. In Appendix B we discuss why one should not expect ¢of, to be
closed and hence to be able to derive (using the identification Alt o = Alt ¥oy), b-
closedness of Alt 1o, from b-closedness of Alt ¢op as a consequence of the b- closedess
of ¢of since the latter does not hold in general.

Specialising down to the case of a 2{-dimensional symplectic manifold (W, w), formula
(3) reads:

Alt ok (fo, fr,- -+ for) = 1 (fodfs A v+ A dfo, Aw'™F)

and provided 7; satisfies Stokes’ property then Alt oy is cyclic and closed for the
Hochschild coboundary operator b.
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In particular, taking k = I, when A = C§°(W) and T;(f) = fW fw!, we recover a
local formula which can be derived from a more general formula proven in [CFS] [H]:

Altvos(for fis- -+ for) =/W fodfi A A dfsr Vfy € C2(W).

In Part 3, we apply equation (3) to the class CS£%(IR?) of non integer order classical
symbols on R with constant coefficients, setting 79 to be a cut-off integral in order
to build cut-off antisymmetrised trace forms Alt ¢§Zt_of 7 and to show (see Theorem
5) that they are cyclic and b-closed.

Approximating a general formal classical symbol by a holomorphic family of non in-
teger order formal symbols, we then construct (see Theorem 6) meromorphic families
of antisymmetrised trace forms on C'S, ( lel) with simple poles, the complex residue
of which yields the character of the residue cycle. Specialising to the left product
on formal symbols, we also build meromorphic families of closed 2k-cocycles for a

perturbed product f -, g=f-[¢{|7%-¢:
Altpay,(2) (00, -+, o2k) = IF ]/ oo0(2) Adoy(2) A -+ Adog(z) Aw'F
U

where we have set o(z) := o - |£|7% for any 0 € CS,.(IR*). When k = [, its
complex residue at z = 0 yields back the character associated to the residue cycle
(QCS.(RY,d,res)).

The paper is organised as follows:

e Part 1.

1. Cut-off integrals on non integer order classical symbols

2. Cut-off integrals extended to classical symbol valued forms

3. The Wodzicki residue extended to classical symbol valued forms

4. Integrals of holomorphic families of symbols valued forms

5. Stokes’ property for cut-off integrals and the Wodzicki residue
e Part 2.

1. Trace forms on a unital algebra (A, %)

2. Trace forms on a deformed algebra

3. The case of a Poisson manifold

4. The symplectic case
e Part 3.

1. A cyclic cocycle for non integer order classical symbols on R

2. Meromorphic families of trace forms and the residue cocycle on classical
symbols on R

3. Perturbed star products

4. Meromorphic cocycles associated with the left product on classical symbols
on R%

e Appendix A
e Appendix B
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1 Stokes’ formula for regularised integrals on sym-
bols valued forms

1.1 Cut-off integrals on non integer order symbols and the
Wodzicki residue

This section is a review of known results which we need in the subsequent section.
Let U be an open subset of IR" and x a point in U. Let S™(U) C C°°(T*U) denote
the set of scalar valued symbols on U of order m € R, S(U) = ,,c g S"(U) C
C>(T*U) the algebra of all scalar valued symbols on U, S™°(U) :=),,c g S™(U)
the algebra of scalar smoothing symbols.

Definition 1 o € §™(U) is a classical symbol if for any positive integer N there is

an integer Ky such that
Kn

o= Z X0+ o(n)
i=0
where o; is positively homogeneous of order m —i (i.e. o;(x,t€) = t™ ‘o (x, &)Vt >
0, V(z,8) € T;U), o(ny is of order —N and where X is a smooth function T;U which
is constant and equal to 1 outside the open unit ball BXU in the cotangent space T;U
at point x, which vanishes around 0. We write for short

(o)
o~ E X T
i=0

Let CS™(U) denote the class of scalar classical symbols of order m and CS(U) =
Ume m CS™(U) the algebra of scalar classical symbols.

Using a partition of unity on the closed manifold M, we can extend these definitions
from an open subset U to the manifold M.

Definition 2 Let CS™(M) denote the set of functions o € C®(T*M) such that
given a partition of unity subordinated to a trivialising atlas (U;,;), o(x,§) =
Zi ’L/Jl(!E) O’i(l',f) with o; € CSm(UZ)

CS(M) =U,pc g CS™(M) denotes the algebra of all classical symbols on M.

This definition makes sense since ¢ would have the same form (in particular, the
order m would not change) for another partition of unity subordinated to another
coordinate chart.

When M = IR" it makes sense to consider symbols with constant coefficients, i.e.
symbols which are independent of x € M.

Definition 3 Let CST", (IR"), resp. CSc...(IR™) denote the set of classical symbols
of order m with constant coefficients on IR", resp. the algebra of classical symbols
with constant coefficients.

Remark 1 Changing the cut-off function amounts to changing o(ny by a smoothing
symbol.

Let us recall the notion of Wodzicki residue on classical symbols.[W], [K]
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Definition 4 Let U be an open subset in IR"™ and x a point in U. The (local)
Wodzicki residue of a classical symbol o € CS(U) at point x is given by

I‘eSx(O') = /|£|1 U—n('I:a 5) dS§7

where ds€ = S0 (1) dey A - AdEg A - AdE, and €2 = ST €2 s the
canonical norm in IR™.

Remark 2 For any t > 0 we have dg(t§) = t"ds& and o_p,(x,t§) = t"o_,(x,§) so
that the form o_,(x,£) ds€ is positively homogeneous of degree 0.

Proposition 1 [W],[K] It extends to o € CS(M) by linearity using a partition of
unity and x — res, (o) = flilzl o_n(z,€) ds defines a global density so that we can

set:
res(a):/M dz /§|1 o_n(z,8)dsé,

which is independent of the chosen partition of unity and coordinate chart.

Remark 3 The Wodzicki residue does not depend on the choice of cut-off function
X chosen to write o ~ Z?io X Om—i where m is the order of o, since x only modifies
the smoothing part and hence not the homogeneous part of order —n involved in the
definition of the residue.

We now extract finite parts from otherwise divergent integrals [H], [G], [W], [KV]:

Proposition 2 Let U be an open subset of R™ andletx € U. Given o ~ Z?io X0i €
CS™(U), the expression fB,"(O R) o(x,&)d€ has a formal asymptotic expansion

oo

Rmfi+n
/ij(O,R) o(z,§)d§ = c(x) + Z a;(z) i + b(z)log R

=0, m—i+n#0

where ¢(z),a;(z),b(x) € C. The constant b(x) coincides with the local Wodzicki
residue density res, (o). Here BX(0, R) is the ball of radius R in T, U centered at 0.
Whenever res, (o) = 0, the constant term c(x) = fpr_, o fB*(O,R) o(x,&)d¢ is inde-
pendent of the rescaling R — AR so that the finite part :

L owom = 3 [ s@otrod

x

+-LWUW”%Q%
Kn

1
- Z m /|£|—1 ox(w,§) dsé (4)

=0, m—i+n#0
is well defined. It is also called the cut-off integral of o(x,-).

Remark 4 This cut-off integral extends the ordinary integral in the following sense;
if o has order smaller than —n then fB,*(O R) o(x,&)d¢ converges when R — oo and

frop o(@,§)de = [1.; 0(x,€) dE.
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Proof: We drop the explicit mention of x in the proof and identifying TXU with
R". We also write B(0, R) instead of B*(0, R) and S(0,1) instead of SiU. Using
the splitting o = ZlK:A(’) X 0i + oy, we first split the expression

/B NG Z / IRRIGEXE d€+z / G /B JRIGES

The integrals on B(0, 1) converge and we want to investigate the integral on D(1, R).
By linearity, we can restrict ourselves to a homogeneous component ;. We have

R
: de = m7i+n71d S d
/D(LR)U(E) ¢ /1 , ’“/5_1”(5) st

where D(r,R) = B(0, R) — B(0,r) for r < R. We distinguish two cases:

em —i+n = 0 in which case we get fD(l ) 0i(€) d§ = fD(l R) oi(&)d¢ =
log R fs 0,1) oi(§) de.

em —i+n # 0 in which case we get fD(l R) oi(&)d¢ = fD(l R) oi(&)d¢ =
erl—i+n
(m7i+n - m—1i+n) f\g\:l 7i(£) ds¢.

Combining these different cases we get:

/B(O,R)O—(f) S /B(OJ)X(@U(E) d§+/mn o) (€) dé

Kn i
Rm +n 1
+ Z <m—i+nm—i+n) /|€|_10i(£)dsg+

=0, m—i+n#0

+ logR [ oon(€)dst.
[€]=1

Extracting the finite part yields

P [, 0@ = [ x@o@de [ owmede

Kn

1
- Z m /IEI—l Ui(f) dsé.

i=0, m—i+n#0
Changing R to AR introduces an extra finite part fS(O 1 o_n(§) d€, which vanishes
whenever res(o) = flflzl o_n(§)ds& = 0.

The following covariance property will be useful to extend cut-off integrals to symbols

in CS(M).
Lemma 1 [L] Let U be an open subset of R™ and let x € U. Given o € CS(U),
whenever o_, = 0 then for any A € GL,(IR),

detd] 4 o(@, AdE =4 ola,€)de.

T*U T:U
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Definition 5
CS*2(U) :={o € CS™U), m¢ L}y, CSFZ(R")=CS*%(R")NCS,..(IR").
Similarly, we define

CS*Z(M) := {0 € CS™(M), m ¢ Z}).

Proposition 3 The cut-off integral fT*U d€, x € U is well defined on C’S¢Z(U) and
the cut-off integral fT*M dé dx is well defined on CSE%(M) by

][* xgdxdg_Z/ da Yi(§)oi(x, &) dE

for any o =3, ;05 € CS(M) where {1;,i € I} is a partition of unity subordinated
to an atlas (Us,i € I) and o, € CS(U;).

Proof: Since the positively homogeneous components o; of any o € CS#%(U) have
non integer order, there is no positively homogeneous component of order —n and
the Wodzicki residue vanishes. It then follows from Proposition 2 that the cut-off
integral fT* (x,€) d€ is well defined for any = € U.

Let o = Z W0, € CS(M) where o, € CS(U;) and {4;,4 € I} is a partition of unity
subordinated to an atlas (Us,i € I). If ¢ € CS(M)#%, then o; € CS(U;)#% so that
the component o_,, vanishes in any local coordinate chart. By lemma 1, we know
that in that case, the cut-off integrals f—T*U Vi (&)oi(x, &) d€ transform covariantly
under a change of coordinate, so that they patch up to an integral

][T*M xfdmdf—Z/ drd (o, €) de.

1.2 Classical symbol valued forms
Let us first define symbol valued forms on T*U where U is an open subset of IR".

Definition 6 Let k be a non negative integer, m a real number. We set

QkCS™(U) = {a € QX(T*U),

a = Z arj(z,§) der NdEy
IC{1,-,n},JC{1,--,n},|I[+]|J|=k
with arg € csm ()},
and
okcsw) = (J ekcsm).
me R

The order of a € QFCS™(U) is given by m. Furthermore, let

Qb cstEw) = | Qosm(U).
me¢Z
Here, (x1,+,@n, &1, +,&,) is some coordinate system on U and we have set

drr = dy, A+ -Ndwgy, d§y = d&j A+ -+ dE;, when I = {iy,ig, -+ ir}, J = {j1,  , jm}-
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Remark 5 o With these conventions, d§; is of order 1. Also, a k-form of order
0 reads o = ZquJl:k ar,y(x, &) dxr Ad€y with ay g of order —|J|.

o These definitions are independent of the coordinate system since a coordinate
change does not modify the behaviour in & of the oy j; in particular it leaves
the order unchanged.

e The order of a zero degree symbol valued form o € Q° CS™(U) coincides with
the order of the corresponding classical symbol o.

Lemma 2 A classical symbol valued form o € Q¥ CS™(U) of order m has an asymp-
totic expansion of the following form. For any non mnegative integer N, there is a
symbol valued form a(ny of order —N such that

N
o= Z Om—i T Q(N)
i=0
wWith Qup_; = Z\IHIJI:/C ag, m—|J—i dxrr A d€y is positively homogeneous of order

m — i, with a jm—|7—; positively homogeneous of order m — |J| —i. Moreover for
any integer j < m, we have

(da); = day.

Proof: The first part of the statement follows trivially from the description of «
combined with the properties of ordinary classical symbols. Indeed,

o = Z 0417J(l',§)d$1/\dfj
IC{L""n},JC{1"","}»\I|+\J\:k

with ar ; € CS™I7I(U), and for each multi index I,.J, there is some ar, g (ny of
order m — |J| — N such that

N

Qapg = E a1, Jm—i T O J(N)
i=0

with ar jm—; positively homogeneous of order m — i. Adding the latter we get

N
a = Z Z ar, gm—idry Nd&y + Z ar, Ny drp ANdéy
i=0 1,7 1.7

N
= Z Om—i T Q(N)
i=0

where we have set a,,—; := ZI’J ag,7.m—i dry A d€y which is positively homogeneous
of order m — i and a(yy := Y_; ;as j(n) Which is of order m — N — |J| — N.
As for the second part of the statement we have

do), = |d Z ar.yder AdE;
[1]+]T|=k
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( %a[,Jdl‘l/\d.II/\de

=1 |I|+|J|=k i
11+17] ;

+

s—ag,7d&nm Ndxp ANdE s
= 1|I|+\J\ k §m

J

Z (aOé[,J) dxy Ndxp NdEy
J=1Jl

Iy
=1 |I|+|J|=k
- 0
+ Z Z (041,1) d&m Ndxp N dEy
I=1|I|+|J|=k Om J=lJI=1

0
> By =1 dxy Adxp AdEy
LT+ |=k

)
> ¥a17J7j_‘J|dml Adxr AdEy
LI+ J|=k ™

ag,gi—1g dry Nd&y
7

Jr
- = 3M3 HM:

= d

o

j .
The last line follows from our conventions setting 7 = m — 1.

Remark 6 In particular, for « € QCS(U) we have:

(da)_, =da_p,.

n

1.3 Cut-off integrals extended to non integer order classical
symbol valued forms

Let U be an open subset in IR". Just as the ordinary Lebesgue integral extends to
forms, the cut-off integral on T*U extends to any o € QF CS#%(U) by:

][ Q= Z dLC[ ][ Oé[deJ.
U |+ |=k 2U

Since computing the cut-off integral JLT*U boils down to taking the finite part when

R — oo of some ordinary integral on a ball B(0, R), it vanishes on terms a; ydz; Ad€;
whenever |J| < n and we have:

f*Ua= Z dxy Z][ arydéy,

which lies in Q*~"(U). Since the a;’s lie in CS%%(U), the cut-off integrals Frep rsdés
are defined without ambiguity. :

If TXU is equipped with the volume form dvol,(§) = d& A -+ A d&,, as in the
case of ordinary integrals, we recover the cut-off integral on symbol valued functions

10
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o € CS*%(U) via the integral on forms by integrating the top form o(z, &) dvol, ()

setting:
fT*UU(x,f) = ][T*Ua(m,f) dvol, (&).

Definition 7 Let for any non negative integer k, QF CS(M) denote the space of
forms o € QF(T* M) such that given a partition of unity subordinated to a trivialising
atlas (U, ¥;), a(z, &) = Y, ¥i(x) ai(w, &) with o; € Q*CS(U;).

Similarly, let QF CS¥%(M) denote the space of forms a € QF(T*M) such that
given a partition of unity subordinated to a trivialising atlas (U;, 1), a(z,§) =
> i(@) i, €) with o € QRFCSFZ(U;).

Remark 7 This definition makes sense since o has the same expression for another
partition of unity subordinated to another coordinate chart.
When M = TR™ it makes sense to consider constant coefficients symbols valued forms.

Definition 8 Let for any non negative integer k, Q¥ CS..(IR") denote the the
space of forms a € QF(IR®") such that o = ZUH‘IJI:’f ar gdxp ANdEy with oy g €
CSc.(R").

The cut-off integral can be extended to non integer order symbol valued forms on M.

Definition 9 Given a(z,&) = Y, ¢i(x) ay(2,€) € QF CSFZ(M) ~where as before,
(Ui, ;) is a partition of unity subordinated to a trivialising atlas (U;,i € I) of M,-
we set for any x € M:

f,

*
x

[ w0 [ Suw e

Remark 8 This definition makes sense in as far as it is independent of the choice
of coordinate chart and partition of unity. Indeed, on each trivialising chart U;, when
|J| = n, the cut-off z'ntegmlfT*Ui (aj)p; d&y is proportional to )CT*Ui (i) g d&xn---A
d&, which is a cut-off integmlmof an ordinary non integer order szymbol. Since cut-off
integrals of mon integer order classical symbols patch up correctly to build a well-
defined cut-off integral on M, the same holds for non integer order classical symbol
valued forms.

o8 = Y w0 { o)

M

and

1.4 The Wodzicki residue extended to classical symbol valued
forms

Let us now extend the Wodzicki residue density from CS(U) to QCS(U). The
definition is based on the following straight forward lemma.

Lemma 3 Let p : T*U — S*U denote the radial projection p(x,&) = (z, é—l) A
form a € QCS(U) has order zero if and only if it can be written:

alz,r w):=p alz,r w) Adr

for some a(x,w) € Q(S*U).

11
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In particular, given any o € CS(U), the top form
ap(z,7 - w) = 0_p(z,r w)p dsw Adr

where dsw is the volume form on S*U, provides an example of zero order symbol
valued n-form. More generally, any form o = Z\I\HJI:’C argdzy ANdéy € QFCS(U)
with a, ; of order —|J| is a zero order symbol valued k- form and therefore induces
a form & on S*U.

Definition 10 Let U be an open subset of R"™. Given a zero order symbol valued
form a € QCS(U) we set for any x € U:

resy (a) = /*Uo?(x,w).

x

It extends by 0 to all of QCS(U).

Remark 9 e The Wodzicki residue vanishes on QF CS(U) for k < n since a €
QFCS(U) = a € QF~1(S*U) and & has degree k—1 < n—1 so that the integral
of & on S;U wvanishes.

o The Wodzicki residue on forms relates to the Wodzicki residue defined on or-
dinary symbols as integrals on forms relate to integrals on functions. Indeed,
given any ordinary classical symbol o € CS(U), the Wodzicki residue density
of the associated symbol valued form o, defined above reads

res, (a,) = /S*U ay(x, &) = /S*Ua_n(x,w)dsw = res, (o),

where res, (o) is the ordinary Wodzicki residue density of o.

Proposition 4 Let U be an open subset of R"™ and k be a non negative integer. Let
a=>, ;ar der Adéy € QF CS(U). For any x € U we have:

res; (o) = Z res;(ary)day,
|I|=k—n,|J|=n
where resy (ary) is the ordinary Wodzicki residue density of ayy € CS(U).

Proof: Tt follows from the second part of the above remark, that res,(cd§y AA--- A
d¢,) = res, (o) for any o € CS(U). Applying this to o = e;ary (|J| = n) where €;
is the signature of the permutation i — j; with J = {j1,- -, jn} yields the result.

In order to generalise this extended Wodzicki residue from an open subset in IR"
to the manifold M, it is useful to caracterise zero order symbol valued forms on M
using the Liouville field on T*M. The group IR™ of positive real numbers acts on
T*M by:
Rt xT*M — T*M
(ta (Z’,f)) - ft(l.7£) = (.’E,té-)

12
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In local coordinates, the Liouville field:

X(e.6)= 5 lwd)

reads . 5
X(z,8) = ;fzaf&
Lemma 4 A form o € QCS(M) has zero order whenever
Lx(a)=0
where Lx is the Lie derivative in direction X.

Proof: « has zero order whenever
a(z, e &) = a(z,&) Vt>0.

Differentiating on either side at ¢ = 0 yields the result since

d d
Lxa=— fla=— te).
X« dt It:()ft « dt ‘tzoa(x7 € 5)

Remark 10 This confirms the fact that the requirement that the symbol valued form
have vanishing order is covariant, which was to be expected since the order is a co-
variant concept.

Definition 11 Leta € QCS(M) be of zero order or equivalently let it satisfy Lx (o) =
0, where X is the Liouville field defined above. Then, the restriction ay to a coordi-
nate chart U reads

ay(z,r-w):=p a(z,r w) Ndr
for some & € Q(S*U) where a(z,w) is a uniquely defined form on S*M.
The Wodzicki residue of ay is defined at a point x € U by:

res; (o) 1= / ay(z,w).
SxM

Given an atlas on M and a partition of unity (U;, 1,1 € I) subordinated to it, if
a =Y U;a; then

res(a) = Z /M Yi(z) resg(ay),

where res, (a;) is the Wodzicki density of the restriction «; to U;.

1.5 Integrals of holomorphic families of symbol valued forms

Recall that given an open subset U C IR™ (resp. an n-dimensional manifold M), for
any real number m the class CSJ*(U) (CS™(M)) of classical symbols of order m with
compact support on U (resp. of classical symbols of order m) can be equipped with
a natural Fréchet topology so that CS(U) = U,,c g CS™(U) (and hence CS(M) =
Ume mr €S™(U)) comes equipped with an inductive limit Fréchet topology. We first
recall the notion of holomorphic regularisation (see e.g. [P] for a review of various
regularisations):

13
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Definition 12 A holomorphic reqularisation procedure on C'S(U) is a map

R:CS(U) — Hol (CS(U))

o — o(2)

where Hol (CS(U)) is the algebra of holomorphic maps with values in CS(U), such
that

1. 0(0) =0,

2. o(z) has holomorphic order a(z) (in particular, «(0) is equal to the order of o)
such that o/(0) # 0.
Taking M instead of U leads to a holomorphic regularisation on CS(M).

Examples of holomorphic regularisations are the well known Riesz regularisation o +—
o(2)(z,§) == o(x,£) - |£]7% and generalisations of the type o — o(2)(z,§) := H(z) -
o(x,€) - |§|7% where H is a holomorphic function such that H(0) = 1. The latter
include dimensional regularisation (see [P]).

Proposition 5 [G], [KV], [L] Given a holomorphic regularisation procedure R :
o +— o(z) on CS(U) and any symbol o0 € CS(U) (resp. CS(M)), the map z —
JCT,*U déo(z) (resp. z— f5.,, dedé o(z)) is meromorphic with simple poles at points

in a~Y([—n, +oo[NZ) where « is the order of o(z). Moreover for any x € U

Res. o fT () de = —ﬁresx(cf(o»,

respectively

Res,—o ][*M o(z)(x,&)d¢ = —a,ires(o(O)).

(0)

The finite part when z — 0 is defined by:

/R o(z,&)d¢ = fpzzoy[T o(z)(x, &) d§

*U U

*
x x

. 1
= ilir(l) <][T;U déo(z)(z, &) — ;Reszzo ]{1

*
@

U

dg G(Z)(fc7€)> ,
respectively

/R o(e,€)drde = fo,_ /def;Mo*(z)(w,f)dg

M
. 1
= 211)% y dx <]€1;M déo(2)(z,§) — ;Reszzo 72;]\4 d¢ U(Z)(x,§)> .

Proof: By linearity and using a partition of unity, we can restrict ourselves to the
case 0 € CS(U). We identify T;U with IR" using a coordinate chart. From equation
(4) we have

7[ o) de = /B IRCELE

14
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Kn

1
S S sy R

=0, a(z) —i+n#£0

+ [ o
= [ e
B(0,1)

Kn

1
B Z a(0) —i+n+a/(0)z+o(z) /5(0,1) oi(2)(@,£) dg

i=0, a(z)—i+n#£0

+ [ awmEEe

where we have written a(z) = a(0) + o/(0) + o(z). As a consequence, we have that:

Res.—q ][ (), €)dE = Resemy /B o O

Kn 1
- R e S JRCIEOL:
+ Res.—o /111” oy (2)(x, &) d§

1
- -5 /S oy OO 6 de

1
= o) res;(0(0)).

This result extends to classical symbol valued forms.
Definition 13 A holomorphic regularisation procedure on QCS(U) is a map

R:QCS(U) — QHol (CS(U))

w — w(z)

where
QHol(CS(U)) = {zr w(z) =Y wrdz Ad&y € QCS(U),
1,7
z—wry(z) lies in HolCS(U)
for all multi —indices I,J}
and
1. w(0) =w,

2. w(z) has holomorphic order a(z) (in particular, «(0) is equal to the order of w)
such that /(0) # 0.
Replacing U by M defines a holomorphic reqularisation on QCS(M).

15
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Remark 11 Clearly, any holomorphic regularisation R on CS(U) induces one on
QCS(U) setting:

R(W) = ZR(W}J)dl‘[ ANdEyg.
7

Theorem 1 Given a holomorphic reqularisation procedure R : w +— w(z) on QCS(U)
(resp. on QCS(M)) induced by a regularisation R : o — o(z) on CS(U) (resp. on
CS(M)) and any symbol valued form w € QCS(U) (resp. QCS(M)), the map
z fT;U w(z) (resp. z — f7.,, w(z)) is meromorphic with simple poles at points in

a~Y([=n, +oo[NZ) where a is the order of w(z). Moreover for any x € U
1
Reseco f | w(2)(@:8) = —grese(0)

respectively

Res.—q 7[ @ = L es((0).

a’(0)

The finite part when z — 0 is defined by:

/ijw(x’g) = fp.oo ]{F;UW(Z)(% )

. 1
= lim (f;Uw(Z)(x,fS) — S Res.— f;UW(Z)(x’§)> ;

respectively

/wa(x’ ) fpz:O][*Mw(z)(x,g)
=l (7[ 2 “Res.—o fT Ww(z)(a:,o) ,

Proof: The result follows from applying Proposition 5 to each component wy;(z) of
the form w(z) = Y ;,; wrs(2)der A d&;. The symbol valued form wr;(z) has order
ary(z) = a(z) = |J| so that a7 ;(0) = a’(0). Since z — fz..,; wrs(2) is meromorphic

with simple poles so is z — fz..,; w(z) and we have

Res,—g 7[T;Uw(z)(:r7§) = ;Reszzo ﬁ:UwIJ(z)(m,f) dry NdEy

= _ Z = 1(0) res, (wry(0)) dxy AdEy
77 Qs

by Proposition 5

1

= ————= ) res;(wrs(0))drr NdE
I0) ; 1J 1 J

1
= —Wresm (w(0)),

where we have used Proposition 4 in the last equality.
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1.6 Stokes’ property for cut-off integrals and the Wodzicki
residue

CS(U) is equipped with the left product on symbols:
1
o-po = Zl aa?o' . agg’
[0

which lies in CS™t"' (U) if 0 € CS™(U) and o/ € CS™ (U). (CS(U),-) is an
algebra ! on which the Wodzicki residue defines a trace [W], [K]:

res(o - 0’') =res(o’ - o) Vo,0' € CS(U).

The left product -7, on symbols extends to forms. Indeed for two classical symbol
valued forms o = 3, viq; = 3, %D ar,gd€y AdEy and B = Y, i =
Y icr Vi ZK,L ak ;A€ N dEy, the product

anLBi= 0 Y > (aryi-rBr.La) dey AdEy A date AdE
icl 1,J K,L

is independent of the choice of atlas and subordinated partition of unity (U;,¥;,i € I).
(QCS(M), Ar)is an algebra. 2

Theorem 2 For any 6 € QCS(M) with order 0 (or equivalently such that Lx(8) =
0 where X is the Liouville field), then

res (df) = 0.

The triple (QCS(M), d,res) yields a cycle which we refer to as the Wodzicki residue

cycle. The associated n-character (see Appendiz A) reads:
res

Xi (o0, yon) =1es (00 L doy AL -+ - AL op), Yoo, -+, 0n € CS(M).

Proof: The first part of the theorem follows from Stokes’ property of ordinary
integrals. First observe that if § is of order 0 then so is d 3 since (dﬁ)j = d3; (this
can also be seen from the fact that £Lx(dS) = dLx(3) = 0) so that res(df3) is defined
by integration on S*M. But,

res(dﬂ):/ dg=20
S*M
since S*M is boundaryless. This says that the linear form res on Q C'S(M) is closed.

The fact that the ordinary Wodzicki residue defines a trace on C'S(M) then implies
that res (a7 - (Vi - Br,0.i)) = res ((¥; - Br,ri) L or,7,:) from which it follows that:
res(a Ap, B) = (=1)1Plres(B AL )

so that (QCS(M),d,res) defines a cycle.

Similarly to ordinary integrals, cut-off integrals on forms satisfy Stokes’ property
and cut-off integrals on symbols satisfy an integration by parts property.

IStrictly speaking, only the integer order classical symbols form an algebra, by C'S(U) we actually
mean (as it is commonly done in the literature) the algebra generated by symbols in C'S(U)

2Here again, strictly speaking, only the integer order symbol valued forms form an algebra, but
abusing notations, we write Q C'S(M) for the algebra generated by C'S(M)-valued forms.
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Theorem 3 Let U be an open subset of R™ and let 3 € Q"= CS%(U) be a symbol
valued form with compact support in U. Then

B = 0.
U

In particular, let o € CSE%(U) be a symbol valued form with compact support in U.
Then

9]
][Uafz o(z,§)dedé =0 Vie{l,---,n}.

Similarly, for a closed manifold M, given any B € Q"' CS¢%(M) we have,

/ w-o

Remark 12 o Integration by parts formula in £ as stated in this theorem com-
bined with the usual integration by parts formula in x yields the cyclicity of the
canonical trace TR on non integer order symbols introduced by Kontsevich and
Vishik in[K'V] defined by

1
G 1, oale€duds

where o 4 is the (local) symbol of A. Indeed, taking the product of two operators
boils down to taking the left product of their local symbols, which involves partial
differentiation both in x and in & so that the proof of the cyclicity of TR boils
down to integrating by parts in both x and €.

TR(A) :=

o The integration by parts formula also yields translation invariance of cut-off
integrals on non integer order symbols. Indeed, using a Taylor expansion 1 +—
o(€+m) inn at 0 yields, for any © € U, the existence of some 6 €]0,1] such

that:
][ o(z,&+n)df = Z][ “ Z][ Mna
2U 7 la|<k /T2U a! =K al

][;Udé“a(%&

where we have used that if o has non integer symbol then so has D%c so that all
the terms corresponding to |a| # 0 vanish by the integration by parts formula
as a result of which we are left with the |a] = 0 term.

Proof: It is sufficient to prove the statement for an open subset U. Indeed, using a
partition of unity on M, by linearity of the cut-off integral, we can restrict ourselves
from € QCS(M) to 8 € QCS(U) with compact support in U. Moreover, the
integration by parts formula on T*U easily follows from Stokes’ formula on T*U as
follows. For any x € U we have:

7[T;U88§io(a:,£)d€ = (_l)i17[;Ud<0(x7§)d£1/\"'/\d%i/\"'/\dfn)
=0
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by Stokes’ applied to 5 := o(z,&)d&g A= -+ AdE; A -+ AdE,, where we have left out d§;

in the wedge product. Integrating on U then yields the result.

We are therefore left with the proof of JCT* v dB = 0. In local coordinates on T*U,
the n — 1 form reads (B(z,§) = ZI,JC{1,»--,n}7|1\+|J|:2n—1 Br,g(x, &) dxr A d§y with
Br.g € CS#%(U) so that, letting B*(0, R), resp. S*(0, R) be respectively the ball
in the cotangent bundle of radius R centered at the origin, and the sphere in the

cotangent bundle of radius R centered at the origin, we have

f. o)

Iz,;][T*U d (Br,y(z,8) dry ANdEy)

fProo d (Br.s(z,§)drvy Ndy)
; R /B 1,0 I J

*(0,R)
ZfPRﬂoo/ Br.y(x,§) dryr AdSy
77 5(0,R)

using Stokes’ property for ordinary integrals

KNI,J

3 n [ X00(€) B O e A

I1,J j1,0=0 5*(0,R)

lim Br,g (N1,

R—oo [ g« (0,R)
KNI,J

where (7 = E X1,7 81,01, + Br,.7(N:)
j1,0=0

KNI,J

D e /*(0 xr,(&) B, j; (@, &) dxp A dEy

I,J ji1,5=0 5*(0,R)

since |§1|imoo Br.g ;) (@,§) =0

KNI,J
S frow / Br. i, (@,8) dup AdEy
1,J j1.7=0 S*(0,R)

since xrs equals 1 outside B*(0,1)

Kny s

S°S fpp R / Brsin (@, €) dar A dEs

1,J j1.7=0 S*(0,1)
0 since myjy—jrg+n—1#0,

where my j ¢ Z is the order of (3 ;.

Corollary 1 let U be an open subset of IR". Given any holomorphic regularisation
R:wrw(z) on QCS(U) (resp. QCS(M)) induced by a holomorphic reqularisation
on CS(U) (resp. CS(M)) and given any 3 € Q"1 CS(U) with compact support

(resp. B € Q"1 CS(M)), then

o () =0
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respectively

o] dld2) =0

In particular, this yields an integration by parts formula. For any o € CS(U) with
compact support,

fp.—o ]{F*U Bafi (0(2)) ded¢ =0 Vie{l,---,n}.

Similarly,

Res.oo ] d(3(:)) = —restds) 0.

respectively

1
Res.—o ][T (B = —ges(ds) =0

where b(z) is the order of 5(z).

Remark 13 o The first part of this corollary can be summarised by the more

compact statements

R R
0

by which it is understood that the regularisation procedure R applies to B and
o before differentiation and not to the readily differentiated symbols d3 or to
)

67&0'.

It follows from translation invariance for cut-off integrals that JCT;UO'(J},f +
n)(z)dé = fr., 0(x,£)(2) dE outside the set of points zy for which o(z) has
integer order. Taking finite parts yields translation invariance for reqularised
integrals:

R R
foowgrmic={ oo
;U U

By this we mean that the regularised symbol R(o) is translated before taking
finite parts.

When R corresponds to dimensional reqularisation o(x,&) — H(z)o(z,£) &7,
these two remarks justify the use of integration by parts and translation invari-
nace in computations involving dimensional reqularisation in physics. Namely,
one can apply integration by parts or translation invariance after having “com-
plexified the dimension d — d(z) := d — z” (or after having “regularised”
o +— o(z) in our terminology), and only then can one take finite parts let-
ting the dimensional parameter d(z) tend to d. However, integration by parts
or translation invariance cannot directly be applied to finite parts or in integer
dimensions.

The second part of this corollary yields back Stokes’ property for the Wodzicki
residue extended to forms.

Proof: The proof easily follows from applying Stokes’ formula to 3(z) or integration
by parts formula to %0’(2’) outside the discrete set of points zg for which b(z), resp.

the order of o(z) is an integer. Taking either finite parts or complex residues then
yields the result.
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2  From Stokes’ formula to cyclic Hochschild cocy-
cles associated with star products

2.1 Trace forms on a unital algebra (A, %)

Let (A, *) be an associative algebra over some ring R with unit 1 and let A/ be an
R-submodule of A. Let C™ (N, R) denote the space of R-multilinear valued forms on
NE L When N = A, C™ (N, R) corresponds to the space of n-cochains on A.

Definition 14 We introduce the antisymmetrization maps on C* (N') defined by:
Als: C™ (N, C[[v]]) — C™ (N, C[v]])
1
X = AltX(a07"'7an) = E Z G(O)X (a’07aa'(1)7"'aao'(n)>
ocEX,
which corresponds to antisymmetrization on all but the first variable. >

To a linear map T : N' — R we associate trace forms
U, (ag, - ,an) =T (ag*x a1 *ag %+ *Ap_1 *ap) (5)

which are well-defined provided ag * a1 * as * - - - x ap_1 * a, lies in N'. When N = A
this yields a n-cochain on A. We focus on antisymmetrized trace forms:

Alt Wor(ag, -+, a0k) =T (ag * [a1, -, a2k]«)
Since 1 is a unit element in .4 we have:
Alt Wop (1, a9, -, a0k) = Alt Uop_1(ay, -+, ao) = T ([a1, -, a2k)«)
where, following the notations of [HH],we have set:
1
[a1,- -, anls = — Z €(0)ag(1) * -+ X Ag(y)-
o€,

The following proposition relates the B-boundary of the antisymmetrized trace forms
with Helton and Howe’s fundamental trace forms [HH] which correspond to Alt Wor (1, ay, -+, a9,) =
T(la1,- - ,a2x]s) in our setting.

Proposition 6 For any ai,---,as; € A
(BoAlt Wop)(a1,---,a0) =T ([a1,- -, a2k)x)
and

(BALt Uor)(ar, -, ak) =2k - T ([a1, - -, G2x)x)

3In the course of the paper we shall also use the following ”total antisymmetrisation” denoted
by a calligraphic Alt:

Alt: C™ (N, C[V]])) — C™ W, T[]

x +— Altx(ao, -, an) = CE > €)X () o(n) -
T oETn41

Here ¥, denotes the permutation group on n elements and €(o) the signature of a permutation o.
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are proportional to Helton and Howe’s trace forms. Moreover,
T tracial & AltT(ay,---,a2;) =0Vk € N < BAlt Uy, =0 VEk € N.

Here By and B are operators on cochains the definitions of which are recalled in

Appendiz A.
Proof:The first part of the proposition follows from the fact that 1 is a unit for the
product *:
(Bo Alt Wor)(ar, --,a2,) = AltWor(l,a1,---,a0) +AltV(ay, -+, an,1)
= T(]-*[ala"'7a2k]*)+T(a17[a27"'7a2ku1]*)
1
= T([ah Ty G/Qk]*) + 27T (af17 Ha27 G/g]* Tty [CLQk, 1]*]*)
= T([ala"'7a2k]*)~

As for second part of the proposition, all we need to check is the equivalence

T tracial & AltT(ay, - ,a9,) =0 Vk € IN.

The implication from right to left is easily obtained choosing k = 1. The other
implication follows from an observation made by Helton and Howe [HH], namely

that:

[a, -+, agklx = 5 ([a1, [ag, -+, agklils — [a2, a1, -, agk]slx — - -+ = a2k, [a1, -, agk—1]+)x) -

Applying T then yields the result since T' vanishes on x-brackets.

Proposition 7
T tracial & b, ¥op, =0 Vk e INU{0}

where by is the Hochschild coboundary operator associated with the product x as de-
fined in Appendiz A.

Proof: b, ¥y = 0 = T([a,b],) = 0 which yields the implication from right to left.
The implication form left to right also follows from a straightforward computation
using the cyclicity of T w.r. to *:

b*\Ilgk(ao,al, e ,a2k+1) = T((ao *al) * .. a2k+1) — T(ao * ((11 * a2) * .. a2k+1)
+T(ag % -+ * (agi—2 * @2i—1) * - - % Aopq1) — T'(ag * - - - % (agi—1 * ag;) * -+ - * agp41) +
+T(ag * ag * - - * (agg * agk4+1)) — T((agk4+1 * ap) x ay - - - x asy)

= 0.

Remark 14 It follows from the above that when T is tracial, then Alt Uoy is cyclic
and Vo is by-closed. But one does not expect Alt Woi to be a cyclic by-cocycle in
general.

2.2 Trace forms on a deformed algebra

Let now (A, -) be an algebra over € and A := A[[v]] so that elements of A are formal
power series in v, a = Z,;“;O apV®, ap € A. Ais equipped with a star-product = which
makes (A, %) an associative algebra.

With the notations of the previous section, we can set
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1. R = C[[v]] and see A as a C[[v]]-algebra,
2. R = C in which case A is seen as a complex algebra.

If N C Ais a complex subspace of A then N'= N[[v]] C A = A[[V]] can be seen in the
first case as a C][[v]]-submodule of A and in the second case as a complex submodule
of A. We introduce the following terminology:

Definition 15 Let T : N — R be an R linear map. The traciality of T w.r. to x
i.€.

T([a,b,) =0 Va,beN st. [a,b,:i=axb—bxaeN (6)
is refered to as
1. strong closedness of the star product w.r. to T if R = C[[v]],
2. closedness of the star product w.r. to T if R = C.

When R = C[[v]], the map T can be written:

T:N — C[]
Zakuk — ZTk(a)Vk,
k=0 k=0

where T}, is a C-linear map on A for each non negative integer k. Clearly, if x is
strongly closed w.r. to T then it is closed w.r. to any of the projections T}, so that we
recove the usual concept of strong closedness. Taking 7" = T; for a given [ coincides
with the usual concept of closedness of a star product associated with a symplectic
form on a 2! dimensional manifold.

Proposition 8 The following statements are equivalent:
1. x 1s strongly closed w.r. to T
2. b, Uy, =0VEk € WU {0}
3. BAlt Uy, =0VEk € IN.

Remark 15 One does not expect Alt Wy to be by- closed. For k =1 for example, we
have b, AltWs(ag, a1az, az) = T([ag, asly]a1, as]y). Taking the cooefficient of v in the
formal power series expansion yields b, AltWs(ao, a1az,a3);y = T'({ag, a2} - {a1,as}).
Setting ag = ay,as = as, by- closedness of Alt Wy would lead to T'({a,b}?) =0 for all
a,b € A which one cannot expected to hold in general.

Proof: This follows from Propositions 6 and 7 of the previous section since x is
strongly closed if and only if T is tracial.

Given a deformation (A[[v]],*) of aa commutative algebra (A4, ), we set
6(a,b) :=axb—>b-a Va,be A. (7)
The corresponding Poisson bracket is given by

{a,b} = (6(ab) — 6(b, )y -
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Connes, Flato and Sternheimer introduced in [CFS] a cochain further investigated by
Halbout [H] in view of an index type theorem for closed star products. It is defined
as:

q)gk(&o, s ,a%) =T (ao * 9(&1, ag) * ook e(an_l, agk)) (8)

for any ag, - - - ,asx, € N such that agx6(ay,az)*- - -x0(azk_1, asx) € N. We shall refer
to this 2k-cochain as the CFS-H cochain. The next proposition compares Alt Uy with
the antisymmetrized form Alt ®5;, of the CFS-H cochain:

Proposition 9 For any non negative integer k,
Alt Uy = Alt Oy
Proof: First observe that since (A,-) is commutative,
Altf(a,b) = axb—bxa:=[a,b],

where Alt stands for antisymmetrization in all variables. Let 7;; be the transposition
that exchanges ¢ and j.

Alt @y, (ao, - - -, azr)

1
= 7(2]{;)' Z e(o)T (ao * 9(&0(1), aU(Q)) ko x Q(QU(Qk_l), aa(2k)))
oEXa

1
T (2k)! Z e(0712)T (a0 % (Ao (r15(1))s o (ma(2)) * = % OAg(ry5(2k-1)) Qo (ria(2))))
oEY ok

- Z e(o)T (aO * 0(ag(2), Ag(1)) * 0(ao(3), Ag(a)) * -+ * O(ag(2k—1), %(2k)))

T o€

e(0)T (a0 * [ao(1)s ao(2)], * - * [ao(2h-1): Go(an)],)

1
Tk' Z E(O')T (ao * g (1) * g (2) Kok Ao (2k—1) * ag(zk))
’ oEY ok

Alt \I/Qk (ao, ey, agk) .

A straightforward consequence of this identification is:

Corollary 2 * is strongly closed w.r. to T if and only if B Alt &g, = 0.
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Proof: This follows from the fact that if x is strongly closed w.r to T if and only if
B Alt Uqy, = 0.

We now consider a projected trace form.
Definition 16 Given a C[[v]]-linear map T on A we set

Yr(ao, -+, agk) =Tk (ag * ay x -+ -, agpx) = (Yar(ag, - - 7a2k))[k] )
and accordingly

Pr(ao, -+, azk) = T (ao * [ar, -+, azkls) = (Par(ao, -+, azk))py, -

The next proposition shows that Alt ¢y, Alt ¢ can be written in terms of the Poisson
brackets.

Proposition 10 Let T' be a C[[v]]-linear extension of a linear map 170 on N. Given

any elements ag, - -+, asr € A such that
1
Alt (ao{ar,az} - {agk—1,a2}) = o Z 6(0)00'{%(1),%(2)}“‘{aa(zk—n,ag(zk)} €N,
(2k) oEXok
then
Alt Yo (ag, -+, az) = Altdor(aog,---,az)
= 27F7(Altag - {ar,a2} -+ - {azr—1,a0:})
= 27k Alt T0 (ao . {a17a2} ceees {agk_l, &Qk}) .

Remark 16 In particular Helton and Howe’s trace forms in this context read

Ty ([a1,---ya)s) = 2757 (Alt{as,az}----- {ask—1,a2,})
27k Alt 10 ({a1, a2} - -+ - {ask—1,a2})

where the antisymmetrization Alt applies to all variables.

Proof: It follows from Proposition 9 that Alt oy (ag, -, ask) = Alt ¢ox(ag, - - -, agk).
From the computations of the previous section we further derive that

Alt Wop(ao, - - -, azk) k) = Alt thag(ao, - -+, ask)

1 1
= % @) Z (o) [T (ao*Alw(%(l),%(z))*"'*Alw(%(%fl)’%(zk)))][k]
T o€y
1 1
= 27@ Z G(O')Tk (ao * Alt 9(&0(1), ao@)) * % Alt G(ag(gk_l), ag(gk,)))
C oYy,
1 1
= 2767(2]{:)' Z 6(0’)7’0 (ao *Alt@(ag(l),ag(g))[l] ----- Alt@(ag(gk,l),ag(gk))[l])
’ ocEXoy
1
= mﬁ) Z €(o)ag - {aa(l)v 00(2)} Tt {aa(2k—1)aaa(2k)}
’ o€
= 27% (Altag - {ar,az} -+ {a2x—1, azr})
= 27kA1t To (CLQ . {al, ag} """ {agk_l,a%}) .
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2.3 The case of a Poisson manifold

We now specialise to a star product associated with a Poisson manifold. Let W be
an n- dimensional Poisson manifold and let A be the associated Poisson tensor. The
Poisson bracket is defined by:

{f,9} = (A, df N dg)

for any smooth functions f and g on W.
Given a subspace N C C*°(W), let

N?k .= {2k —forms « on W, (A" a)ec N}.
Any linear form 7o : N € C*(W) — € induces a map 7 : N2* — € defined by:
(@) == To (<AAkaa>) .
Lemma 5 Let k <1 and let fo, -, for € N. Then for any fo, -, for € N such
that
Alt fo{f1, f2} - {foar—1, for} = @ ezz: e(o) folforys fo)} - {fo2k—=1)> fo(2r)}
o€k

lies in N, then
o (AN fodfy Ndfa - Adfor—1 Adfa) =277 ALt (fo{f1, fo} - {for—1, for}) also

lies in N,

o 7i(fodft A+ Adfar) =278 Alt o (fo{f1, fo} -+ {fon—1, f2r}) s

where as before, Alt denotes cyclic antisymetrization on all but the first variable.

Proof: We first observe that

Alt (fo{fr, fo} - A for—1, for}) = Alt (fo(A,dfy Adfz) - (A, dfax—1 A dfor))
= 2"Alt (fo(A,dfy @ dfa) -+ (A, dfar—1 @ dfak))
= 2MAlt (fo(A®F,dfy @ dfo @ -+ @ dfor—1 @ dfor))
= 2P fo(AN dfy Adfa A A dfog—1 A dfor)
= 2M(AMF fodfy Adfa - A dfar—1 A dfar).

It follows from there that (A"¥, fodfy Adfa - - - Adfag—1 Adfar) € N2¥ since by assump-
tion Alt (fo{f1, f2} - {fak—1, for}) lies in N. Applying 7y then yields the result.

Definition 17 The linear map 7, : N?* — € is said to satisfy Stokes’ property if
7(dB3) =0 ,V(k—1)—form B on W st. dfe N?*.

Theorem 4 Let x be a star product associated with the Poisson structure on a Pois-
son manifold W, and let T(> p—yarv®) = Y pey Ti(a) v* be a C[[v]]-linear exten-
sion to an N-module N' = N[[v]] of a linear form 7o : N C C>®°(W) — €. For any
fos o+, far € C°°(W) such that Alt fo{f1, fo} - {for—1, far} lies in N we have

Alt Yor(fo, -+, far) = Altgor(fo, -, far)
T(fodfi A -+ N dfar).
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If 1, satisfies Stokes’ property then Alt o, = Alt ¢o satisfies the following condi-
tions:

1. Whenever Alt (fo{fl, f2} v {f2k—17 fgk}> € N and Alt (fl{fg, fg} v {fgk, fo}) S
N then

Alt i (fo,- -+, for) = Altor(f1,- -+, for, fo)  (cyclicity)

2. Whenever Alt ({f1, fo} - {fox—1, for}) = Al (L{f1, fo} - {fox—1, for}) € N
then Alt ’(/)Qk(l, fl; ey, ka) =0.

3. bAl Yor(fo, +, for+1) = 0 whenever the L.h.s makes sense, where b is the
Hochschild coboundary associated with the commutative product - on A.

If N = A then Altioy is the 2k-character associated with the 2k-dimensional cycle
(QA),d, 1) where Q(A) is equipped with the ordinary exterior product built from the
commutative product - on A.

Remark 17 Since Alt o, = Alt o, one could expect that the b-closedness of Alt Yoy,
might follow from that of o (which would imply the b-closedness of Alt ¢oy, since the
product is commutative). We show in Appendix B that there is no reason to expect
¢Par to be b-closed.

Proof: Combining Proposition 10 applied to T} = 79 combined with Lemma 5 yields
that

AltYor(fo, -+, for) = Altdar(fo,- -, for)
= Tk(fodfl/\”'/\dfgk).

Conditions 1,2 then follow from Stokes’ property of 7%. Indeed,

1. We first observe that whenever Alt fo{ f1, fo} - - {far—1, for } and Alt f1{fo, f3} - {for, fo}
lie in N, then d (fo f1dfa A« -+ Adfay) lies in Nay, since

(A d(f1 fodfz A+ A dfar))
= (A fodfy Adfs A+ Adfar) + (A frdfo Adfa A+ A dfor)
(AN fodfy Adfy A -~ Adfar) — (A frdfa A - Adfag A dfo)
27FAL (folfr, o} {fan—1, fou}) — 27FAL (fi{fo, f3} - {far, fo})

lies in N. Applying Stokes’ property to 5 := fo f1 dfa A -+ A dfor, we get

Alt Yor(fo, -+, far) = m(fodfy A--- Adfor)
= 7 (d(fifodfa N Ndfar)) — i (frdfo A+ Adfar)
= —7 (fidfoNdfy -+ ANdfag)
= 1 (fidfa A+ Ndfar Adfo)
= Altor(f1,- -, far, fo)-

2. Applying this to fo =1 yields 2.
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3. The last condition follows from the Leibniz rule d(fg) = df g + f dg.

bAltor(fo, -, faryr) = bm(fodfi A ANdfaryr)
= 7m(fofidfa A Ndfagsr) — Ti(fod(fi fa) A Adfargr) -
+7i(fodft A~ Nd(far far+1)) — Te(fors1 fodft A=+ A dfar)
= 7(fofrdfa Ao ANdfagr1) — Ti(fo frdfa Ao Adfagt1)

Tk(fodfr fodfs A+ ANdfogs1) + T(fodfs A fadfs A+ Adfoggr) -+

+7(fodfr A+ Adfak for+1) — Te(fort1 fo dfs A -+ A dfak)

where we have used the commutativity of the product - in the last identity.

2.4 The symplectic case

We now further specialize to a 2[-dimensional symplectic manifold W equipped with
the symplectic form w. The non degenerate 2-form w induces an isomorphism of
vector bundles:

Wi TM — T*M
v o~ V(W) = w(v,w)
with inverse:
W T*M — TM
a — o, wa)=ab).
The Hamiltonian vector field associated to a smooth function f on W is defined by:
Hy(w) = wi(df)
and the Poisson bracket by:
{f:9} = {w, Hy NHg) = (A, df /dyg)
for any smooth functions f and g on W. From this it follows that:
A = (N2WF) (w).

Lemma 6
(W, Ay =1, (W, AN =1k,

Proof: The second property easily follows from the first one using the usual nor-
malisation conventions for inner products of forms. Let us check the first property.
Using Darboux coordinates, we have:

! I
(Aw) = (A, dp; Adg;) = Z{pia%’} =1

i=1

which ends the proof.
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Given a subspace N C C®(W), we set as before N2* := {2k—forms « on W, (A"* a) €
N}. and let 7, : N2) — € defined by:

(@) =719 ((A/\k,a>)

be the map induced by some linear form 75 : N C C*(W) — C.

Lemma 7

(@) =P (e Aw™F) Vo e N2k,
Proof: On a Darboux coordinate chart with local coordinates (z1,---,x9;) we can
write

o = Z O‘ilmizkdajil VARERIVAN dl‘izk
{i1, -+ yi2k }C{1,-,21}
so that the proof boils down to showing the property for some form o = fdx;, A--- A
dz;,, in which case we have:

() = T(fday Ao Adxyy,)
= 7o ((A™, fdai Ao Adzg,, )w')
= e(a)lkn (fwl)

17 (f dxi, N---dxi,, N wl_k)
lk

il Aw™F)
where €(o) is the signature of the permutation o : j — 4;. In the third identity, we
use Lemma 6 setting p; = x9;41, ¢; = T2;-

Proposition 11 Let as before W be a 2l-dimensional symplectic manifold. If 7
satisfies Stokes’ property: 7(d3) =0 V(20 —1) —form B on W,st. dBe€ N%,
then so does 1y, verify Stokes’ property for any integer 0 < k < I, i.e. 7(dB) =
0 V(2k—1)—form B on W,st. dBe N3

Proof: Let w denote the symplectic form on W. The statement follows from Lemma
7 using the closedness of w since 74(d 3) = I* 7 (dB A w!'™F) = 1k 7 (d(B A w'™F)).

The following Corollary is then a direct consequence of Theorem 4.

Corollary 3 Let x be a star product associated with a symplectic manifold (W,w),
and let T(Y 7o axv™) = > pe To(ax)v* be a C[[v]]-linear extension to a submodule
N C NI[V]] of a linear form 7o : N C C>®°(W) — €. For any non negative integer
k and any fo,- -, for € C°(W) such that Alt fo{ f1, fo} - {far—1, for} lies in N we
have

Alt Yor(fo, -+, for) = Albdor(fo, -, for)
= Fr(fodfi Ao Adfog AW'TF)

If 7 satisfies Stokes’ property, then conditions 1,2, 8 of Theorem 4 are fulfilled.

Whenever N = A, then for any non negative integer k, Alt 1oy is the character (see
Appendiz A) associated with the 2k-dimensional cycle (Q(A),d, ) where Q(A) is
equipped with the ordinary exterior product built from the commutative product - on

A.
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When A = C5°(W) and Ty(f) = [y, fw' is the ordinary integral then

A1t¢2k(f07"‘7f2k):lk/ fodfy A~ Adfo At F.
w

Proof: From Proposition 11 we know that 74 satisfies Stokes’ property for any k
since by assumption 7; does. Applying Theorem 4 then yields the result.

Remark 18 When k =1 this last corollary yields back:

ALt o(for- s for) = 1! /W Fodfy A+ A dfar,

which corresponds to a particular case of a more general formula shown in [CFS] and

[H].

3 Cyclic Hochschild cocycles on classical symbols

3.1 A cyclic cocycle for non integer order classical symbols on
]1:{2[

Following the notations of the first part of the paper, we set
e n=2l, W= IR* equipped with the canonical symplectic form w,
o N:=CSEZ(RY), N = N[[v]] = CSEZ(R*)[[v]),

° Tgut_off (o

)= JC]RQL o w' which defines a linear form on N,
o foro =30 g ok, T (302 g on vF) = Yoy Ti(0) V¥, where Ty (o) = 75~ (ay,),
e N*:={a k—form onR* st. (A*, a)ec N}

A form o € Q2% CS(IR*), locally reads a = 24| g=k0r,g dxr A dEy with ar ;€
CS(U). Hence

(A 0) =3 I+ [ J] = kag, g (A, doy AdEy)
so that if o has non integer order,(A"*, ) also has non integer order. As a conse-
quence, Q¢ CS#%(IR*) C N?* so that
n O QR OSTEIRY) — O[]
<A/\k, a) wl

o

is well defined.

Lemma 8 The linear form 1, coincides on Q2 CSECZ( IRQI) with the cut-off integral
extended to top forms:

n(a) :][ o Va0 OSEZ(RY).
]:R2L
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Proof: A straightforward computation shows that (A%, a)w! = o from which the
result then follows.

We equip CS, .(IR*)[[v]] with the Moyal star product. Given two symbols o €
CSm (R, o' € CS7(R?), their Moyal product:

o0
oxo = Z Cr(o, 0" )*

k=0
where
o0
Cr(o,0') := Z E , E WL L IRIE G G T R !
k=011,"ik J1,",Jk

lies in CS75F™ (IR?)[[v]] since Ci(o,0’) has order m 4+ m’/ — 2k. In particular,
Ci(o,0") = 3{o,0'}. We set

0(c,0") = Z Cr(o,0") v,
k=1

which is of order m +m’ — 2.
Let 0g,---,00, € N of orders mg, my,---,mo such that Z?io m; ¢ ZZ. Then og *
01 % %02 and o) *9(01,02) koo *9(02]@,1,02]6) also lie in N.

Definition 18 Let 0o, --,09r € N of orders mqg, mq,- -, moy such that Z?ﬁo m; ¢
. We set
t— _
L Mg, 01,- -, 001) = TN (o %oy % - K o2
gzt_Off(UO7o-17 Ty OQk) = T]Sut_Off (UO *x 01 k- *O'Qk) .

We define the cut-off CFS-H cocycle:
‘I’Sztioff((fo, o1y, O2k) 1= Tevt—olf (00 % 0(01,02) % - x O(02x—1,02k))

and its projection

S}?“’”(ao, 01, ,00k) i= Tgsm_off (o0 % 0(01,02) % - *x0(02k—1,02k)) -
As a consequence of Corollary 3, Alt wg}c‘t_of = Al d)SZt_of T is a cyclic ”b-cocycle”

(the terminology is improperly used here since non integer order symbols do not build
an algebra) on non integer order symbols on IR? with constant coefficients:

Theorem 5 Alt wgztioff = Alt (j);Zt*Off reads:

Alt w;ztioﬁ(Cfo, cee O9k) = 1* ][ . oodoy N -+ Ndogg A Wik
R

and satisfies the following conditions. For any symbols ¢, -, 00511 € CSe.o( IRZI)
with orders m;,i =0,---,2k + 1 such that

1. 5228 m; ¢ 7L, we have (cyclicity)

Alt lffgzt_off(ﬂo, -, 00k) = Alt ¢§Zt_off(01, S, 02k, 00)
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2. Zfil m; ¢ 2, we have

AP =I (1 0y, o) = 0

3. Zfig_l m; ¢ 2, we have
bAlt w;zt—off(a_o’ ey O’Zk-&-l) =0

where b is the Hochschild coboundary associated with the commutative product

- on A.

Proof: This follows from Corollary 3 applied to Toc“tfoff =fand N = CSgxz( R?),

which satisfies Stokes’ property by Theorem 3. Indeed the fact that Z?io m; ¢ 2
implies that Alt oy {0’1,0‘2} s {0’2]@,1, O'gk} € N and Alt o {0'2,0'3} s {ng,a'o} eEN
so that their cut-off integrals are well-defined and condition 1 makes sense. Similarly,
assumption Zfil m; ¢ ZL ensures that condition 2 makes sense and Z?ﬁ‘l m; ¢
that condition 3 makes sense.

Setting k =1 and 09 = 1 we get back a formula similar to formulae proven in [HH]:
Corollary 4 For any classical symbols o1, -+,09; € CS...( IRQZ) with orders my;,i =

1,---,2k such that Zflzl m; 72,

0'1,"',0'21}*=ll dO’l/\"'/\dUgl.

cut—
jvlcu of f [
1R2l

3.2 Meromorphic families of trace forms and the residue co-
cycle on classical symbols on R*

Recall from Theorem 2 the character (og,01,---,0p) — res(oodor AL -+ Ar dop)
associated with the cycle (QCS(M), d, res) where C'S(M) was equipped with the left
product on symbols. On CS..(IR*), the left product boils down to an ordinary
product so that the associated 2I-residue character reads:

(00,+-,09) —res(ogdoy A -+ Ndog) .

Theorem 6 Let CS, .(IR?)[[v]] be equipped with the Moyal x-product. Given a regu-
larisation procedure R : o +— o(z) on CS..o( IRzl), for any oo, -+, 00 € CSe.c( IRQI),

the map z — At S =M (04(2),01(2), - -, o9k (2)) is meromorphic with simple poles

and its complex residue at zero
Al 3 (0, 01, - -, 0ar) 1= —a'(0) - Res,—oAlt 5 =1 (04(2), 01 (2), - - -, 0ak (2))
where a(z) is the order of the symbol valued form oo doy A --- A dog A w!™F, reads:
ALty (o9, -+, 00k) 1= 1% res (0’0 doy A -+ Ndoay, N wl_k) ) (9)

Alt 1oy is proportional to the 2l-character associated with the cycle
(Q (C’SC.C(IRQZ)) , d, res) .

It vanishes on symbols og, 01, -, 04, -+ with orders mg, my, ms,--- such that their
sum is non integer.
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Proof: Let m;(z) denote the order of 0;(z), then oo(z) x 01(2) * -+ - * o9 (2) lies in
CSEZ (R [[v]] provided Zfil mi(z) ¢ Z[[v]] so that it lies in C'SE%Z(R*) outside
a discrete number of points. Applying Theorem 5 to the o;(z) outside this set yields
that

A5 (a0 (2), -, oar(2))

= Ik ][0'0(2) doy(2) A Ndoogg(2) AWt F.

l

Applying Theorem 1 to w(z) := 00(2) doy(2) A -+ A dogy(2) AW ™F, yields:

At (00, -, 00k) = —a’(0) - 1% - Res,—oAlt Y5~ (50(2), - - -, oar(2))
= —a/(0)-1¥ -Res.—g ]/Uo(z) doy(2) A - Adogg(2) Aw!™F
= IFres (00 doi Ndog N\ -+ Ndogg, A wlik) .

Hence Alt ¢5¢° (09,01, - - -, 02;) is proportional to the 2i-character associated with the
cycle (Q <C’SC_C(IR21)> ,d, res). It clearly vanishes on symbols og, 01,09, -+ with

orders mg,my, ma, - -+ such that their sum is non integer since in that case the form
o0(2)do1(2) A -+ Adoag(2) Aw!™F also has non integer order.

3.3 Perturbed star products

Going back to a general associative algebra (A, *) equipped with a linear map T,
given a fixed element x € A, we can perturb the product x and the corresponding
linear map T as follows:

a*xgb:=axkxb; Tg(a):=T(axk)=T(k*a) VYa,be A

This gives rise to a new associative algebra (A, ) equipped with a new linear form
T (X g anv™) = > peo Thw(ax)v* and to corresponding perturbed trace forms:

U5 (ag, - ,an) =Tk (ag *x a1+ %4 ap)  Vag, - ,a, € A

and
¢§k(a07 o 'aan) = Tk,n (ao kg A1 " Ky an) VaO» cre,ap € A.

A straighforward computation shows that

Lemma 9 o If x is (resp. strongly) closed w.r. to Ty (resp. T) then % is
(strongly) closed w.r. to Ty, (resp. T,;).

o Set Ri(a):=ax*k with k € N. Then
AQ %4 A1 %4+ Kk A1 *i G = Ry(ag) * Ri(a1) %+ * Ry (0n-1) * R (ay)

and
T (00 % Q1 kg Fp Qe K @) = T (Ri(ag) * -+ - xay) .
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3.4  Meromorphic cocycles associated with the left product
on classical symbols on R"

Let us now specialise to C'S(U) where U is an open subset of IR". We equip CS(U)
with a left star product on symbols.

Definition 19 Given two symbols o € CS™(U), o’ € CS™ (U)[[v]], their (left) star
product is defined by:

oo
oxp o = Z Cr(a,0")W*

k=0
with 1
Cy(o,0') := Z aaga -0’
la|=k
It lies in CS™™ (U) since Cy(0,0") has order m +m' — k.
Note that

él (07 J,) - C’l (U/a G) = {07 OJ}
so that the left star product x,, like the Moyal product x, is associated with the

canonical symplectic form w on W =T*U.
It is useful to note that if ¢’ is independent of x then

oxpo =00 =0-0.

We are now ready to perturb the left product on formal symbols. Let U be an open
subset of IR™. A holomorphic family

k € Hol (CS(U))

such that
k(0) = Id, and ordk(z) = a(z) witha'(0) # 0,

provides on one hand a map:

Ry :0—0(z) =0 k(2)
and on the other hand a holomorphic family of perturbed star products

O %L, 0 =0 % K(2)*g o
with corresponding perturbed linear forms:

T(z) :=Tez)y, Tr(2):=Th ), k€ IN.
Take k(z) independent of z. Then
o*p, k(z) =0 Kk(2)

so that
Ry:0m—0(z)=0-k(z)

provides a regularisation procedure on C'S(U).
In particular, choosing x(z) = |£|~* yields back the well known Riesz regularisa-

tion:
ocr—o(z)=0oxp | zi| ?=0-|&7".
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Remark 19 In order to generalise this construction from an open subset U of IR"
to a manifold M, one would need to weaken the requirement o x, k(z) = o - k(2),
requiring instead that at each point © € M,

o*p k(2) =0 k(2) + 26.(2)

for some classical symbol &,(z) which might depend on the point © € M. Riesz
reqularisation on a Riemannian manifold M, for which k(z) = |£|;7 where | - | is
the norm on TU induced by the metric on M, satisfies such a requirement.

Theorem 7 Let CS...(R?)[[v]] be equipped with the left star product 1. Let R :
o 0(z) =0-k(z) on CSc..(IR"™) be a reqularisation procedure induced by a map

k € Hol (C'SC_C(IRQI)) (which is therefore independent of x). For og,---,00, €
CSC,C(IRQZ), set:

U o (2) (00, o) = TR (00 (2) % 01(2) *p - xp oon(2))

= T;:t—off(z>(0'0 *L,Z o1 *L,z "'*L,Z UQk)‘

Then

Z Althgk_off(z)(oo, o) = 1F o0(2)do1(2) A--- Adogg(2) Aw'™F
Rn

yields a meromorphic family of cyclic b,-cocycles on C’SC_C(IRQZ) with simple poles.
Here b, is the Hochschild coboundary associated with the perturbed product f -, g :=

fr(z)-g.
When k =1

ALY 5, (00, -+ oar) = —0/ (0) Res.—o ALty -7 (2) (00, -+, o)

is proportional (independently of the choice of k) to the m- character associated
with the n-cycle (Q(CSc..(IR™)),d,res) where res is the Wodzicki residue extended
to forms:

Aty (00, -+, 02k) = I* - res (oodoy A --- Adoy)

= lk~res(aod01 A+ Apdoy).

Remark 20 o The fact that starting from the left star product, we recover the
residue character we had come across in the previous section starting from the
Moyal star product is due to the fact that they are associated with the same
Poisson brackets.

e On a closed Riemannian manifold M, one can take k(z)(x,&) = |€|, defined
using the metric g(x) on Tp,M at point x. Then,as was pointed out above,
0(z) =0 *p k(z) = 0(2) - |§| 7% + 26.(2) for some classical symbol 0,(z). The
perturbation by zo,(2) = O.(2) does not affect the complex residue so that the
here again, the complex residue at zero of Alti, p(2) reads:

o/ (0) Res.—o Aty 7 (2) (00, -+, 0ar) = UFres (oodoy A -+ A doay,) .
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But when k =1 this expression is no longer proportional to the 2l- charachter
res (opdoy AL -+ A, dogy)

associated with the 2l-cycle (UCS(M)),d,res) which involves the left product
on symbols as well as the wedge product on forms unlike in the case of symbols
with constant coefficients for which the left product reduced to the ordinary
product.

Proof: Applying Theorem 6 to 0;(2) = o - k(2) yields the meromorphicity with
simple poles together with the fact that the complex residue

Ik
o/(0)
is proportional to the 2k-character associated with the cycle (Q(CS(U)), d,res). This

holds independently of the choice of k.
On the other hand, by Theorem 5, we have

RGSZ:() A1t¢K72k(2)(Uo, ce ,O’Qk) = — res (00 dUl VARERIVAN dUQk A wl_k)

Altty o (2) (00, - -+, o0p) = I ][0'0(2) doy(2) A -+ Adog(2) At F,
A straightforward computation then yields that it is b(z)-closed:
b(2) Altths o (2) (00, -+, 02k41) = 17b(2) ][0’0(2) doy(2) A -+ Adoaia(z) A"
= [* ][(00 e 01) (2)doa(2) A -+ ANdogpir (2) Aw!F
- F ][Jo(z) d (01 02) (2) Ndos(2) A+ Adogesr(2) Aw'™F
. ][oo(z) doy(2) A+ A d (02w T241) (2) At
— Ik 7[(02k+1 . 00) (2)do1(2) A+ Ndogg(z) A Wik
= ][0'0(2) co1(2)dog(2) A - Adogry(2) Aw!F
_ ][Uo(z) d(01(2) - 02(2)) A dors(2) A+ Adoss i (2) Awl—*
1R ][oo(z) doi(2) A Nd(oa(2) - oopr1(2)) Aw!™F
— I ][(JQk(z) c00(2)) doy(2) A -+ Adogr(2) Aw!TF

= 0

since by Theorem 5, Alty5y '™ (a0(2), - -, 00x(2)) = IF f-o0(2) dor (2)A- - -Adoag (2) A
w'=F is a b-cocycle.

Appendix A

We recall here a few definitions borrowed from non commutative geometry see e.g.[C],
[GVF]. Let (A, *) be an associative algebra over some ring R with unit 1. The space
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C" (A, R) of R-valued n+ 1-linear forms on A corresponds to the space of n-cochains
on A. Equivalently, these spaces can be seen as spaces of R-multilinear n-forms on
A with values in the R-algebraic dual A*, seen as an A-bimodule, where for y € A*
we put a’x(a)a” = x(a"aa’).

Following [C] we define the operators By and B acting on cochains:

Definition 20 Let

C'(A) — C"HA)
X = BOX(a()?"'?anfl) = X(17a07"'7an71) - (_1)nx(a07"'7an7171)~

Let B := A By where A denotes cyclic antisymmetrisation in all variables so that

|
—

n—1 n

Bx(ag, -+, an-1) = Z(_1>iX(1aai7ai+l7 o)== ) (=1)'x(ai, aigrs a1, 1)

=0 i

Il
=]

One can check that B2 = 0 so that B defines a homology on C*(A) [C].

Definition 21 The Hochschild coboundary for the product x of an n-cochain x is
defined by:

n

bex(ao, -+, ang1) = > (=1 x(ao, -+, ajxaj i1, ang1)+(=1)" T x(an1%a0, -, an).
7=0

It satisfies the condition b2 = 0 and hence defines a cohomology called the Hochschild
cohomology of (A, x).

Definition 22 An n-dimensional cycle is given by a triple (Q,d, f) where € is a
graded differential algebra on € equipped with the differential d such that d*> = 0 and
[ Q" — C is a closed graded trace i.e. [ is a linear map which, when extended to
Q by 0, satisfies

/aw:(q)\arlﬁl./ma, /dB:O VB e 1A

An n-cycle on an algebra A on € is a cycle (,d, [) together with a homomorphism
p: A— QO The character x, of an n-cycle is defined by:

Xaans -+ an) = [ plao)dplar) -+ dpfan) Vi € A
Let us also recall that the character of a cycle has the following properties:
1. xn is cyclic i.e.
Xn(a07"')a/n) = <_1)nxn(a1a"'aanaa0)a va‘i EA

2. xn(l,a1,-+-,a,) =0 Va; € A

3. If Q@ = Q(A) and p = Id then by, = 0 where b is the Hochschild coboundary
associated with the product on A.
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Appendix B

Let us check that in the symplectic setting, when T}, satisfies Stokes’ property— or
equivalently when % is closed w.r. to Ty— one cannot expect ¢or to be a b-cocycle
even though we know by Theorem 4 that when T} satisfies Stokes’ property, its
antisymmetrized form Alt ¢op = Alt ¥y, is b-closed. For this, we recall that

Proposition 12 [CFS], [H] Let (A,-) be a commutative algebra equipped with a star
product x which is a closed (resp. strongly closed) star product w.r. to some linear
map Ty (resp. T) on A. For any ag,- -, a2k+1 € A we have

bdax(ao, -+ s azkt1) = =T (0(ao, ar) * - - - x 0(azk, az+1))+Tk (0(azk41, ao) * - - * O(azk—1, far))
(resp. (b+ B)¢ = 0, where we have set, following [H] ® := 370, 2.

Proof: We carry out the proof for @5, since projecting down to the k-th component
in the formal expansion in powers of v easily yields the corresponding result for ¢, .
Let us first recall that since 1 is a unit element in A. 6(1,a) = 6(a,1) =0, a fact we
use in the course of the proof. The following notation borrowed from [H] is useful for
the proof, which mimicks that of [H]:

bx(a0,~~~,an+1) = Xao*alf"aaja'”aan—&-l)
n
+ (=1 x(ao, -+, aj - ajs1,- ang1) + (=1 X(ans1 * ag, -+, an).
1

<.
Il

Since (see [H])
b0(a,b,c) = axB(b,c)—0(a-bc)+0(ab-c)—0(ab)xc
= a*x(bxc—=b-c)—((a-b)xc—a-b-c)
+ (ax(-¢)—a-b-c)—(axb—a-b)xc
= 0,
it follows that
a*x0(b,c)—0(a-b,c)+0(a,b-c)=06(a,b) xc.

Using this identity repeatedly combined with the closedness of x w.r. to T" we derive

that
(B‘I)%)(ao, Tty (l2k+1) = ‘I)zk(ao *ar, - ,a2k+1) - (I’zk(ao,al cag, 7a2k+1)
+ o= Dop(ao, -, a2, G2k - Aokt1) + Pok(a2k41 * ao, - -, Go2k)
= T(agxay *0(az,az)*---) — T(ag*0(ay - az,az)*---)
+ T(agxB(ar,as-as)*---) —T(ag*0(ar,a2) xO(as - az,aq) x--+) +---

T(ag*0(a1,as) x az *0(ag,as) *--+) — T(ag x 0(a1,az) x0(as - ag,ag) x---) + -

= 0.
Since (B@gk)(ao, -+, agk+1) = 0 it follows that
(b®ar) (a0, -+, agks1) = bPax(ao, -, a2u41)

— T (0(ag,a1) *---*0(agk, ask+1)) + T (8(ask+1,a0) * - - - * 8(azk—1, far))
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=T (8(ao,a1) * - - - * O(ask, ao+1)) + T (0(a2kt1,a0) * - - *x O(a2k—1, for))

= 7@2/6-"—1(17 ap,ai, """ 7a2k+1) + ¢2k+1(17 a2k+1,@0 " "~ 7a2k)

= _(B0¢2k+2)(a0a A, -, a‘2k+1) + (BO(D2}7€"_2)(CL2]€+17 @0 a2k)
1

[ (MB¢2k+2) (a07a17"'7a2/€+1)a

where we have used the cyclicity of T' w.r. to x and the fact that 6(1,-) = 6(-,1) = 0.

The subsequent corollary is a direct consequence of the above theorem.

Corollary 5 Under the assumptions of the above theorem, let us moreover asume
that A = C§°(W) for some symplectic manifold (W,w) and that % is associated with
the symplectic form w. Then for any fo, -, far+1 € C (W) we have:

boar(fo, f1, s far1) = T({ fo, fr} -+ {far, fors1}) — Tu{f1, f2} -+ { fart1, fo}).

Now, let us assume that bpo(fo, f1,- -+, fors1) = 0 for all fo,---, forr1 € CS(W).
In particular this would hold true for fi = fo =g1, fs=fa =92 -+, for—1 = for =
9k for+1 = fo = go in which case we would have:

Tr({90,91} {91, 92} - - - {gr,90}) =0 Vg; € Cg°(W).

Choosing g2; = f, g2;+1 = ¢ Vi, this would lead to

Tu({f. g}¥) = /W{f,g}’“w’ —0 VigeCrw)

and hence {f,g} =0 Vf,g € C§°(W) which is not to be expected! Therefore, ¢of,
(and hence ®o;) cannot be expected to be Hochschild closed.
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