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Limit Theorems Related to a Class of Operator Semi-Selfsimilar

Processes ∗†

Tatsuhiko Saigo and Hiroshi Takahashi ‡

Keio University

Abstract

We construct a class of operator semi-selfsimilar processes with stationary increments as limiting

processes of scaled partial sums of some random walks in random scenery, studied by Kesten and

Spitzer for selfsimilar processes’ case. In the present paper, we generalize previous works related

to problems of random walks in random scenery in the following two senses; we assume (i) random

sceneries belong to the domain of partial normal attraction of strictly operator semi-stable distribu-

tions, and (ii) random walks belong to the domain of partial normal attraction of strictly semi-stable

distributions. To consider such a problem, we also study local limit theorems related to semi-stable

Lévy processes.

1 Introduction

In the fields of statistical physics and mathematical finance, many applications of selfsimilar processes

are studied, and operator selfsimilar processes are useful to describe a model of multivariate phenomena

such that each of components has different scalings in different directions and are possibly dependent

of others. Semi-selfsimilarity is an extension of selfsimilarity and expected to offer higher flexibility

to stochastic modeling of random phenomena because of its weaker scaling property. In such a reason,

Maejima and Sato, and Becker-Kern studied operator semi-selfsimilar processes (whose definition is given

later) with independent increments in [MaSa03] and [Be04]. On the other hand, as mentioned in [KS79],

it is important to find selfsimilar processes which have stationary increments. It is also the case for semi-

selfsimilar processes. However as far as authors know, operator semi-selfsimilar processes with stationary

increments are not founded in the literature. The aim of the present paper is to obtain an integral
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representation of such processes and to show that some of them can be constructed as limiting processes

from scaled partial sums of some random walks in random sceneries studied by Kesten and Spitzer in

[KS79].

An Rd-valued stochastic process {Y (t), t ≥ 0} is called operator semi-selfsimilar with exponent H if

there exist a > 1 and a linear operator H on Rd such that

{Y (at), t ≥ 0} f.d.= {aHY (t), t ≥ 0}, (1.1)

where
f.d.
= means equality for all finite dimensional distributions and

aH = exp{(log a)H} =
∞∑
k=0

1
k!
{(log a)H}k.

Set

s = inf{a > 1 : (1.1) satisfies.}.

In the case where s = 1, this process is nothing but operator selfsimilar process. We thus assume s > 1

and we use a notation, operator (s, H)-semi-selfsimilar process. When H = hI for some h > 0, we omit

the term “operator”.

A probability measure µ onRd is said to be full if its support is not contained in any (d−1)-dimensional
hyperplane. We call a full probability measure µ on Rd operator semi-stable, if its characteristic function

µ̂ satisfies

µ̂(z)a = µ̂(aB
∗
z)ei〈z,c〉, z ∈ Rd, (1.2)

for some a > 1, an invertible linear operator B on Rd and c ∈ Rd. Here B∗ is an adjoint operator of B

and 〈·, ·〉 is the inner product in Rd. If we can take c = 0, then we call µ strictly operator semi-stable.

Such an operator B is not determined uniquely but its eigenvalues are determined. For real parts of

eigenvalues of B we denote by TB and τB their maximum one and minimum one, respectively. In the case

where (1.2) is satisfied, we have τB ≥ 1/2, and if τB > 1/2, then µ is purely non-Gaussian. We consider

non-Gaussian case, since Gaussian case can be handled similarly to [KS79] and [Bo89]. Set

r = inf{a > 1 : (1.2) holds.}.

In the case where r = 1, µ is nothing but operator stable. We thus assume r > 1 and call µ in (1.2) and

r above an operator (r, B)-semi-stable distribution and its span, respectively. When B = 1
αI, µ is called

a d-dimensional α-semi-stable distribution, and we call it (r, α)-semi-stable distribution. It is known that

semi-stable distributions can be characterized as certain limits of normalized partial sums of independent

and identically distributed random variables. See Chapter 7 in [MS01] for more details about operator

(semi-)stable distributions. For a full semi-stable distribution µ, we define the domain of partial normal

attraction of µ as follows:
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Definition 1.1 Let {Xi, i ∈ N} be independent and identically distributed Rd-valued random variables.

Xi’s belong to the domain of partial attraction of operator (r, B)-semi-stable distribution µ with span

r > 1, if there exist a sequence {kn} satisfying limn→∞ kn+1/kn = rn0 with some n0 ∈ N, a sequence of

invertible linear operators {An} on Rd and cn ∈ Rd such that

A−1
n

{
kn∑
i=1

Xi − cn

}
d−→ µ, (1.3)

where d−→ denotes weak convergence. And if cn ≡ 0, then {Xi} is said to belong to the domain of partial

“normal” attraction of operator semi-stable distribution.

Remark 1.1 When B = 1
αI, we can take An = anI for some an > 0.

Kesten and Spitzer considered “Random walks in random scenery” in [KS79] as follows: Let Z-valued

random variables Xi’s and R-valued random variables ξ(k)’s belong to the domain of normal attraction of

strictly α-stable (α ∈ (1, 2]) distribution and that of strictly β-stable (β ∈ (0, 2]) distribution, respectively.
Assume that they are independent and E[X1] = 0. We set

Wl =
l∑
k=0

ξ(Sk), (1.4)

where Sk =
∑k
i=1 Xi and S0 = 0. We define W (t) by

W (t) =Wl + (t − l)(Wl+1 − Wl) l < t < l + 1. (1.5)

Asymptotic behavior of {Wn} is determined by two kinds of randomness, random walks {Sn} and random
scenery {ξ(k)}, and they imply an interesting selfsimilarity for a scaled limiting process of {W (t)}.
Certain extensions of the pioneer work of [KS79] have been considered, for example higher dimensional

cases, [Sh95] and [Ma96]; and semi-selfsimilar case, [A01]. We follow [Ma96] and [A01], namely we consider

the case where random sceneries belong to the domain of partial normal attraction of strictly operator

semi-stable distributions. Maejima assumed that random sceneries belong to the domain of normal

attraction of strictly operator stable distribution in [Ma96], and Arai considered the case where they

belong to the domain of partial normal attraction of strictly semi-stable distribution in [A01]. Each of

scaled limiting processes of {W (t)} converges weakly to a operator selfsimilar process or a semi-selfsimilar
process along full or subsequence, respectively. In each case, it is assumed that random walks belong

to the domain of normal attraction of strictly stable distributions. Now we consider the case where not

only sceneries but also random walks have semi-stability, namely we deal with two kinds of semi-stable

randomness. Semi-stable distribution is a natural extension of stable one, and hence we consider such

a case. However in our case, each semi-stability has own span, which would obstacle to deal with some

pairs of two randomness. In the present paper, we give a sufficient condition to such a situation.
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To describe our main theorem, we need more notations. We assume that Xi’s and ξ(k)’s belong to

the domains of partial normal attraction of strictly (r1, α)-semi-stable (α ∈ (1, 2]) and that of strictly
operator (r2, B)-semi-stable distribution, respectively. Semi-stable distributions are infinitely divisible,

and to any infinitely divisible distribution there corresponds a Lévy process, which is a process having

independent and stationary increments, stochastic continuity, and starting at 0. Lévy processes whose

distributions at t = 1 coincide with semi-stable distributions are called semi-stable Lévy processes. We

show that a suitably scaled process of {W (t)} converges weakly to a process, which is expressed by a
strictly operator (r2, B)-semi-stable Lévy process {Z(x)} and a local time of strictly (r1, α)-semi-stable

Lévy process {Y (t)}, {Lt(x)} such that ∫ ∞

−∞
Lt(x)dZ(x), (1.6)

along a subsequence.

However, as far as authors know, a construction of semi-stable Lévy processes from random walks,

local limit theorems of such random walks and the existence of their local times have not appeared in

the literature. In such reasons, we study these topics in Section 2. In Section 3, we construct operator

semi-selfsimilar processes with stationary increments obtained from the technique of subordination like

(1.6). This is an extension of selfsimilar case studied in [V87]. In Section 4, we consider the problems of

random walks in random scenery.

2 (r, α)-semi-stable Lévy processes

As mentioned in the previous section, semi-stable distributions can be characterized as certain limits of

normalized partial sums of independent and identically distributed random variables, and we show that

(r, α)-semi-stable Lévy processes can also be constructed from sums of such random variables. In this

section, we consider the case of (r, α)-semi-stable distributions. By using suitable slowly varying functions

l1, l2 at ∞, we can take subsequences {kn} and {an} in (1.3) such that

kn = rnl1(rn) and an = k1/α
n l2(kn), (2.1)

respectively. In the following, we always assume that α ∈ (1, 2) unless specified. We also assume that C

will be an absolute positive constant, which may differ with other C’s.

2.1 Construction of semi-stable Lévy process from random walks

Let D = D([0,∞);Rd) be the space of Rd-valued right continuous functions on (0,∞) with left limits
with the Skorohod topology. Then for (r, α)-semi-stable distributions we have the following:
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Theorem 2.1 Given independent and identically distributed Rd-valued random variables {Xi}i∈N on a

probability space (Ω,F , P ). Assume that Xi’s belong to the domain of partial attraction of strictly (r, α)-

semi-stable distribution with cn = anE[a−1
n X1I[|a−1

n X1| ≤ L]] for a fixed L > 0. Let Y n(t) be a function

in D with a value

Y n(t) =
1
an

[knt]∑
i=1

Xi − cn
[ant]
an

(2.1)

at t, where [t] is the largest integer less than or equal to the real number t. We set Y (0) = 0. Then

the random function defined by (2.1) converges weakly to an (r, α)-semi-stable Lévy process {Y (t), t ≥ 0}
starting at 0 in D.

In the present paper, we consider more general cases in Section 4 for showing tightness of the family

of random walks in random scenery and give outline of its proof here. We consider the case where cn ≡ 0.
Since Xi’s belong to the domain of partial normal attraction of strictly (r, α)-semi-stable distribution,

for each t > 0 we obtain

Y n(t) =
1
an

[knt]∑
i=1

Xi
d−→ Y (t),

and this implies convergence of all finite dimensional distributions. We next consider the tightness of

the family of {Y n(t), t ≥ 0, n ∈ N} in D. Since Xi’s are assumed to be independent and identically

distributed, it is enough to show that

lim
δ→0
lim sup
n→∞

P

{
sup

0≤t≤δ
{|Y n(t)− Y n(0)|} > ε

}
= 0. (2.2)

If (2.2) would be shown, then we can show that for each T > 0, any ε and a sufficiently small δ, there

exists a constant C > 0 such that

lim sup
n→∞

P

 sup
0≤t1,t,t2≤T

|t2−t1|≤δ

{|Y n(t)− Y n(t1)| ∧ |Y n(t2)− Y n(t)|} > ε

 ≤
(
1 +

1
δ

)
(Cδ)2

in the same way as that of α-stable Lévy process in Chapter 9 of [GS69], which completes the proof of

the theorem.

To show (2.2), for fixed L > 0 and n ∈ N we let

X
′
j =


Xj for |Xj | ≤ anL,

0 for |Xj | > anL,
X

′′
j =


0 for |Xj | ≤ anL,

Xj for |Xj | > anL.

Using them and Lemma 4.3 in [A01], we estimate a probability, P
{
sup0≤t≤δ{|Y n(t)− Y n(0)|} > ε

}
.

2.2 Local limit theorems of semi-stable Lévy processes

We study properties of asymptotic behavior of Z-valued random walks {Sn} satisfying
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• E[Xi] = 0

• for subsequences {kn} and {an}, {a−1
n

∑kn

i=1 Xi} converges weakly to a strictly (r, α)-semi-stable
random variable Yα with α ∈ (1, 2].

The purpose of this subsection is to show the following local limit theorems.

Theorem 2.2 We have the following:

(i) P{Sl = 0} = O
(
l−1/α

)
for all large l ∈ N.

(ii)
∞∑
k=0

{P{Sk = 0} − P{Sk = u}} = O
(|u|α−1

)
for all large |u| ∈ N.

In the case where α = 2 strictly (r, α)-semi-stable distribution is nothing but Gaussian, and this is

already known (cf. Chapter 4 in [IL71]). Hence we consider the case where 1 < α < 2. To prove (i)

of Theorem 2.2 we firstly calculate a characteristic function of Xi (we denote by λ(z)), which belong to

the domain of partial normal attraction of strictly (r, α)-semi-stable distribution. Secondly, using the

characteristic function λ, we prove local limit theorems of random walks along subsequences. Lastly, we

prove for full sequence’s case. Here we use Lévy-Khintchin representation of characteristic function of

strictly (r, α)-semi-stable distribution (here we denote by ϕ) and the distribution function of Xi’s (here

we denote it by F (x)) given in [Me00] as follows:

◦ For z ∈ R,

ϕ(z) = exp
{∫ 0

−∞

(
eizx − 1− izx

1 + x2

)
d

(
ML(x)
|x|α

)
+
∫ ∞

0

(
eizx − 1− izx

1 + x2

)
d

(
MR(x)

xα

)}
,

where ML on (−∞, 0) and MR on (0,∞) are non-negative, bounded, one of them has a strictly pos-
itive infimum and the other one either has a strictly positive infimum or is identically 0, and satisfy

ML(r1/αx) =ML(x) and MR(r1/αx) =MR(x).

◦ For all large |x|,

F (x) =

 (−x)−α l̃(−x){ML(x) + hL(−x)} x < 0,

1− x−α l̃(x){MR(x) + hR(x)} x > 0,

where l̃ is right continuous and slowly varying at ∞ defined by

x−α l̃(x) := sup{u : u−1/αl2(u) > x} x > 0, (2.3)

(recall that l2 is the slowly varying function for the subsequence {an} in (2.1)), and error functions hL

and hR are right continuous and

hL(anx0)→ 0 and hR(anx0)→ 0 as n → ∞ (2.4)
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at every continuity point x0 of each of ML and MR, respectively.

To show Theorem 2.2, we require the following:

Lemma 2.1 If Xi’s belong to the domain of the partial normal attraction of strictly (r, α)-semi-stable

distribution with sequences {kn} and {an}, then their characteristic function λ(z) in the neighborhood of

the origin is represented as

|λ(z)| = exp{−η(z)|z|αl̃(1/|z|)}, (2.5)

where η(z) is a nonnegative bounded continuous function satisfying η(r1/αz) = η(z) and l̃(·) is a slowly

varying function at ∞, which is determined by a representation of the distribution function of Xi.

Proof.

We follow the proof of α-stable case in Section 2.6 of [IL71]. In the neighborhood of the origin, we

have

log λ(z) = log{1 + (λ(z)− 1)} = {λ(z)− 1}+O(|λ(z) − 1|2) as z → ∞,

and we thus need to calculate λ(z)− 1. Set F−(x) = F (−x) with taking left continuous version of F . We

assume z > 0, and in the case where z < 0 we can calculate similarly.

Recall that E[Xi] = 0. For a sufficiently small z there exists a k ∈ (0, 1) such that

λ(z)− 1 =
∫ ∞

−∞
(eizx − 1− izx)dF (x)

= −
∫ ∞

0

(eizx − 1− izx)d(1− F (x))−
∫ ∞

0

(e−izx − 1 + izx)dF−(x)

= iz

∫ ∞

0

(eizx − 1)(1 − F (x))dx − iz

∫ ∞

0

(e−izx − 1)F−(x)dx

= i

∫ ∞

0

(eix − 1)(1− F (x/z))dx − i

∫ ∞

0

(e−ix − 1)F−(x/z)dx

= i

{∫ ∞

zk

(eix − 1)(1− F (x/z))dx+
∫ zk

0

(eix − 1)(1 − F (x/z))dx

}

−i

{∫ ∞

zk

(e−ix − 1)(F−(x/z))dx+
∫ zk

0

(e−ix − 1)(F−(x/z))dx

}

∼ izα
∫ ∞

0

(eix − 1) l̃(x/z)(MR(x/z) + hR(x/z))
xα

dx

−izα
∫ ∞

0

(e−ix − 1) l̃(x/z)(ML(−x/z) + hL(x/z))
xα

dx as z → 0.

For a general slowly varying function l(x) at ∞, the following fact is known:

Proposition 2.1 (cf. Section 2.6 in [IL71]) We assume that l(x) is a positive slowly varying function

at ∞ and x−αl(x) is monotone decreasing. For 1 < α < 2 we have

lim
z↓0

∫ ∞

0

e±ix − 1
xα

l(x/z)dx = lim
z↓0

l(1/z)
∫ ∞

0

e±ix − 1
xα

dx
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= lim
z↓0

l(1/z) exp
{
±1
2

iπ(α − 1)
}
Γ(1− α).

In our case, l̃(x/z)(ML(−x/z) + h(x/z)) and l̃(x/z)(MR(x/z) + h(x/z)) satisfy the conditions for l(x)

above, and except on Lebesgue measure 0 sets limz→0 hL(x/z) = limz→0 hR(x/z) = 0. Thus we have, for

positive z in the neighborhood of origin,

|λ(z)| = exp
{
−η(z)|z|αl̃(1/|z|)

}
,

where

η(z) = {ML(−1/z) +MR(1/z)} cos πα

2
Γ(1− α). (2.6)

Since M ’s are periodic, (2.6) proves Lemma 2.1.

We next prove local limit theorems for random walks along subsequences as follows:

Lemma 2.2 Let gkn(x) be the density of strictly (r, α)-semi-stable distribution µ, that is,

gkn(x) =
1
2π

∫ ∞

−∞
e−ixzϕ(z)dz.

Then

lim
n→∞ supu∈Z

|anP{Skn = u} − gkn (u/an)| = 0.

Proof.

The characteristic function of Skn is given by

λ(z)kn =
∑
u∈Z

eiuzP{Skn = u}.

This implies

P {Skn = u} =
1
2π

∫ π
−π

e−iuzλ(z)kndz

=
1
2πan

∫ πan

−πan

e−iuz/anλ (z/an)
kn dz.

For any u ∈ Z we have

|anP{Skn = u} − gkn(u/an)| ≤ 1
2π
(I1 + I2 + I3 + I4),

where

I1 =
∫ A
−A

∣∣λ(z/an)kn − ϕ(z)
∣∣ dz,

I2 =
∫
A≤|z|≤εan

|λ(z/an)|kn dz,

I3 =
∫
εan≤|z|≤πan

|λ(z/an)|kn dz,

I4 =
∫
|z|>A

|ϕ(z)| dz,
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and constants A and ε are determined later.

We turn now the estimation of each integral.

(I1): SinceXi’s belong to the domain of partial normal attraction of strictly α-semi-stable distribution,

I1 converges to zero as n → ∞.
(I3): Since Xi’s are Z-valued, Theorem 1.4.2 of [IL71] implies that |λ(z)| < 1 for 0 < z < 2π, and

thereby a positive constant c such that |λ(z)| ≤ e−c for ε ≤ |z| ≤ 2π can be taken. This implies

I3 =
∫ πan

εan

|λ(z/an)|kn dz

≤ 2πe−cknan → 0 as n → ∞.

(I4): |ϕ(z)| is integrable on R, and this implies limA→∞ I4 = 0.

(I2): By Karamata’s theorem there exists a function ε(u)→ 0 as u → ∞ such that as n → ∞

l̃(an/|z|)
l̃(an)

= exp

{
−
∫ an/|z|

an

ε(u)
u

du

}
(1 + o(1))

≤ |z|ε1(1 + o(1))

with a small ε1. Since (2.3) implies that limn→∞ kna
−α
n l̃(an) = 1, for sufficiently large kn and an and

δ ≤ α − ε1 there exists a positive constant c(δ) not depending on n such that

|λ(z/an)|kn = exp

{
−η(z)kn

aαn
l̃(an)|z|α l̃(an/|z|)

l̃(an)

}
≤ exp{−c(δ)|z|δ}.

These arguments imply that for a sufficiently large kn such that for sufficient small ε > 0

I2 ≤
∫
A≤|z|≤εan

exp{−c(α/2)|z|α/2}dz ≤
∫
|z|≥A

exp{−c(α/2)|z|α/2}dz

can be shown, and this implies that I2 → 0 as A → ∞. Hence we have shown that each integral can be
made arbitrarily small, and (2.2) follows.

Remark 2.1 In the case where α ∈ (0, 1], the assertions in Lemmas 2.1 and 2.2 are also valid. They are

shown in similar ways to those for showing the lemmas above and Theorems 2.6.5 and 4.2.1 in [IL71].

To show the full sequence’s case, we need the following lemma:

Lemma 2.3 Let µ and µ̃ be strictly (r, α)-semi-stable distributions as scaled limit of sums of Xi’s with

a pair of subsequences in (1.3), {kn}, {an} and {k̃n}, {ãn}, respectively. Denote by ϕ(z) and ϕ̃(z) the

characteristic functions of µ and µ̃, respectively. If lim k̃n/kn = θ < ∞, then there exists a positive

constant θ̃ = lim an/ãn such that

ϕ̃(z) = ϕ(θ̃z)θ. (2.7)
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Proof.

Recall that to the distribution µ there corresponds a strictly (r, α)-semi-stable Lévy process, which

we denote by {Y (t)}, namely, a−1
n

∑[knt]
i=1 Xi converges weakly to {Y (t)} in D([0,∞);R). Then we have

1
ãn

ekn∑
i=1

Xi =
an
ãn

1
an

ekn∑
i=1

Xi
d−→ θ̃Y (θ),

and this implies µ̃ coincides with the distribution of θ̃Y (θ). Since Y (t) is a Lévy process, whose distribu-

tion at each t > 0 can be represented by t-convolution of µ. This implies (2.7).

Proof of (i) of Theorem 2.2.

From Lemma 2.2, the following estimation is satisfied:

P{Skn = u} = O

(
gkn(u)

an

)
as n → ∞,

and Lemma 2.3 implies that the estimation above is also valid for other subsequences. Now the charac-

teristic function ϕ(z) belongs to L1(R), and general theory of Fourier transformation implies that gkn(x)

is uniformly continuous and that gkn(0) is bounded. (2.7) implies that for each subsequence {k̃n} g
ekn
(0)

is also bounded. These arguments show (i) of Theorem 2.2.

Proof of (ii) of Theorem 2.2.

Let a(u) be a potential kernel of random walk Sk defined by

a(u) =
∞∑
k=0

{P{Sk = 0} − P{Sk = u}} .

Since {Sn} is recurrent for α > 1, the following is satisfied for all large u (see Section 28 P4 in [Sp76]):

a(u) + a(−u) =
1
π

∫ π
−π

1− cos zu

1− λ(z)
dz.

Recall (2.5), which is the representation of λ(z) in the neighborhood of the origin. Then there exists a

slowly varying function l′(1/|z|) at ∞, which is determined by l̃ such that

|1− λ(z)| = |z|α|η(z)l′(1/|z|)|,

where η(z) is in (2.6). Hence there exist some constants C and C
′
such that for a sufficiently small ε

|a(u) + a(−u)| =
∣∣∣∣ 1π

∫ ε
−ε

1− cos zu

1− λ(z)
dz

∣∣∣∣+ C

≤ 1
π

∫ ε
−ε

∣∣∣∣1− cos zu

1− λ(z)

∣∣∣∣ dz + C

=
1
π

∫ 1/u

−1/u

z2u2

|z|α|η(z)l′(1/|z|)|dz + C
′

= O
(
uα−1

)
as u → ∞.

This implies (ii) of Theorem 2.2.
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2.3 Local times of semi-stable Lévy processes

We study properties of local times for (r, α)-semi-stable Lévy processes, and consider the case where

d = 1 in this subsection. It is known that a strictly α-stable Lévy process has a local time at x, L(t, x)

with α > 1, and we can take a version of L(t, x) which is jointly continuous in (x, t) with α > 1 (see

[GK72]). In the case of (r, α)-semi-stable Lévy processes, we have the following.

Theorem 2.3 An α-semi-stable Lévy process {Y (t), t ≥ 0} has a local time at x, L(t, x) with α > 1, and

there exists a jointly continuous version of L(t, x). If α = 1 and {Y (t), t ≥ 0} is not strictly 1-semi-stable,

then it has a local time but does not have its continuous version.

From now on we denote by Lt(x) a continuous version of such a local time.

Proof.

Theorem 7.5 in [Sa99a] implies that almost all sample functions of {Y (t)} have the following properties:
(i) 0 is regular for {0} (see Section 7 in [Sa99a] or Section 43 in [Sa99b] for the definition of “regular”),
(ii) for all x, y we have P x{Y (t) = y for some t ≥ 0} > 0, where P x is the law of Y (t) starting at x.

They ensure that, for each x, a local time L(t, x) exists (see [GK72]), and at any fixed point it is continuous

as a function of t almost surely.

We next show its joint continuity. Proposition 14.9 and 24.20 in [Sa99b] imply that for each t > 0

Y (t) is determined as follows:

E[exp{izY (t)}] = e−tφ(z), φ(z) = |z|α{η1(z) + iη2(z)} − icz, (2.8)

where z ∈ R, η1(z) is bounded from below by a positive constant and continuous in R \ {0} satisfying
η1(r1/αz) = η1(z), η2(z) is a real function continuous inR\{0} satisfying η2(r1/αz) = η2(z). By Theorem

4 in [GK72], it is enough to show that

∞∑
n=1

{δ(2−n)}1/2 < ∞, (2.9)

where

δ(u) = sup
|x|≤u

1
π

∫ ∞

−∞
(1− cosxz)Re

{
1

1 + φ(z)

}
dz.

To show (2.9), we use a similar way to that for proving Theorem 7.4 in [Sa99a]. It is known that there

exist positive constants k1 and k2 such that k1 ≤ η1(z) ≤ k2. Using them, we obtain

Re
{

1
1 + φ(z)

}
=

1 + |z|αη1(z)
{1 + |z|αη1(z)}2 + {|z|αη2(z)− cz}2

≤ 1 + k2|z|α
k2
1 |z|2α

.
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This implies that for each x > 0

1
π

∫ ∞

−∞
(1− cosxz)Re

{
1

1 + φ(z)

}
dz

≤ x2

π

∫ 1/x

−1/x

z2 1 + k2|z|α
k2
1 |z|2α

dz +
2
π

∫
|z|>1/x

1 + k2|z|α
k2
1 |z|2α

dz

= O(xα−1) as x → 0,

and we can take a continuous version of a local time.

In the case of not strictly 1-semi-stable Lévy process η1(z) in (2.8) is same, but η2(z) is not; η2(z) is

given by

η2(r1/αz) = η2(z) + sgnz
∫

1<|x|≤r1/α

xν(dx),

where ν(dx) is Lévy measure andM :=
∫
1<|x|≤r1/α xν(dx) �= 0. Remark that the constant which is larger

than η2(z) for any z ∈ R does not exist. In this case, we have |η2(z)| ∼ |M |
log r1/α log |z| as |z| → ∞ (see

page 312 in [Sa99b]). To show the assertion, it is enough to show that

lim sup
κ→∞

(log κ)
∫ ∞

−∞
Re

{
1

κ+ φ(z)

}
dz > 0 (2.10)

(see Theorem 4 in [GK72]). Hence

Re
{

1
κ+ φ(z)

}
≥ k1|z|

(κ+ |z|k2)2 + (|z|η2(z)− cz)2

∼ k1(log r1/α)2

M2

1
z(log |z|)2 as |z| → ∞,

and we have ∫ ∞

−∞
Re

{
1

κ+ φ(z)

}
dz ≥

∫
|z|≥κ

k1|z|
(κ+ |z|k2)2 + (|z|η2(z)− cz)2

∼ k1(log r1/α)2

M2

1
log κ

as κ → ∞,

which concludes (2.10).

3 Semi-selfsimilar integrated processes

As mentioned in [V87], many selfsimilar processes with stationary increments are obtained from basic

Rd-valued selfsimilar processes {Y (s)} by the following integral:

D(t) =
∫ ∞

−∞
K(t, x)dY (x) t ≥ 0, (3.1)

where {K(t, s)} is a deterministic or random function on [0,∞) × R with values in [−∞,∞], provided
that the integral can be defined in some stochastic integration. If K is random, it is usually assumed to

be independent of X .
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An R-valued stochastic process {K(t, x)}, regarded as random functions of s and t, is called (h1, h2)-

semi-selfsimilar if there exists a > 1 such that

{K(at, ah2x)} f.d.= {ah1K(t, x)}. (3.2)

Set

s = inf{a > 1 : (3.2) satisfies.},

and we use a notation (s, (h1, h2))-semi-selfsimilar process. Following theorem corresponds to Theorem

7.1 in [V87], which is the case of selfsimilar processes. Since we consider 1-dimensional random function

K(t, x) and d-dimensional process Y (x), we define a d-dimensional process D(t) in (3.1) by its component,

D(i)(t) =
∫ ∞

−∞
K(t, x)dY (i)(x).

Theorem 3.1 We assume the following:

(i) {K(t, x)} is (s1, (h1, h2))-semi-selfsimilar,

(ii) {Y (x)} is operator (s2, H3)-semi-selfsimilar,

(iii) h2 log s1/ log s2 ∈ Q,

(iv) {K(t, x)} and {Y (x)} are independent.

Then there exists s0 = s0(h2, s1, s2) such that {D(t)} in (3.1) is an operator (s0, (h1I + h2H3))-semi-

selfsimilar. We say that {K(t, x)} has stationary increments if there are random variables w(b) and t

such that for b, t ≥ 0 and s ∈ R,

K(b+ t, x)− K(b, x) d∼ K(t, x+ w(b)), (3.3)

where d∼ means the equality of the marginal distribution. If we also assume that {K} and {Y } have

stationary increments, then {D} has stationary increments.

Proof.

Semi-selfsimilarity Definition of K implies the following semi-selfsimilarity:

{K(t, x)} f.d.=
{

s−h11 K(s1t, sh21 x)
}

.

Then we have

{D(t), t ≥ 0} f.d.=
{

s−h11

∫ ∞

−∞
K(s1t, sh21 x)dY (x), t ≥ 0

}
.
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Assumption (iii) implies that there exists an irreducible fraction q/p such that sq2 = sph21 , and it can be

shown that

{Y (x), x ∈ R} f.d.
= {s−qH3

2 Y (sq2x), x ∈ R}

= {s−ph2H3
1 Y (sph21 x), x ∈ R}.

Setting s0 = sp1, we obtain

{D(t), t ≥ 0} f.d.
=

{∫ ∞

−∞
s−ph1I1 K(sp1t, sph21 x)s−ph2H3

1 dY (sph21 x), t ≥ 0
}

f.d.
=

{
s
−(h1I+h2H3)
0 D(s0t), t ≥ 0

}
.

Stationary increments From increments of K(t, x) and Y (x) are stationary, we prove stationary

increments of {D(t)},

{D(b+ t)− D(b)} =
{∫ ∞

−∞
(K(b+ t, x)− K(b))dY (x)

}
f.d.
=

{∫ ∞

−∞
K(t, x+ w(b))dY (x)

}
(by (3.3))

=
{∫ ∞

−∞
K(t, x′)dY (−w(b) + x′)

}
(setting x′ = x+ w(b))

f.d.
=

{∫ ∞

−∞
K(t, x′)dY (x′)

}
(stationary increment of {Y (x)})

= {D(t)}.

This implies the process {D(t)} has stationary increments.
An example of random function in (3.1) is a local time of a strictly α-semi-stable process. In the next

section, we consider a problem for the case.

4 Random walks in random scenery

In this section, we assume that slowly varying functions in (2.1) are li ≡ 1, i = 1, 2. Let {Sk, k =

0, 1, 2, . . .} be a Z-valued random walks such that {r
−n/α
1 S[rn

1 t]
, t ≥ 0} converges weakly to a strictly

(r1, α)-semi-stable Lévy process {Y (t), t ≥ 0} with 1 < α ≤ 2 and E[Y (1)] = 0. We also let {ξ(u), u ∈
Z} independent identically distributed Rd-valued random variables, independent of {Sk}, belonging to
the domain of partial normal attraction of strictly operator (r2, B)-semi-stable random variable ZB,

namely r−nB2

∑[rn
2 ]
k=1 ξ(k) converges weakly to ZB. We use the following representation of the characteristic

function of purely non-Gaussian operator (r, B)-semi-stable distribution µ̂ in (1.2) given in [Ch87]:

µ̂(z) = exp
{∫
SB

γ(dx)
∫ ∞

0

[
ei〈z,s

Bx〉 − 1− i〈z, sBx〉I[sBx ∈ D]
]

d

(
−Hx(s)

s

)
+ i〈z, c〉

}
, (4.1)
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where SB = {x ∈ Rd : ‖x‖ = 1, ‖tBx‖ > 1 for any t > 1} with Euclidean norm ‖ · ‖, D = {x ∈ Rd :

‖x‖ ≤ 1}, γ is a finite measure on SB, and Hx(s) is a non-negative function such that

(1) Hx(s)/s is non-increasing in s for each x,

(2) Hx(s) is right-continuous in s for each x and measurable in x for each s,

(3) Hx(1) = 1,

(4) Hx(rs) = Hx(s).

As mentioned in Section 1, we assumed that ZB is purely non-Gaussian. When for real parts of eigenvalues

of B satisfy τB ≤ 1 ≤ TB, we need “symmetry condition”, that is, the distribution of ξ(0) is same as that

of −ξ(0).

For two kinds of randomness, we consider a strongly dependent sequence {ξ(Sn)}, its partial sumWl =∑l
k=0 ξ(Sk) and the process {W (t), t ≥ 0} in (1.5). Let {Z(x), x ∈ R} be an Rd-valued strictly operator

(r2, B)-semi-stable Lévy process, whose distribution of Z(1) is the same as that of ZB, independent of

strictly (r1, α)-semi-stable process {Y (t)}. By Theorem 2.3, we can take a version of local time of {Y (t)},
which is continuous in (t, x), and denote by Lt(x). Hence we can define a stochastic integral

∆(t) =
∫ ∞

−∞
Lt(x)dZ(x).

Then we have the following theorem.

Theorem 4.1 Let H = (1− 1
α )I +

1
αB. If log r1/(α log r2) ∈ Q, then there exists r0 = r0(r1, r2, α) such

that {r−nH0 W (rn0 t), t ≥ 0} converges weakly in C([0,∞);Rd) to the operator (r0, H)-semi-selfsimilar

process {∆(t), t ≥ 0}, which has stationary increments.

Remark 4.1 In the case where 0 < α < 1 {Sn} is transient, and we omit the case (see page 9 in [KS79]).

In the case where α = 1 {Lt(x)} does not have its continuous version, and we cannot define ∆(t) by a

stochastic integral. On the other hand {Sn} is recurrent, and this is the case for [Bo89].

Since {Y (t)} is a strictly (r1, α)-semi-stable Lévy process, it has semi-selfsimilarity, {Y (rn1 t)} d=

{r
n/α
1 Y (t)}. We thus have the following semi-selfsimilarity of its occupation time in the space inter-

val [a, b), Γt(a, b) =
∫ t
0 1[a,b)(Y (s))ds:

{Γrn1 t(a, b), t ≥ 0} d=
{

rn1Γt(r
−n/α
1 a, r

−n/α
1 b), t ≥ 0

}
for each n ∈ Z,

where d= denotes the equality of all finite dimensional distributions with respect to the probability measure

of {Y (t)} on D([0,∞);R), and through a simple calculate its local time {Lt(x)} has the following (r1, (1−
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1/α, 1/α))-semi-selfsimilarity:

{Lt(x), t ≥ 0} d=
{

r
−n(1−1/α)
1 Lrn1 t(r

n/α
1 x), t ≥ 0

}
for each n ∈ Z.

Hence we can take an r0 in the same way to that of taking s0 in Theorem 3.1. Namely, if we denote

the irreducible fraction q/p := log r1/(α log r2) and set r0 = rp1 = rαq2 , then {∆(t)} has (r0, (1 − 1
α )I +

1
αB)-semi-selfsimilarity. Moreover, since {Y (t)} has stationary independent increments and a spatially
homogeneous transition function, we can show that {Lt(x)} has stationary increments (see (3.3) for its
definition) in a similar way to that of showing for the case of α-stable Lévy process in [L85]. They imply

that {∆(t)} has stationary increments.
We prove the rest of Theorem 4.1 by showing the following propositions under the same assumption

as those in the theorem.

Proposition 4.1

{
r−nH0 W (rn0 t), t ≥ 0 } L=⇒ {∆(t), t ≥ 0} as n → ∞,

where L=⇒ denotes convergence of all finite dimensional distributions with respect to the product measure

between the probability measures of {Y (t)} and {ZB(x)}.

Proposition 4.2 The family
{
r−nH0 W (rn0 t), t ≥ 0, n ∈ N

}
is tight in C([0,∞);Rd).

4.1 Proof of Proposition 4.1

Let N(l, u) be the number of visits of the random walk {Sk} to the point u ∈ Z in the time interval [0, l].

Using this, we can represent Wl as

Wl =
l∑
k=0

ξ(Sk) =
∑
u∈Z

N(l, u)ξ(u). (4.2)

For the occupation time N(l, u) we consider their linear interpolation:

Nt(u) = N(l, u) + (t − l){N(l+ 1, u)− N(l, u)}, l < t < l + 1.

Using (i) of Theorem 2.2, we can show the following properties of Nt in the same way as that in [KS79]:

Lemma 4.1 (i) For each p ≥ 1, supu∈Z E[Nt(u)p] = O(tp(1−1/α)).

(ii) For t > 0, P{Nt(u) > 0 for some u with |u| > A(t + 1)1/α} ≤ ε(A), where ε(A) → 0 as A → ∞
and ε(A) is independent of t.
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For −∞ < a < b < ∞ we set

T nt (a, b) = r−n0

∑
a≤r−n/α

0 u<b

Nrn0 t(u), Γt(a, b) =
∫ b
a

Lt(x)dx. (4.3)

Then for each k ∈ N and t1, t2, t3, . . . , tk > 0, Theorems 2.1 and 2.3 imply the following convergence with

respect to the measure of {Y (t)} (see Section 2 in [KS79]):

{T ntj(aj , bj), j ∈ N} d−→ {Γtj (aj , bj), j ∈ N}. (4.4)

In this section we consider two kinds of randomness, hence redenote µ̂ by ϕB(z), and let f(z) =

logϕB(z). This f(z) has the following property, which is shown in the same way as that for showing

Lemma 4 in [Ma96] or Lemma 3.1 in [A01]:

Let β = 1 when TB < 1, and let 0 < β < 1/TB when TB ≥ 1. Then for any z1, z2 ∈ Rd, there exists

some constant K > 0 such that

|f(z1)− f(z2)| ≤ K
{‖z1 − z2‖(1 + ‖z1‖+ ‖z2‖) + ‖z1 − z2‖β

}
. (4.5)

Since {ZB(x)} is a Lévy process, we can show the following equality related to joint distributions of
∆(t) in the same way as that showing Lemma 4 in [Ma96]:

For any k ∈ N, t1, t2, t3, . . . , tk > 0 and z1, z2, z3, . . . , zk ∈ Rd,

E

exp
i

k∑
j=1

〈zj ,∆(tj)〉

 = E

exp

∫ ∞

−∞
f

 k∑
j=1

Ltj(u)zj

 du


 . (4.6)

We next prepare for showing convergence of all finite dimensional distributions. The following is shown

in the same way as those for showing Lemma 6 in [KS79], Lemma 5 in [Ma96] and Lemma 2.5 in [A01].

Lemma 4.2 For any k ∈ N, t1, t2, t3, . . . , tk > 0 and z1, z2, z3, . . . , zk ∈ Rd,

∑
u∈Z

f

r−nH
∗

0

k∑
j=1

Nrn0 tj (u)zj

 d−→
∫ ∞

−∞
f

 k∑
j=1

Ltj (u)zj

 du,

where H∗ is an adjoint operator of H.

Outline of proof.

Since ϕB(z)r
n
0 = ϕB(rnB

∗
0 z) and r−nH

∗
0 = r

−n(1−1/α)
0 · r

− n
αB

∗

0 for any z ∈ R, we have

∑
u∈Z

f

r−nH
∗

0

k∑
j=1

Nrn0 tj (u)zj

 =∑
u∈Z

r0
−n/αf

r
−n(1−1/α)
0

k∑
j=1

Nrn0 tj (u)zj

 .

Hence it is enough to show that

∑
u∈Z

r0
−n/αf

r
−n(1−1/α)
0

k∑
j=1

Nrn0 tj (u)zj

 d−→
∫ ∞

−∞
f

 k∑
j=1

Ltj (u)zj

 du. (4.7)
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Fixing small τ > 0 and large M , we define

An,l :=
{

u ∈ Z : lτr0
n/α ≤ u < (l + 1)τr0

n/α
}

, l ∈ Z.

gj := Nrn0 tj .

hj :=
1

τr
n/α
0

∑
y∈An,l

Nrn0 tj (y).

Using (ii) of Theorem 2.2, we obtain

max
−M≤l<M

max
u∈An,l

E
[|gj − hj |2

] ≤ Cτα−1(rn0 )
2−2/α (4.8)

in the same way as that for showing (3.9) in [KS79], and divide the left hand side of (4.7) into some

parts, which are determined by τ and M above, and show the convergence with using Lemma 4.1, (4.5),

(4.8), and continuity and compact support properties of local times of strictly (r1, α)-semi-stable Lévy

processes.

Proof of Proposition 4.1.

By (4.2) we have

In := E

exp
i

k∑
j=1

〈zj , r−nH0 Wrn0 tj 〉

 = E

∏
u∈Z

λB

r−nH
∗

0

k∑
j=1

Nrn0 tj (u)zj

 .

To show its convergence, we need more preparations. The following convergence is shown in a similar

way to that for showing Lemma 6 in [Ma96] by using (i) and (ii) of Lemma 4.1:

lim
s→∞ supu∈Z

Ns(u)s−H
∗
z = 0 in probability. (4.9)

Recall that for any z ∈ Rd, ϕB(z) denotes the characteristic function of ZB and we denote by λB(z) the

characteristic function of ξ(x). By respectively replacing r and n/β in Lemma 2.6 in [A01] with r−1
2 and

nB, with a simple calculation we obtain that

lim
z→0

log λB(z)
logϕB(z)

= 1. (4.10)

(4.9) and (4.10) imply that

lim
n→∞ In = lim

n→∞ E

∏
u∈Z

ϕB

r−nH
∗

0

k∑
j=1

Nrn0 tj (u)zj


= lim

n→∞ E

exp
∑
u∈Z

f

r−nH
∗

0

k∑
j=1

Nrn0 tj (u)zj




= E

exp

∫ ∞

−∞
f

 k∑
j=1

Ltj (u)zj

 du


 (by Lemma 4.2)

= E

exp
i

k∑
j=1

〈zj ,∆(tj)〉

 (by (4.6)).

This completes the proof of Proposition 4.1.
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4.2 Proof of Proposition 4.2

Recall (4.2), and for each t ≥ 0 and n ∈ N we set

Dn(t) := r−nH0 W (rn0 t) = r−nH0

∑
u∈Z

Nrn0 t(u)ξ(u).

To show the tightness of {Dn(t), t ≥ 0, n ∈ N} in C([0,∞);Rd), we need to show the following estimation
(see [Bi99]): For each T < ∞ and any η > 0,

lim
δ→∞

lim sup
n→∞

P

 sup
0≤t1,t2≤T
|t2−t1|≤δ

{‖Dn(t2)− Dn(t1)‖ ≥ η}
 = 0. (4.11)

To show this convergence, as in [KS79], [Ma96] and [A01], we first approximate Dn(t) by D
′
n(t) plus a

linear function Ent such that D
′
n(t) has the second moments, En are bounded and

lim sup
n→∞

P

{
sup
t≤T

‖Dn(t)− D′
n(t)− Ent‖ ≥ 1

2
η

}
≤ ε

2
,

and then use Kolmogorov’s criteria for D′
n(t).

The following lemma is shown in a similar way to that for showing (3.19) in [KS79] by using (i) and

(ii) of Lemma 4.1:

Lemma 4.3 For any ε > 0, there exists an A = A(ε) such that

P{Nrn0 t(u) > 0 for some |u| > Ar
n/α
0 and t ≤ T } ≤ ε

4
.

To simplify notation, we use ξ instead of ξ(0) (recall that ξ’s are identically distributed). Let

cn(G) := rn2 P{‖r−nB2 ξ‖ ∈ G}, G ∈ B((0,∞)).

M(F ) :=
∫
SB

γ(dx)
∫ ∞

0

1F (sBx)d
(
−Hx(s)

s

)
, F ∈ B(Rd\{0}).

c(G) := M({x : ‖x‖ ∈ G}), G ∈ B((0,∞)).

By using Theorem 3.3.8 in [MS01], which is a general central limit theorem for independent and infinitely

divisible distributed random variables, it is shown that

rn2 P
{
r−nB2 ξ ∈ F

} −→ M(F ) (4.12)

for every Borel set F , which is bounded away from zero and M(∂F ) = 0. Using this convergence, we

obtain that for any y > 0 such that c({y}) = 0 and

cn([y,∞)) −→ c([y,∞)) (4.13)
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in a similar way to show Lemma 8 in [Ma96]. Recall that r0 = rαq2 with some q ∈ N. By (4.13) we obtain

for ρ with c({ρ}) = 0 such that

r
n/α
0 P

{∥∥∥r
− n

α
B

0 ξ
∥∥∥ > ρ

}
= rqn2 P

{∥∥∥r−qnB2 ξ
∥∥∥ > ρ

}
= cqn([ρ,∞)) −→ c([ρ,∞)),

which implies the following:

Lemma 4.4 We can find a ρ such that for all large n

(2Ar
n/α
0 + 1)P

{∥∥∥r
− n

αB
0 ξ

∥∥∥ > ρ
}
≤ ε

4
.

Using ρ above, we introduce the following notations,

ξn(u) := ξ(u)I
[∥∥∥r

− n
αB

0 ξ(u)
∥∥∥ ≤ ρ

]
.

En := r−nH0 E

[∑
u∈Z

Nrn0 (u)ξn(u)

]
,

D′
n(t) := r−nH0

∑
u∈Z

Nrn0 t(u){ξn(u)− E[ξn(u)]},

and divide the variation of {Dn} into the following:

‖Dn(t2)−Dn(t1)‖ ≤ ‖Dn(t2)−D′
n(t2)−Ent2‖+‖Dn(t1)−D′

n(t1)−Ent1‖+‖En‖|t2−t1|+‖D′
n(t2)−D′

n(t1)‖,

and estimate each part.

For notational simplicity, we write ξn for ξn(0) again. By using properties of the measures cn, M and

c above, the following estimation of expectation of ξn can be shown in the same way as those for showing

Lemma 14 in [Ma96] and inequality (4.9) in [A01]:∥∥∥E
[
r
− n

αB
0 ξn

]∥∥∥ = O
(

r
−n/α
0

)
, (4.14)

provided that ξ is symmetric when τB ≤ 1 ≤ TB.

Proof of Proposition 4.2.

(4.14) implies that

‖En‖ =
∥∥∥∥∥r

−n(1−1/α)
0 E

[
r
− n

αB
0 ξn

]
E

[∑
u∈Z

Nrn0 (u)

]∥∥∥∥∥ = O(1).

We have and set

Dn(t)− D′
n(t)− Ent

= r−nH0

∑
u∈Z

Nrn0 t(u) {ξ(u)− ξn(u)}+ r−nH0

{∑
u∈Z

Nrn0 t(u)E[ξn(u)]− E

[∑
u∈Z

Nrn0 (u)ξn(u)

]
t

}
=: r−nH0

∑
u∈Z

Nrn0 t(u) {ξ(u)− ξn(u)}+Qn(t).
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By using (4.14), it is shown that for each t ≤ T ,

‖Qn(t)‖ =
∥∥r−nH0 E[ξn]{rn0 t+ 1− (rn0 + 1)t}

∥∥
≤ T r

−n(1−1/α)
0

∥∥∥E
[
r
− n

αB
0 ξn

]∥∥∥ = O(r−n0 ),

and by using Lemma 4.3 and 4.4, it is shown that

P

{∑
u∈Z

Nrn0 t(u){ξ(u)− ξn(u)} �= 0 for some t ≤ T

}
≤ P

{
ξ(u) �= ξn(u) for some |u| ≤ Ar

n/α
0

}
+ P

{
Nrn0 t(u) > 0 for some |u| > Ar

n/α
0

}
≤

(
2Ar

n/α
0 + 1

)
P
{∥∥∥r

− n
αB

0 ξ
∥∥∥ > ρ

}
+

ε

4
≤ ε

2
.

Hence for any η > 0 we have

lim sup
n→∞

P

{
sup
t≤T

‖Dn(t)− D′
n(t) − Ent‖ ≥ 1

2
η

}
≤ ε

2
, (4.15)

and need to show

E[‖D′
n(t)− D′

n(s)‖2] ≤ C(t − s)2−1/α. (4.16)

If (4.16) is satisfied, with the respective replacements of Dn(t) and η by D′
n(t) and η/2, the relation

(4.11) is also satisfied, and this together with (4.15) imply (4.11). We have

E[‖D′
n(t)− D′

n(s)‖2] = E

∥∥∥∥∥r−nH0

∑
u∈Z

(Nrn0 t(u)− Nrn0 s(u))(ξn(u)− E(ξn(u)))

∥∥∥∥∥
2


= r
−2n(1−1/α)
0 E

[∥∥∥r
− n

αB
0 {ξn − E[ξn]}

∥∥∥2
]∑
u∈Z

E
[{

Nrn0 t(u)− Nrn0 s(u)
}2
]

≤ r
−2n(1−1/α)
0 E

[∥∥∥r
− n

αB
0 ξn

∥∥∥2
]∑
u∈Z

E
[{

Nrn0 t(u)− Nrn0 s(u)
}2
]

. (4.17)

Using a property of Lévy measure, we obtain that

sup
n

r
n/α
0 E

[∥∥∥r
− n

αB
0 ξn

∥∥∥2
]
= sup

n
r
n/α
0 E

[∥∥∥r
− n

αB
0 ξ

∥∥∥2

I
[∥∥∥r

− n
αB

0 ξ
∥∥∥ ≤ ρ

]]
= sup

n

∫ ρ
0

y2cqn(dy) < ∞. (4.18)

On the other hand, using (i) of Theorem 2.2, we can show that
∑
u∈Z E[Nt(u)2] = O(t2−1/α) and

E

[∑
u∈Z

{Nrn0 t2(u)− Nrn0 t1(u)}2

]
≤ C{rn0 (t2 − t1)}2−1/α (4.19)

in the same way as those for showing Lemmas 1 and 3 in [KS79] by using (i) of Theorem 2.2. Thus (4.16)

is shown by (4.17), (4.18) and (4.19), and the proof is completed.
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