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Abstract

A note on some maximum entropy distributions on the cylinder is provided. Then the
paper proposes new distributions on subsets of R

4 such as two tori, cylinders and unit
discs with the specified marginal distributions. A related Markov process on subset of R2

and models for incomplete observations are constructed.

Key words: directional statistics, Markov process, maximum entropy, von Mises distri-
bution.

1 Introduction

In directional statistics various methods have been proposed in the literature to obtain distri-
butions on the manifolds such as real and complex spheres, cylinder, unit disc, and torus. A
class of distributions on the cylinder with specified marginal distributions were proposed by
Johnson and Wehrly (1978). Wehrly and Johnson (1980) also proposed distributions on the
torus in a similar manner and studied a related Markov process on the circle and statistical
inference for its process. Shimizu and Iida (2002) proposed a Pearson type VII distribu-
tion on arbitrary dimensional spheres by using the scale mixture of the multivariate normal
distributions. Jones (2002) proposed distributions on the unit disc with a single specified
marginal distribution. Kato and Shimizu (2004) obtained some symmetric or asymmetric
t-distributions on the circle, complex sphere and cylinder by the method of the scale mixture
or the conditional distribution of the multivariate normal distribution. For other methods to
obtain circular distributions, see Mardia and Jupp (1999) or Jammalamadaka and SenGupta
(2001).
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In this paper we propose new distributions with specified marginal distributions on subset
of R

4 such as two tori, cylinders and unit discs. These distributions provide models for
observations which are represented as points on two bivariate manifolds. For example, in
meteorology, two pairs of wind directions measured at two locations at two points in time are
observations on two tori. Another example is given for two pairs of wind direction and speed,
i.e., observations on two cylinders. Or observations may lie on two unit discs. We also study
a related Markov process on the subset of R

2. Then models for incomplete observations are
constructed. They can be applied to two observations such as one on the circle and the other
on the torus.

Subsequent sections are organized as follows. In Section 2 we give a note on Johnson and
Wehrly’s paper (1978). We specify the normalizing constant of the distribution they proposed
in the paper. Then new maximum entropy distributions are proposed, which can be viewed as
an extension of their distributions. Some properties are given for the proposed distributions.
In Section 3 a theorem (Theorem 4) is shown, which constructs families of distributions
on subset of R

4 with the specified marginal distributions. Then we give examples of the
distributions obtained by applying Theorem 4. In Section 4 a related Markov process is
constructed. It is obtained by using Theorem 4, too. In Section 5 another theorem is shown,
which provides models for two observations such as one on the circle and the other on the
cylinder. In Section 6 we discuss distributions on the unit disc which are related to Theorem
4. It is shown that Theorem 4 can be applied to construct distributions on the unit disc.
They contain the bivariate spherically symmetric beta distributions on the unit disc.

2 Note on Johnson and Wehrly’s paper

Johnson and Wehrly (1978) proposed some distributions on the cylinder which maximize
the entropy subject to constraints of certain moments. In Theorem 2 they introduced a
distribution on the cylinder with probability density function (p.d.f.)

f(θ, x) =
1√
2πσ

e−κ2/(4σ2)C1 exp
{
−(x − λ)2

2σ2
+

κx

σ2
cos(θ − µ)

}
, (1)

where 0 ≤ θ < 2π, −∞ < x < ∞, −∞ < λ < ∞, κ > 0, and 0 ≤ µ < 2π. In the paper they
did not specify the constant C1. However, it can be specified by using the Fourier expansion.

Theorem 1 Let (Θ,X) have the joint p.d.f. (1). Then the constant C1 can be expressed as

C−1
1 = 2π


I0

(
κλ

σ2

)
I0

(
κ2

4σ2

)
+ 2

∞∑
j=1

Ij

(
κ2

4σ2

)
I2j

(
κλ

σ2

)
 , (2)

where Ij denotes the modified Bessel function of the first kind and order j which is given by

Ij(z) =
1
2π

∫ 2π

0
cos(jθ) exp {z cos θ} dθ =

∞∑
r=0

1
Γ(r + j + 1) r!

(z

2

)2r+j
, z ∈ C.

Proof. By using the Fourier expansion: exp {κ cos θ} = I0(κ) + 2
∑∞

j=1 Ij(κ) cos (jθ) (see
Abramowitz and Stegun, 1972, p. 376), the constant C1 can be specified as

C−1
1 =

∫ 2π

0

∫ ∞

−∞

1√
2πσ

e−κ2/(4σ2) exp
{
−(x − λ)2

2σ2
+

κx

σ2
cos(θ − µ)

}
dxdθ
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=
∫ 2π

0
exp

{
κλ

σ2
cos(θ − µ) +

κ2

4σ2
cos (2(θ − µ))

}
dθ

= 2π


I0

(
κλ

σ2

)
I0

(
κ2

4σ2

)
+ 2

∞∑
j=1

Ij

(
κ2

4σ2

)
I2j

(
κλ

σ2

)
 .

�

The marginal p.d.f. of Θ can be expressed as

f(θ) = C1 exp
{

κλ

σ2
cos(θ − µ) +

κ2

4σ2
cos (2(θ − µ))

}
, 0 ≤ θ < 2π.

This marginal p.d.f. has the same form as the p.d.f. (1.2.5) in the book by Watson (1983).
Or it can be viewed as a special case of Rukhin’s generalized von Mises or a skew von Mises
distribution below (Rukhin, 1972) .

The marginal p.d.f. of X is given by

f(x) = C2 exp
{
−(x − λ)2

2σ2

}
I0

(κx

σ2

)
, −∞ < x < ∞, (3)

where C2 can be expressed as

C2 =
√

2π

σ
e−κ2/(4σ2)C1,

by using C1 given in (2).
The distribution (3) provides a skew normal distribution different from that by Azzalini

(1985). When κ → 0, it reduces to the normal distribution with mean λ and variance σ2.
It is remarked that we can obtain the distribution on the circle by wrapping the distribu-

tion (3) in the same way as Pewsey (2000) obtained the wrapped skew-normal distribution
by wrapping a skew normal distribution by Azzalini (1985). Its p.d.f. is given by

f(θ) = C2

∞∑
n=−∞

exp
{
−(θ + 2πn − λ)2

2σ2

}
I0

(
κ(θ + 2πn)

σ2

)
, 0 ≤ θ < 2π.

The trigonometric moment for this p.d.f. is obtainable because it is equal to the charac-
teristic function of X. (See Jammalamadaka and SenGupta, 2001, Proposition 2.1.) The
characteristic function of X is given by

E[eitX ] = 2πC1 exp
[
iλt − σ2t2

2

]{
I0

(
κλ

σ2
+ iκt

)
I0

(
κ2

4σ2

)

+2
∞∑

j=1

Ij

(
κ2

4σ2

)
I2j

(
κλ

σ2
+ iκt

)}
, i2 = −1.

When λ = 0, the p.d.f. (3) can be expressed as

f(x) =
1√
2πσ

e−κ2/(4σ2)I−1
0

(
κ2

4σ2

)
exp

{
− x2

2σ2

}
I0

(κx

σ2

)
, −∞ < x < ∞.

(4)

When κ2 > 2σ2, the distribution (4) becomes bimodal, taking maximum value at x =
±(σ2/κ)B−1(1 − 2σ2/κ2), where B(x) = I2(x)/I0(x), x ≥ 0, and minimal value at x = 0.
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When κ2 ≤ 2σ2, the distribution (4) becomes unimodal, taking maximum value at x = 0.
See Appendix A.

As Theorem 3 Johnson and Wehrly (1978) proposed a maximum entropy p.d.f. subject
to E[X], E[cosΘ], E[sin Θ], E[X cos Θ], and E[X sin Θ] taking specified values consistent
with expectation. Now we propose another maximum entropy distribution on the cylinder
which is viewed as an extension of the distribution they proposed in Theorem 3. It is defined
as follows. The proof is similar to that of Theorem 3 by Johnson and Wehrly (1978) and
therefore omitted.

Theorem 2 Let (Θ,X) have the joint p.d.f.

f(θ, x) = C3 exp{−λx + κx cos(θ − µ1) + ν1 cos(θ − µ2)
+ν2 cos (2(θ − µ3)) }, 0 ≤ θ < 2π, x > 0, (5)

where λ > κ > 0, ν1, ν2 > 0, 0 ≤ µ1, µ2, µ3 < 2π. The normalizing constant C3 can be
expressed as

C−1
3 =

2π√
λ2 − κ2

[
I0(ν1)I0(ν2) + 2

∞∑
n=1

I0(ν2)In(ν1)ρn cos (n(µ1 − µ2))

+2
∞∑

n=1

I0(ν1)I2n(ν2)ρ2n cos (2n(µ1 − µ3))

+2
∞∑

m,n=1

Im(ν1)I2n(ν2)
{

ρm+2n cos (m(µ1 − µ2) + 2n(µ1 − µ3))

+ρ|m−2n| cos (m(µ1 − µ2) − 2n(µ1 − µ3))
}]

,

where ρ = (λ − √
λ2 − κ2)/κ. Then the p.d.f. (5) is a maximum entropy p.d.f. subject to

E[X], E[cos Θ], E[sinΘ], E[cos 2Θ], E[sin 2Θ], E[X cos Θ], and E[X sin Θ] taking specified
values consistent with expectation.

The marginal p.d.f. of Θ is given by

f(θ) = C3
exp {ν1 cos(θ − µ2) + ν2 cos(2(θ − µ3))}

λ − κ cos(θ − µ1)
, 0 ≤ θ < 2π.

The marginal p.d.f. of X is given by

f(x) = 2πC3 e−λx

{
I0 (ν∗(x)) I0(ν2)

+2
∞∑

j=1

Ij(ν2)I2j (ν∗(x)) cos {2j(µ∗(x) − µ3)}
}

, x > 0,

where ν∗(x) (≥ 0) and µ∗(x) (0 ≤ µ∗(x) < 2π) are the constants which satisfy

ν∗(x) cos (µ∗(x)) = κx cos µ1 + ν1 cos µ2, (6)
ν∗(x) sin (µ∗(x)) = κx sin µ1 + ν1 sin µ2. (7)

The conditional distribution of Θ given X = x is given by the p.d.f.

f1(θ|x) = C4 exp {ν∗ cos(θ − µ∗) + ν2 cos (2(θ − µ3))} , 0 ≤ θ < 2π, (8)
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where ν∗ (= ν∗(x)) and µ∗ (= µ∗(x)) are the constants which satisfy (6) and (7). The
normalizing constant C4 can be expressed as

C−1
4 = 2π


I0 (ν∗) I0 (ν2) + 2

∞∑
j=1

Ij (ν2) I2j (ν∗) cos(2j(µ∗ − µ3))


 .

The conditional p.d.f. of X given Θ = θ is expressed as

f2(x|θ) = (λ − κ cos(θ − µ1)) exp {−(λ − κ cos(θ − µ1))x} , x > 0. (9)

The conditional distributions (8) and (9) are Rukhin’s generalized von Mises GVM(ν∗, ν2, µ
∗, µ)

and exponential p.d.f.s, respectively.
Johnson and Wehrly (1978) discussed the distribution on the cylinder proposed by Mar-

dia and Sutton (1978). It is obtained as a conditional distribution of a trivariate normal
distribution or a maximum entropy distribution subject to constraints of certain moments.
The following theorem provides a distribution on the cylinder which includes the distribution
by Mardia and Sutton (1978) as a special case. The proof is straightforward and omitted.

Theorem 3 Let (Θ,X) have the joint p.d.f.

f(θ, x) = C5 exp
[
−(x − µ(θ))2

2σ2
+ κ1 cos(θ − µ1) + κ2 cos(2(θ − µ2))

]
, (10)

where 0 ≤ θ < 2π, −∞ < x < ∞, σ > 0, κ1, κ2 > 0, 0 ≤ µ1, µ2 < 2π, µ(θ) = µ′ + λ cos(θ −
ν), −∞ < µ′ < ∞, λ > 0, and 0 ≤ ν < 2π. The normalizing constant C5 is given by

C−1
5 = (2π)3/2σ


I0(κ1)I0(κ2) + 2

∞∑
j=1

Ij(κ2)I2j(κ1) cos (2j(µ1 − µ2))


 .

Then f(θ, x) is the maximum entropy p.d.f. on the cylinder subject to E[X2],
E[X], E[X cos Θ], E[X sin Θ], E[cos Θ], E[sinΘ], E[cos 2Θ], and E[sin 2Θ] taking specified
values consistent with expectation.

The distribution (10) is also obtainable as a conditional distribution of a trivariate normal
distribution without any constraints of mean vector and covariance matrix. See Appendix B
for details.

This distribution has the property that the conditional distribution of X given Θ = θ is
a normal distribution N(µ(θ), σ2) and the marginal distribution of Θ is Rukhin’s generalized
von Mises distribution GVM(κ1, κ2, µ1, µ2).

3 Distributions with specified marginal distributions

The following theorem provides classes of continuous distributions on subsets of R
4 with

specified marginal distributions. For instance, distributions on the two tori, cylinders and
unit discs are constructed.

Theorem 4 Let f1(x1, x2) be a specified p.d.f. on the support M1 ⊂ R
2 and f2(y1, y2) a

specifed p.d.f. on the support M2 ⊂ R
2, and F1(x1, x2) and F2(y1, y2) be their distribution

functions, respectively. Suppose that f11(x1) (f21(y1)) is the marginal p.d.f. of X1 (Y1) and
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F11(x1) (F21(y1)) its distribution function. Let g(·) be a p.d.f. on the circle and h(·, ·) a p.d.f.
on the torus. Then

f1(x1, x2, y1, y2) = 2πf1(x1, x2)f2(y1, y2)

×g

[
2π

{
1

f11(x1)
∂F1(x1, x2)

∂x1
± 1

f21(y1)
∂F2(y1, y2)

∂y1

}]
, (11)

f2(x1, x2, y1, y2) = 4π2f1(x1, x2)f2(y1, y2)

×h

[
2π {F11(x1) ± F21(y1)} ,

2π

{
1

f11(x1)
∂F1(x1, x2)

∂x1
± 1

f21(y1)
∂F2(y1, y2)

∂y1

}]
, (12)

where (x1, x2) ∈ M1, (y1, y2) ∈ M2, are p.d.f.s on M1 × M2. Both have the marginal distri-
butions of (X1,X2) ((Y1, Y2)) with the p.d.f. f1(x1, x2) (f2(y1, y2)).

Proof. It is clear that f1(x1, x2, y1, y2) ≥ 0. We show∫
M2

∫
M1

f1(x1, x2, y1, y2)dx1dx2dy1dy2 = 1.

Consider the integral∫
M2

∫
M1

f1(x1, x2, y1, y2)dx1dx2dy1dy2

= 2π

∫
M2

f2(y1, y2)
∫

M1

f1(x1, x2)

×g

[
2π

{
1

f11(x1)
∂F1(x1, x2)

∂x1
± 1

f21(y1)
∂F2(y1, y2)

∂y1

}]
dx1dx2dy1dy2.

(13)

Making the change of the variable t = t(x2) = 2π{∂F1(x1, x2)/∂x1}/{f11(x1)}, (13) is calcu-
lated as ∫

M2

∫
M1

f1(x1, x2, y1, y2)dx1dx2dy1dy2

=
∫

M2

f2(y1, y2)
∫
�

∫ 2π

0
g

[
t ± 2π

f21(y1)
∂F2(y1, y2)

∂y1

]
f11(x1)dtdx1dy1dy2

=
∫

M2

f2(y1, y2)
∫
�

f11(x1)dx1dy1dy2

=
∫

M2

f2(y1, y2)dy1dy2

= 1.

¿From this result, it is obvious that the marginal p.d.f. of (Y1, Y2) is f2(y1, y2). Similarly, we
can show that the marginal p.d.f. of (X1,X2) is f1(x1, x2).

By making the change of variables t1 = t1(x2) = 2π[{∂F1(x1, x2)/∂x1}/f11(x1)] and
t2 = t2(x1) = 2π{F11(x1) ± F21(y1)}, we can also show that∫

M2

∫
M1

f2(x1, x2, y1, y2)dx1dx2dy1dy2 = 1.

6



The marginal p.d.f. is also obtained by proceeding that process.
�

Examples
When we put M1 = M2 = [0, 2π)×R in distributions (11) and (12), classes of distributions

on the two cylinders are constructed. For example, by taking the distribution (1) or (5)
as a marginal distribution, we can get distributions on the two cylinders. When M1 =
M2 = [0, 2π)2, classes of distributions on the two tori are constructed. For the examples of
distributions on the torus, see Mardia (1975) or Breckling (1989). Distributions on the two
tori or unit discs are made in a similar manner.

It is not necessary that M1 and M2 are the same manifolds. Actually, by putting M1 is
a torus and M2 a cylinder, we can get families of distributions on the direct product of the
torus and cylinder. Similarly, distributions on the direct product of the torus and the unit
disc are constructed.

4 A related Markov process

In a similar way as in Wehrly and Johnson (1980), families of distributions for Markov process
on subsets of R

2 are constructed through Theorem 4. They are constructed as follows.
Let X0,X1, . . . (Xi = (Xi1,Xi2)′, i = 0, 1, 2, . . .) be random variables taking values on

M ⊂ R
2 such that

p(x0) = f(x01, x02),
p(xn|x0, x1, . . . , xn−1) = p(xn|xn−1)

= 2πf(xn1, xn2) g

[
2π

{
1

f1(xn1)
∂F (xn1, xn2)

∂xn1

± 1
f1(xn−1,1)

∂F (xn−1,1, xn−1,2)
∂xn−1,1

}]
,

where f(·, ·) denotes a p.d.f. on M and F (·, ·) its distribution function. Then X0,X1, . . . is a
Markov process on M with the initial distribution p(x0) and the stationary transition p.d.f.
p(xn|xn−1).

Similarly, we can construct another Markov process by using the distribution (12) as the
stationary transition p.d.f.

5 Models on other manifolds

The following theorem provides models for two observations such as one on the circle and the
other on the torus, for example, a model for incomplete pairs of wind directions observed at
two locations at two points in time in meteorology and in environmetal science. The proof is
omitted.

Theorem 5 Let f1(x1, x2) be a specified p.d.f. on the support M1 ⊂ R
2 and f2(y) a specified

p.d.f. on the support M2 ⊂ R, and F1(x1, x2) and F2(y) be their distribution functions.
Suppose that f11(x1) is the marginal p.d.f. of X1. Let g(·) be a p.d.f. on the circle . Then

f(x1, x2, y) = 2πf1(x1, x2)f2(y)

×g

[
2π

{
1

f11(x1)
∂F1(x1, x2)

∂x1
± F2(y)

}]
,

7



where (x1, x2) ∈ M1, y ∈ M2, is a p.d.f. on M1 × M2. It has the marginal distribution of
(X1,X2) (Y ) with the p.d.f. f1(x1, x2) (f2(y)).

Note that Theorem 5 can be considered to be a special case of Theorem 4. Actually, by
putting M2 = [0, 1)×M, M ⊂ R, and f2(y1, y2) = f2(y2), y2 ∈ M in Theorem 4, we can get
Theorem 5.

6 Distribution on the unit disc

Jones (2002) proposed a class of distributions on the unit disc with a single specified marginal
distribution. It is obtained by specifying a single marginal distribution with p.d.f. fX(x) and
a conditional distribution with p.d.f. f(y|x). Its p.d.f. is given by f(x, y) = fX(x)f(y|x).

In this section we propose a class of distributions on the unit disc with two specified
marginal distributions. The process is very similar to that of Wehrly and Johnson (1980).
Its p.d.f. is defined as follows.

Let f1(r) be a specified p.d.f. on [0, 1) and f2(θ) a specified p.d.f. on [0, 2π), and F1(r)
and F2(θ) be their distribution functions, respectively. Let g(·) be another p.d.f. on the
circle. Then

f(r, θ) = 2πf1(r)f2(θ)g [2π {F1(r) ± F2(θ)}] , 0 ≤ r < 1, 0 ≤ θ < 2π, (14)

is a p.d.f. on the unit disc with the marginal p.d.f.s f1(r) and f2(θ).
This p.d.f. can be obtained by applying Theorem 4. Actually, by putting M1 = [0, 1)2,

M2 = [0, 1) × [0, 2π), f1(x1, x2) = f1(x2), 0 ≤ x1, x2 < 1 and f2(y1, y2) = f2(y2), 0 ≤ y1 <
1, 0 ≤ y2 < 2π, we get distributions with the p.d.f. (14). Distributions on the unit disc in this
manner contain the bivariate spherically symmetric beta (or Pearson type II) distributions
with p.d.f.

f(r, θ) =
α

π
r(1 − r2)α−1, 0 ≤ r < 1, 0 ≤ θ < 2π,

where α > 0. It is obtained by putting f1(r) = 2αr(1−r2)α−1, f2(θ) = 1/2π, and g(t) = 1/2π
in (14).

Appendix

A Unimodality

The distribution (4) becomes unimodal or bimodal, depending on the choice of κ and σ.
That is shown by differentiating the p.d.f. (4) with respect to x, and equating to zero,

d

dx
f(x) =

1√
2πσ

e−κ2/(4σ2)I−1
0

(
κ2

4σ2

)
exp

(
− x2

2σ2

)

×
{
− x

σ2
I0

(κx

σ2

)
+

κ

σ2
I1

(κx

σ2

)}
= 0. (15)

Using the fact that

I0(x) − I2(x) =
2
x

I1(x),

(15) can be calculated as

I2

(κx

σ2

)/
I0

(κx

σ2

)
= 1 − 2σ2

κ2
.
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Let B(x) denote the ratio of the Bessel functions

B(x) =
I2(x)
I0(x)

, x ≥ 0.

Then B(x) has the following properties:

(a) 0 ≤ B(x) ≤ 1, x ≥ 0

(b) lim
x→+0

B(x) = 0, lim
x→∞B(x) = 1

(c)
dB(x)

dx
> 0

The proof is as follows.
(a) It is obvious that B(x) ≥ 0. Using the fact that A(x)(= I1(x)/I0(x)) ≥ 0, x ≥ 0, we have

B(x) =
I0(x) − (2/x)I1(x)

I0(x)

= 1 − 2
x

A(x)

≤ 1, x > 0.

(b) Clearly limx→+0 B(x) = 0. By using the fact that limx→∞ A(x) = 1 (See Jammalamadaka
and SenGupta (2001)), limx→∞ B(x) = 1 is shown as follows

lim
x→∞B(x) = lim

x→∞

(
1 − 2

x
A(x)

)
= 1.

(c) The p variate von Mises-Fisher distribution on the unit sphere Ωp in R
p is defined by

p.d.f.

f(x) =
(κ

2

)p/2−1 1
Γ(p/2)Ip/2−1(κ)

exp
(
κµ′x

)
, x ∈ Ωp,

where κ ≥ 0, µ ∈ Ωp. The Fisher information of maximum likelihood estimator of κ (Mardia
and Jupp, 1999, p. 199) is given by

−E

[
∂2

∂κ2
log f(X)

]
= A′

p(κ),

where Ap(z) = Ip/2(z)/Ip/2−1(z). From the fact that the Fisher information is positive, we
have

d

dz

{
I2(z)
I0(z)

}
=

d

dz

{
I1(z)
I0(z)

· I2(z)
I1(z)

}
=

d

dz
{A2(z)A4(z)}

= A′
2(z)A4(z) + A2(z)A′

4(z)
> 0, z > 0.

By using the properties of B(x), it is shown that the distribution (4) becomes unimodal
when κ2 > 2σ2 and bimodal otherwise.
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B Derivation of the distribution (10)

We noted that the distribution (10) can be obtained by conditioning a trivariate normal
distribution without any constraints of mean vector and covariance matrix. It is obtained as
follows.

Let X be a random vector which obeys the trivariate normal distribution with mean
vector η = (η1, η2, η3)′ and covariance matrix

Σ =


 σ2

1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ3
3


 ,

where −∞ < ηi < ∞, σi > 0 (i = 1, 2, 3) and −1 < ρ12, ρ13, ρ23 < 1. We transform the
trivariate random vector X = (X,X1,X2)′ = (X,R cos Θ, R sinΘ)′ where R > 0, 0 ≤ Θ <
2π. Then the conditional distribution of (Θ,X) given R = r is given by the p.d.f. (10) by
defining new parameters as

µ(θ) = η1 + dη2 + eη3 + r∗ cos(θ − η∗), σ2 =
1
a
,

κ1 cosµ1 = r
{
η2(b − ad2) + η3f

}
, κ1 sin µ1 = r

{
η3(c − ae2) + η2f

}
,

κ2 cos 2µ2 =
r2

4
(c − b + ad2 − ae2), κ2 sin 2µ2 = −r2f

2
,

where

r∗ cos η∗ = rd, r∗ sin η∗ = re, a =
ρ(1 − ρ2

23)
σ2

1

, b =
ρ(1 − ρ2

13)
σ2

2

,

c =
ρ(1 − ρ2

12)
σ2

3

, d = −ρ(ρ12 − ρ13ρ23)
σ1σ2

, e = −ρ(ρ13 − ρ12ρ23)
σ1σ3

,

f = −ρ(ρ23 − ρ12ρ13)
σ2σ3

, ρ−1 = 1 − ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23.
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