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1 Introduction

Let V be a finite dimensional p-adic vector space, where p is a prime num-
ber. Let P(V) denote the topological semigroup of probability measures
on V', with weak topology and convolution ‘x’ as the semigroup operation
defined with respect to the additive group structure on V. Let GL(V) de-
note the group of all invertible linear operators on V', namely the set of all
bi-continuous automorphisms on V. In the following, R, Q,Z and N stand
for the set of real numbers, rational numbers, integers and natural numbers,
respectively.

A probability measure p on V' is said to be operator-semistable if there
exist 7 € GL(V), ¢ €]0,1] and {z;};>0 C V such that p is embeddable
in a continuous real one-parameter semigroup {iu}>0 C P(V) as pp = 1y
satisfying 7(us) = prer * 95, for all t > 0, where 0, denotes the Dirac measure
supported on x € V. However, if H is the compact subgroup such that
to = wp, the normalised Haar measure of H, then the image of {z;};>¢ on
V/H is a continuous real one-parameter semigroup and hence it is trivial.
Thus, 7(i) = pee for all ¢ > 0. We call p and {p}i>0 as above (7,¢)-
semistable; when 7 is a scaler automorphism, we say that p (or {f}i>0) is
semistable.

Let || - || be a p-adic vector space norm on V. For r € (0,00), we say that
p € P(V) has an absolute moment of order r if [, ||z]|" du(x) < co. Note
that this definition is independent of norm on V', since any two vector space
norms on V' are equivalent (see, e.g. Cassels [1], Chapter 7, Lemma 2.1).

Operator-semistable probability measures on real vector spaces have been
studied extensively. For a complete survey of results on (operator-)semistable
probability measures, see Hazod and Siebert [3] and Sato [10]. For some
related results for p-adic vector spaces, see Dani and Shah [2], Shah [11],
Teloken [17] and Yasuda [19].

In this paper, we discuss the existence of absolute moments of order
r of an operator-semistable probability measure p on a finite dimensional
p-adic vector space V as an extension of the corresponding result on real
vector spaces (Theorem 1). Using this result, we investigate the relation
between semistability of a probability measure g on V' and that of all its
one-dimensional projections under certain conditions (Theorem 2).
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2 Moments of operator-semistable probabil-
ity measures on p-adic vector spaces

In this section, we discuss the existence of absolute moments of operator-
semistable probability measures on a finite dimensional p-adic vector space
V. There exist a lot of operator-semistable probability measures on a p-adic
vector space (see Dani and Shah [2], Theorem 4.2).

For a prime number p, let @@, denote the topological field of p-adic num-
bers with the p-adic norm |- |,. Namely, for any rational number z € Q, if
x = (h/k)p™ for some integers h, k,n € Z, where p does not divide h or k,
then |z|, = p~" and Q, is the completion of Q with respect to this norm. Let
d = dimV. Then V is isomorphic to Q¢. Let M(V) denote the space of all
linear operators on V. Then M (V') (resp. GL(V)) is isomorphic to My(Q,),
the vector space of d x d matrices (resp. GL4(Q,), the group of nonsingular
d x d matrices) with entries in @Q,, having the usual topology as a subset of
QgQ. Here, M (V) is a d*-dimensional p-adic vector space. Given a vector
space norm ||-|| on V', we define a vector space norm ||-|| on M (V) as follows:
I7ll = sup{ll7(2)|| : € V,[lz]| = 1} for 7 € M(V). Here, |[77'[| < ||7[[||7’]]
and ||7(x)|| < ||7]|||z]| for 7,7 € M(V) and x € V. We define the spectral
radius s(7) = lim,_,o ||7"]|"/" for 7 € M(V); it is easy to see that the limit
exists. Note that s(7) < ||7"||*/" for all n. Clearly, s(7) is independent of
the norm defined as above, since any two vector space norms on M (V') are
equivalent (see, e.g. Cassels [1], Chapter 7, Lemma 2.1).

We now define a vector space norm || ||, on V' (resp. on M (V')) as follows:
We fix a basis {e1,...,eq} on V. For o = (z1,...,24) = S0 mie; € V, let
||z||, = max; |z;|,. Using this norm on V', we can define || - ||, on M(V) as
follows; for any 7 € M(V), ||7||, = sup{||7(z)|l, : |l=|]l, = 1}. Note that
if 7 = (aij) € My(Q,) with respect to the basis mentioned above, ||7]|, =
max; ; |a;j|,. Here, for z = Z?Zl xie; and y = Z?Zl yie; in V, ||z +yll, =
max; |z; + vyilp = |; + yjl, < max{|z;|,, |y;|,} for some j. Then ||z + y||, <
max{||z||,, [|y|[,}. Therefore, for any r > 0, [[x+y||;, < max{[[z[|},[|y]],}, and
hence = > [|z]|7 is a continuous subadditive function on V' (see its definition
below).

A probability measure p on V is said to be fullif the support of 1, denoted
by supp p, is not contained in a proper subspace of V. For 7 € GL(V), let
C(r) ={z € V:7"(xz) — 0}. Clearly C(r) is a T-invariant vector subspace
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of V. We say that 7 is contracting on V' if C(r) = V. Note that, since C(7)
is closed in V, for any p € P(V), 7"(u) — 0y if and only if supp p C C(7).
A measure pu € P(V) is said to be an idempotent if > = u, equivalently, if
it = wy, the normalised Haar measure of some compact subgroup H. Clearly,
any idempotent has an absolute moment of any order.

The following is a generalization of a result on existence of absolute mo-
ments of operator-semistable probability measures on real vector spaces to
p-adic vector spaces, (for the result on real vector spaces, see Luzak [5], [6]).

Theorem 1 Let V' be a finite dimensional p-adic vector space. Let i €
P(V) be full, non-idempotent and (1, ¢)-semistable for some T € GL(V') and
some ¢ €0.1[. Then p has an absolute moment of order r if and only if
s(t™he < 1.

Remark: The fullness condition is not needed for the “if” part of the above
theorem. Suppose p is a non-idempotent probability measure embeddable in
a (7, c)-semistable {ju},>0 as p = ;. Let V, be the subspace generated by
supp p. Since V' is totally disconnected, supp p; C V), for all ¢ > 0, and hence
V,, is T-invariant. Let 7, be the restriction of 7 to V,,. Since p is full on V,, p
has an absolute moment of order r if and only if s(7,')"c < 1, by Theorem
1. Thus, the “if” part of the assertion without the fullness condition follows
since s(7, ") < s(77h).

Before proving the above theorem, let us state a result on subadditive
functions on a locally compact (Hausdorff) group G. A function ¢ : G —
[0, 00[ (resp. ¢ : G — )0, 00[) is said to be subadditive (resp. submultiplicative)
if p(zy) < () + ¢(y) (resp. ¢p(zy) < ¢(x)p(y)) for all z,y € G and if there
exists a positive real number r = r(¢) such that U, = {x € G : ¢(x) <r}isa
neighbourhood of the identity e in G. Note that if a function ¢ is subadditive,
then 1 + ¢ is submultiplicative. The following result (which is perhaps well
known) follows from the same result about submultiplicative functions on G,
(see Siebert [14], Theorem 1, and Siebert [15], Theorem 5).

Proposition 1 Let G be a locally compact group with identity e and let P(G)
be the convolution semigroup of probability measures on G. Let {j4}i>0,
to = O, be a continuous one-parameter semigroup in P(G) with the Lévy
measure 1. Let U(e) denote the set of all neighbourhoods of the identity e in
G. Let ¢ be a subadditive function and let r = r(¢) > 0 and U, € U(e) be as
above. Then the following are equivalent:

4
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(1) [oddu < oo for somet > 0.
(1) SuPg<sey [ @dps < 00 for allt > 0.
(i) [0, 6y < 0.

Moreover, if ¢ is continuous, then the above are equivalent to each of the
following statements:

(1) [y @ dn < oo for all U € U(e).
(v) fG\U ¢ dn < oo for some compact neighbourhood U € U(e).

Proof of Theorem 1. As in the hypothesis, since p is (7, ¢)-semistable, there
exists a (7, ¢)-semistable one-parameter semigroup {1 };>0 C P(V) with 1 =
p. Now recall that C(7) = {z € V : 7™(z) — 0}; it is a vector subspace
of V. It is shown in Dani and Shah [2] that for all ¢ > 0, u; = MEO) * Wi,
jto = wyy, for some compact subgroup H such that 7(H) = H, {;\"} is a
(T, ¢)-semistable one-parameter semigroup supported on C'(7), u(()o) = 0y and
H N C(r) = {0}. Since any norm on V satisfies the triangular inequality, it
is easy to see that p has an absolute moment of order r if and only if ugo)
does. Also, since u, and hence ug‘)), is not an idempotent, ug‘)) =% dp. Hence
C(7) # {0}. Let 7 be the restriction of 7 to C(7). Since 7 is contracting
on C(7), it follows that s(7; ') > 1. Now we are going to show that ugo) is
full on C(7) and s(771) = s(7; 1).

Let Vi be the subspace of V' generated by H. Since 7(H) = H, 7(Vy) =
V. Moreover, since H is compact, if 75 is the restriction of 7 to Vy, then
it can easily be shown that for some M > 0, ||7}'|| < M for all n € Z, and
hence s(r5') = 1 = s(r). Also, Vi N C(7) = {0}. Since p = 4% % wy is full
on V, V = C(r) ® Vg, a direct product, and /Lgo) is full on C(7). Now, we
have s(77!) = max{s(7; "), s(r; ")} = s(r;!). In particular, s(77!) > 1.

Now without loss of generality, we may assume that pu = MEU), V =0C(r)
and 7 = 7, i.e. pu is embeddable in a (7, ¢)-semistable {14 };>0 with 19 = o
and 7 is contracting on V. Let n be the Lévy measure of {1 },>0 on V' \ {0}.
Then we know that 7 is finite on V' \ U for any neighbourhood U of 0 in V'
and 7(n) = cn. Since p # §p and V' is totally disconnected, it is easy to show
that 1 is not a zero measure (see also Heyer [4], Theorems 6.2.10 and 6.2.3).
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Here, V' is isomorphic to Qg, where d = dim V. Since any two norms on
V' are equivalent, it is enough to consider the norm || - ||, defined above.

Since 7 is contracting on V', by Lemma 3.3 in Siebert [16] there exist
distinct open compact subgroups G,, n € Z, V = U,G,, N,G, = {0}, and
for all n, G, C G,41 and 7(G,,) = G,, ;.

We first prove the “if” part. Let r > 0 be fixed such that s(771)"c < 1.
Since the map z + |[|z||} is subadditive, by Proposition 1, it is enough to
show that fV\GO ||z][; dn(x) < co. Using the relation 7(n) = cn, we have (for
=1,

z||Pdn(xz) = z||” dn(x
[t = S [l
— cd
Z/GI\GO n(z)
77" [lz||" ™ dn(x
Z/GM 12 Nzl dn(z)
< M (1 +Z{(IIT‘"II;/”)’"C}"> :

where M = sup{||z]|, : © € G1}n(G, \ Go), which is finite. Let a, =

(I~ 1lY™)"e, n € N. Since ||7="||)™ — s(7~1), we get that a, — s(r~!)"c <
1, and hence ) a!* converges. Therefore

/ | dn(z) < o.
V\Go

Hence, p has an absolute moment of order r if s(771)"c < 1.

For the “only if” part, we need to show that [, |lz[|7 du(z) = oo if
s(t7')"¢ > 1. If possible, suppose this integral is finite for some r > 0
satisfying s(77!)"c > 1. Now from above,

Z/GI\GO c* dn(z) = /V\GO |7 dn(z) < oo.

IN

Hence

/G > I (@) e dn(z) < oo

\GO n=0
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Let 19 be the restriction of n to Gy \ Gy. Then the above implies that for
no-almost all z,

o
> Il (@)|l5e" < oo and hence [|77"(z)[[7c" — 0.
n=0

Let t,, = ||7~"||,. By definition, t,, € Q\ {0}. Let ¢, = t, 77" for all n. Then
VY € GL(V) and ||¢u]l, = ltalpllm ™|l = t, ', = 1 for all n. Also, since
s(t™1)e > 1, t," < " Now we get for ng-almost all z,

[n (@)l = 8"l " (@), < "l (@), =0,

This implies that, for np-almost all z, |[¢,(z)||, — 0 and hence ¢, (z) — 0.
Let
Vi={z eV :¢,(x) = 0}.

Then V' is a vector subspace, hence it is closed and suppn, C V'. Since
T 01, = 1, o1 for all n, for any z € V',

Yo (7(2)) = 7(¢y(x)) — 0.

Therefore, 7(V') C V' and hence 7(V') = V' as 7 € GL(V). Since n =
Y onez € T (m0), suppn C V' \ {0}. Now we show that V' = V. If possible,
suppose V' is proper. Let m : V' — V/V' be the natural projection. Then
{7 (4et) }1>0 is a continuous one-parameter semigroup with the Lévy measure
7(n) defined on (V/V')\ {m(0)}. From above, m(n) is a zero measure. Hence,
since V/V'" is totally disconnected, it is easy to show that 7 (1) = 0 (o), for
all ¢, (see also Heyer [4], Theorems 6.2.10 and 6.2.3), and hence suppp; C V.
But since p1 = v is full on V', we get a contradiction. Hence V' = V. That is,
Yy (z) — 0 for all z € V. But ||4,||, = 1 for all n, which is a contradiction.
Thus, [, ||z]|; dpe(x) must be infinite if s(77")"¢ > 1. This completes the
proof. O

We now state two simple lemmas about operator-semistable probability
measures which will be used in the next section.

Lemma 1 LetV be a finite dimensional p-adic vector space. Let 7 € GL(V)
and ¢ € 10,1].

(i) If € P(V) is (1, c)-semistable, then for k, = [c "], 7"(n)* — p.

7
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(i) If ™" (v)!» — p € P(V) for some v € P(V) and {l,} C N such that
(V) = d and 1/l — ¢, then p is (7, c)-semistable.

Proof. (i) Let u € P(V) be (7, c)-semistable. Let {/}:>0 be a continuous
one-parameter semigroup with gy = p and 7(u;) = pier, for all ¢. Then for
ko =[], 7 ()" = e, — b1 = .

(ii) Let v, {l,}, 7, ¢ be as above. Then the set T'= {7™(v)™ :m < [,, n €
N} is relatively compact (see Shah [13], Theorem 2.1 and Remark following
it). Also, since [,,/l,,41 — ¢, we can prove the assertion along the proof of
Theorem 4.6 of Telken [17] using Theorem 2.3 of Teloken [17]. In Telken
[17], the fullness of x is not assumed. However, it is not necessary here to
assume that p is full, since, for 7, = 7, we have 7,,,7, ! =7 foralln. O

Lemma 2 Let V be a finite dimensional p-adic vector space. Let T € GL(V)
and ¢ €]0,1[. Let {¢,} C K, a compact subgroup of GL(V'), be such that
VYm commutes with T for each m. Let {v,} C P(V) be such that v, — v €
P(V). Suppose each v, is embeddable in a (¢, ¢)-semistable one-parameter
semigroup {;1™ Viso as g™ = v, such that p™ = 6y, Then for k, = [¢™],
Y (V)R kg, — v, for some b € K and some sequence {y,} in V.

Proof. We may assume, without loss of generality, that {t,,} itself converges.
Let ¢ be the limit point of it, then ¢y € K and ¢ commutes with 7. Recall
that C'(7) = {z € V : 7"(z) — 0}, which is a vector subspace. Moreover, if
p € K commutes with 7, then p keeps C(7) invariant and C(pr) = C(7) (cf.
Wang [18], Proposition 2.1). For any m € N, since (¢,,7)" (V) = /LET) — o,
we have that each v, and hence v, is supported on C(7). Therefore, without
loss of generality, we may assume that V' = C(7), that is, 7 is contracting on
V.
Let n € N be fixed. Let s,, =1 — k,c". Here, for all m,

Vi = 15" =t # 1 = Y™ (vm) .

m)

Also, u,(cncn = YT (V)fr — Y7 (v)*. As v, — v, the above implies that

{,ugT)}meN is relatively compact (cf. Parthasarathy [9], Chapter III, Theorem
2.1). Let oy, be a limit point of it. Since s, < ", 1™ is a factor of p{™

(M) — ym 77 (1) — YT(V), ap is a factor of YT (V).

Y

and since p
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Here, since ¢ € K and it commutes with 7, C'(¢y7) = C(r) = V, and
hence " 7"(v) — &y. Therefore, it follows that there exists a sequence {z,} C
V' such that ay, % 0., — 0p (cf. Shah [13], Lemma 2.3). Now from the above
equation, we have that v = ¢"7"(v)*" x a,, for all n, and hence for y, = !,
Y7 (v)* % 6, — v. This completes the proof. O

3 Semistable probability measures on p-adic
vector spaces and their projections

In this section, we compare semistability of a probability measure on a p-adic
vector space V with that of all its one-dimensional projections. Clearly, if
a probability measure p on V' is semistable then all its projections are also
semistable. Conversely, we are interested in finding out conditions under
which semistabilty of p is implied by that of all its one-dimensional projec-

tions.
For V' isomorphic to Q¢ and for z,y € V, = (21,...,74) and y =
(Y1, -y Ya), let (z,y) = Zgzl z;y;. It is a continuous bi-linear map from V2

to @Q,. Any one-dimensional projection of V' is of the form y — (x,y) for
some x € V. For x € V'\ {0}, let V,, = Ker(y — (z,y)); it is a subspace of
co-dimension 1 in V.

For p € P(V) and x € V, let p, = (, ) denote the image of p under the
map y — (x,y). We can see by injectivity of Fourier transform that p = v
if and only if (z, u) = (z,v) for all z € V. Moreover, it follows from Lévy’s
continuity theorem that u,, — p in P(V) if and only if (z, pu,) — (x, u), for
all z e V.

In the following, we consider semistable probability measures on V. Here,
we identify a € Q, with the map x — ax. Recall that a probability measure
pon V is semistable if it is (a, ¢)-semistable for some a € Q, \ {0}, |a|, < 1,
and some ¢ €0, 1], that is, p is embeddable in a continuous one-parameter
semigroup {pt}i>0 C P(V) as pp = py and a(py) = pier, for all ¢ > 0. This
automatically implies that C'(a) = V and pug = §g. Now for a probability mea-
sure p on V, we denote I'(1) = {c €]0,00[: p is embeddable in {s}>0 C
P (V) such that a(p:) = per,t > 0, for some a € Q, \ {0}}. Clearly, T'(u)
is always nonempty as 1 € I'(u) and if p is (a, ¢)-semistable for some a €
Q,\{0}, then ¢,c™' € T'(i). Let Z, denote the ring of p-adic integers, namely,
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Zy={x€Q,:|z|, <1}. Let Z,(1) = {x € Z, : |z|, = 1}. It is the maximal
compact subgroup of the multiplicative group @, \ {0}. For p € P(V), let
Inv(p) ={r € GL(V) : 7(p) = p}. It is a closed subgroup of GL(V).

The following theorem is a generalization (to p-adic vector spaces) of
Theorem 1 in Maejima and Samorodnitsky [8] which is for real vector spaces.
For semistable probability measures on a real vector space R?, see Maejima
[7] and references cited therein.

Theorem 2 Let V' be a finite dimensional p-adic vector space and let p €
P(V). Suppose that for all one-dimensional projections m of V, w(p) is
semistable and T' = N;I'(n(p)) # {1}. Then there exist unbounded sequences
{a,} and {d,} in N such that p® ()%™ — u; in particular p is embeddable.
Moreover, if Inv(p) N Zy(1) = {z € Z,(1) : z(1) = pu} is an open subgroup of
Zy(1), then p is semistable.

Remark: 1. Given any subgroup K of Z,(1), there exist a lot of semistable
probability measures on V' which are K-invariant. In the proof of Theorem
4.2 in Dani and Shah [2], for any contracting 7 € GL(V'), (we may choose
T=al,a€Q,0<|a, <1), and any ¢ €]0,1[, one can construct a Lévy
measure A such that 7(\) = ¢\ and \ is K-invariant; for this one has to take
a K-invariant subgroup Hj and a K-invariant measure py on Hy \ Hi, which
will imply that the corresponding one-parameter semigroup {/}i>o is such
that it is (7, ¢)-semistable and each p, is K-invariant (see also Yasuda [19]).

2. Any closed infinite subgroup of Z,(1) is open, so the additional condi-
tion in the above theorem leaves out only those probability measures which
have finite invariance subgroups in Z,(1).

Proof of Theorem 2. Step 1. We may assume that u # dy. Let W be the
subspace generated by supp p. If dim W = 1, then the statement is trivial. So
we assume that dim W > 2. Since scaler automorphisms keep any subspace
invariant, for all one-dimensional projections m of W, 7(u) is semistable and
NL(7(p)) # {1}. In view of the above arguments, we may assume that
V = W. That is, it is enough to prove the theorem for a full probability
measure j, on V.

From the hypothesis, u, = (x,p) is semistable for all z € V and I' =
N (1) # {1}. Choose ¢ € T such that ¢ €0, 1[. Then for each x € V'\ {0},
p is (a4, ¢)-semistable for some a, € Q, \ {0}, |as|, < 1.

10
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Step 2. Suppose for any = € V' \ {0}, p, is also (ds, c)-semistable for
some d, € Q, \ {0}. We show that |a;|, = |ds|,- This can be shown by
using Theorem 1, but we give a direct proof here. Let a, = b,p™®, and
d, = 5,p"®, where b,,s, € Z,(1) and m(z), k(x) € N\ {1}. Let k, = [¢™"],
n € N. Then by Lemma 1 (i), a®(us)* — po and d?(ug)* — pp. If
possible, suppose m(x) # k(x). Without loss of generality, we may assume
that m(z) > k(x). Then for i(x) = m(z) — k(z) € N,

fe = lima® (11,)%" = lim(a,d; ) d™(pg)* = lim b s, "p" @md" (g ).

Since {b7s;"} C Zp,(1), which is compact, p®™ — 0 in M(V) and since
d™ () — pz, we have p, = &, and hence supp u C V;;, which is proper as
x # 0. This is a contradiction as p is full on V. Therefore m(x) = k(z) and
hence |a, |, = p™™@) = |d,|,.

Step 3. Let V(1) = {z € V : [|z||, = 1}. Then V(1) is compact. We
now define a map m : V(1) — N as follows: If u, is (a,, c)-semistable, then
m(z) = —log,(|asl,), i-e. ag = byp™®, where |b,|, = 1. From the above
arguments, the map m is well-defined.

For each z, we fix a, and an (a,, ¢)-semistable one-parameter semigroup
{(z, )i}z with (z, p)y = (z, 1),

We now show that the image of m, F' = {m(x) : x € V(1)}, is a finite sub-
set in N. If possible, suppose that for some sequence {z;} C V (1), m(x;) —
oo. Then a,, — 0 in Q,. This implies that a,, (z;, 1) = (21, p)e — 6. But
(w1, ) is a factor of [(x;, u)c]™ for some fixed ny € N with nge > 1. From
above, [(z, 1)]"™ — dp. But since z; € V(1), {z;} is relatively compact,
and for any limit point x of it, x € V(1) C V \ {0} and p, = (x, ) is a
factor of dy. Therefore, p, = 0, for some g € @, and hence p, = dy as ji, is
semistable. Now supp p# C V., a proper subspace, hence y is not full, which
is a contradiction. This implies that F' is finite.

Step 4. We next show that the map m from V(1) to F C N is continuous.
Let {z;} € V(1), &y — x in V(1). Since F is finite, we may assume that
m(x;) = ip for all [. We have to show that m(z) = ip. Here, (x;,p) is
(ag,, c¢)-semistable. Then by Lemma 2, there exist b € Z,(1) and a sequence
{yn} C Q, such that b"p™"(z,p)* %8, — (z,u). Since (z,pu) is (ag,c)-
semistable, we have that a”(z, ) — (z, ). Let a, = b,p™® as above. If
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possible, suppose m(x) < ig. Then

lim(z, p) * d,-1 = lim b p " (v, ) = lim(bb;l)”p(io’m(w))”ag(x, p)kn = 8,
n " n n

since {(bb;1)"} C Z,(1), which is compact, plo=™=)" — (0 in M (V) and
since a”(x, p)*¥» — (x, p). This implies that {y, 1} is relatively compact and
(x, ) = 0, for some limit point y of {y,} in @,. Hence (z,pn) = Jy as it is
semistable, Therefore, we have supp u C V,, a proper subspace, and this is a
contradiction. Therefore, m(x) > io.

If possible suppose m(x) > ip. Then for z, = (byb~ 1) p(m@)=io)n (y—1)

(2, ) = lim @™ (z, )% = lim(b,b ) pm@ -0 [prpion (g y)kn 5§, 1% 4, .

Therefore, arguing as earlier, we get that (z, ) * 0,-1 — Jo. Now we get a
contradiction as above. Hence m(x) = iy. That is, the map m from V(1) to
F' is continuous.

Step 5. Now we show that F' consists of only one natural number. If
possible, suppose there exist g, g2 € V(1) such that m(g;) # m(g2). We may
also assume that m(g,) > m(go). Here, p™9)b, (g;, 1) = (gi, ), for i = 1,2.
Let {pn} C @, \ {0} be such that |p,|, = 0. Let h,, = p,g1+g2,n € N. Here,
hy, — g2 and ||ga||, = 1, we get that, for all large n, ||h,||, = 1. Without loss
of generality, we may assume that ||, ||, = 1 for all n. We know that since
is full on V', for any x € V, (z, u) is full on the image space {(z,y) : y € V'};
moreover, since (z, i) is semistable, it is not an idempotent. Now for i = 1,2,
let r; = —log¢/m(g;) log p. By Theorem 1,

/ |x|f,d(gi,u)(x) = / |<gi,y>|fJ du(y) < oo if and only if s < r;.
v

P

Now for a fixed s € [ry,rs[ and a fixed n, using the subadditivity of the
function x + |z|7, we get that

/@ el () = /V () 2 ()

v

Pl /V g0, )12 duy) — /V (g, )2 da(y)
= ol [Q 2]z (g1, 1) () — /@ 22 (g2, 1) ()

12
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as the first integral above with respect to the measure (g;, ) is infinite and
the second one with respect to (go, i1) is finite for s € [ry,r]. Since h,, — go
and h, € V(1), by continuity of the map m, we get that, for all large n,
m(h,) = m(gs), i.e. (hy,p) is (b,p™92), c)-semistable and |b,|, = 1. Hence,
from Theorem 1 and above equations, we get that s > —logec/m(gq) logp =
ro. But s € [rq, 5[, which is a contradiction. Therefore, our assumption
that m(g1) # m(g2) is wrong. Hence there exists a unique uy € N such that
F = {up} and p, is (a,, ¢)-semistable, where a, = b,p"°, b, € Z,(1), for all
x € V(1). That is, byp"(x, u)y = (z, pt)et, for all z € V(1) and all ¢ > 0.

Step 6. Let my = p — 1 and let m,, = mP_} for n > 2. Since b, € Z,(1),
we know that b’ — 1in Z,(1). Let a,, = uom,, and let d,, = [¢"™"]. Clearly,
a, — 00, d, — oo and ¢™"d,, — 1. Then for all z € V (1),

lim (z,p™ (u)™) = lim p*(z, u™)

n—0o0 n—o0

= lim " p o™ (z, ut)
n—oo

= Jm e,

= (z,p).

Since for x € V' \ {0}, (z, ) = ||]|,*(2', ), 2" € V(1), the above equation
also holds for all z € V'\ {0}. Hence p® (u)%" — pu. By Theorem 1.5 of Shah
[12], p is embeddable.

Step 7. We suppose K = Inv(u)NZ,(1) is open in Z,(1). Then Z,(1)/K is
a finite group and K C Inv(p,) for all x. Let ¢ € N be the order of Z,(1)/K.
Then b € K for all x € V(1). This implies that p"9(x, ) = (@, ). That
is, for jo = upq and r = ¢?, we get that p®(z,u) = (z,u),, * € V(1). Now
for each n, let [, = [r™"]. Since 0 < r < 1, r" — 0, [, — oo and [,r" — 1.
Then we have that for z € V(1),

] jOn ln — 3 jon ln — 3 _
Again, since for z € V' \ {0}, (z,n) = ||z|;" (2, ), 2" € V(1), the above
equation also holds for all z € V'\ {0}. Hence p/o™(u)!» — . Since p/o™(u) —
8o, PO /pion — pio ig contracting on V' and 1, /l,11 — 7, by Lemma 1 (ii),
p is (p’0, r)-semistable, i.e. u is semistable. This completes the proof. a
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