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Algebraic independence of the values of power
series, Lambert series, and infinite products
generated by linear recurrences

TAKA-AKI TANAKA

Abstract

In Theorem 1 of this paper, we establish the necessary and sufficient condi-
tion for the values of a power series, a Lambert series, and an infinite product
generated by a linear recurrence at the same set of algebraic points to be al-
gebraically dependent. In Theorem 4, from which Theorems 1-3 are deduced,
we obtain an easily confirmable condition under which the values more general
than those considered in Theorem 1 are algebraically independent, improving
the method of [5].

1 Introduction and results
Let {ax}r>0 be a linear recurrence of positive integers satisfying
(1) Qf4n = C10k4n—1 + e cpag (k = 071727"')7

where c1,...,c, are nonnegative integers with ¢, # 0. We define a polynomial
associated with (1) by

(2) PX)=X"—c X"~ ¢,

In this paper, we always assume that ®(£1) # 0 and the ratio of any pair of distinct
roots of ®(X) is not a root of unity and that {ay }x>o is not a geometric progression.
In what follows, let

ak 0

F& =32 g =Y 0 k) =[Ja-2)

k=0 k=0 k=0

and let Q and Q denote the fields of rational and algebraic numbers, respectively.
The author [5] proved the following theorem: Let a,...,a, be algebraic numbers
with 0 < |ay| < 1 (1 < < r) such that none of o;/a; (1 < i < j <r)isaroot
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of unity. Then the 3r numbers f(a;), g(a;), h(a;) (1 < i < r) are algebraically
independent.

On the other hand, the author [4] obtained the necessary and sufficient condition
for the numbers f(aq),..., f(a,) to be algebraically dependent.

DEFINITION 1. We say that the algebraic numbers ay, ..., q, with 0 < |a;| <
1 (1 <i<r)are {ax}r>o-dependent if there exist a non-empty subset {a;,,...,®;, }
of {an,...,a,}, roots of unity (1,...,(, an algebraic number v with a;, = ¢y (1 <
[ <t), and algebraic numbers &, . .., &, not all zero, such that

> oag =0
=1

for all sufficiently large k.

REMARK 1. If the algebraic numbers a,...,q, with 0 < |a;| <1 (1 <i <)
are {ay }r>o-dependent, then the numbers 1, f(ay), ..., f(«,) are linearly dependent

over Q, namely Zle &f(ay,) € Q.

The author [4] proved that the numbers f(ay),..., f(«,) are algebraically de-
pendent if and only if the algebraic numbers ay, ..., a, are {ag}r>o-dependent. In
this paper we establish the necessary and sufficient condition for the 3r numbers
fla), g(ay), h(a;) (1 <i<r)to be algebraically dependent:

Theorem 1. Let {ay}r>0 be a linear recurrence satisfying (1). Let ay,...,q,
be algebraic numbers with 0 < |oy| < 1 (1 < i < r). Then the numbers
flay), glay), h(ey) (1 <@ < r) are algebraically dependent if and only if the al-

gebraic numbers ay, . .., o, are {a }r>o-dependent.

Combining Theorem 1 and the above-mentioned result of [4], we immediately
have the following:

Theorem 2. Let ay,...,q, be algebraic numbers with 0 < |oy| <1 (1 <1 <
r). If the numbers f(ay),..., f(a,) are algebraically independent, then so are the
mumbers f(as), gla), h(as) (1< i <r).

Theorem 2 implies the following:

Theorem 3. Let oy, ..., a, be algebraic numbers with 0 < |o;| <1 (1 <i <r).
Then

(3) trans. deg@ Q(f(oﬁ)v t f(ar>7g(a1)7 te ,Q(OJT>7 h(al)a T 7h(ar))

2
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> 3trans. degQQ<f(a1), . ,f(ozr)>.

The following is an example in which the equality of (3) holds:
EXAMPLE 1. Let {ax}r>0 be a linear recurrence defined by

ap=1, a1 =2, agio=3ap1+ar (k=0,1,2,...).

We put
I LG (E
k=0 k=0 k=0
Let o be an algebraic number with 0 < |a| < 1 and let w = e*V-1/3 =

(=1 4 +/=3)/2. Since agp;, = 1 (mod 3) and ag1 = 2 (mod 3) for any k > 0,
the numbers o, wa, and a® are not {ay}r>o-dependent. Therefore the numbers
fla), fwa), f(a?), g(a), g(wa), g(a®), h(a), h(wa), h(a3) are algebraically indepen-
dent by Theorem 1. Noting that f(a)+ f(wa)+f(w?a) =0, g(a)+g(wa)+g(w?a) =
3g9(a?), and h(a)h(wa)h(w?a) = h(a?), we see that

frans. deg@@(f(a) f(wa), f<w2a>, f(a¥) =3,
trans. deggy Q (g a g(wa), g(a3)> =3,
(e

trans. degg Q( h(a) (wza) h(a3)) =3,

and

trans. degg Q(f(a), fwa), f(WPa), f(a?),

9(0), g(wa), g(w?a), g(a®), h(a), h(wa), hw?a), ha®)) = 9.

As shown in the example above or in Remark 4 of [5], it seems complicated to
state the necessary and sufficient condition for the values of the Lambert series g(z)
and the infinite product h(z) at {ax}r>o-dependent algebraic numbers s, ..., a, to
be algebraically independent. In Theorem 4 below we establish an easily confirmable
condition under which such values are algebraically independent.

DEFINITION 2. We say that the algebraic numbers ay, ..., q, with 0 < |oy| <
1 (1 < i < r)are strongly {ay}r>o-dependent if there exist a non-empty subset
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{ai, ... a4} of {aq,..., .}, N-th roots of unity (y,...,{;, an algebraic number =y
with a;, = ¢y (1 <1 <t), and algebraic numbers &, ..., &, not all zero, such that
t
d gt =0, m=1...,N-1  ged(mN)=1,
1=1
for all sufficiently large k.
It is clear that, if the algebraic numbers ay, ..., a, with 0 < |a;| <1 (1 <7 <)
are strongly {ay}x>o-dependent, then they are {ay}r>o-dependent.

The following theorem is more precise than Theorem 2 above.

Theorem 4. Let {ax}r>0 be a linear recurrence satisfying (1). Let aq, ..., a,
be algebraic numbers with 0 < |oy| < 1 (1 < @ < 7). Suppose that the
algebraic numbers ay,...,«, are not strongly {ay}r>o-dependent. Assume fur-
ther that on,...,a, (p < 1) are not {ay}r>o-dependent or equivalently that
the numbers f(ai),..., f(c,) are algebraically independent. Then the numbers
floa), ..., flay),g(ar),....g(ew), h(aq),. .., h(cy) are algebraically independent.

Using Theorem 4, we have an example in which the strict inequality of (3) holds:
EXAMPLE 2. Let {ax}r>0 be a linear recurrence defined by

apo=1, a1 =3, agi2=3ap1+ar (E=0,1,2,...).

We put
a Zak 1 a
f =2 2" @)= he)=][0-")
k=0 k=0 k=0
Let a be an algebraic number with 0 < |a| < 1 and let w = e*™V=1/3 =

(=1 4+ +/—3)/2. Since ag, = 1 (mod 3) and ag1 = 0 (mod 3) for any k£ > 0,

2

the numbers «, wa, w?a, and o® are not strongly {ax}r>o-dependent and the

numbers «, wa, and o are not {aj}r>o-dependent. Therefore the numbers

f@), fwa), f(a?), g(a), g(wa), g(w?a), g(a?), h(a), h(wa), h(w?a), h(a®) are alge-
braically independent by Theorem 4 with p = 3 and »r = 4. Noting that
wf(a) = (w+1)f(wa)+ f(w?a) =0, we see that

trans. degg Q(f(@), f(wa), f(w2a), f(a?)) = 3,
trans. deggy Q <f(a), f(wa), f(w?a), f(a®),

g(a), g(wa), g(w?a), g(a®), h(a), h(wa), h(w?a), h(a3)> =11,

4
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and so

trans. degg @(f(a), flwa), f(wa), f(a?),
g(a), g(wa), g(w?a), g(a®), h(a), h(wa), h(w?a), h(a3)>
> 3trans. degg Q(f(&),f(wa), f(w2a),f(a3)).

2 Lemmas

Let F(z1,...,2,) and F|[z1,..., z,]] denote the field of rational functions and the
ring of formal power series in the variables zy, ..., 2z, with coefficients in a field F,
respectively, and F'* the multiplicative group of nonzero elements of F. Let ) =
(wij) be an n x n matrix with nonnegative integer entries. Then the maximum p of
the absolute values of the eigenvalues of 2 is itself an eigenvalue (cf. Gantmacher [1,
p. 66, Theorem 3]). If z = (z1,...,2,) is a point of C" with C the set of complex
numbers, we define the transformation €2 : C* — C" by

n n n
— wij w2 Wnj
(4) Oz = ||Z] 7 Zj ]7...,||Zj L
Jj=1 J=1 J=1

We suppose that 2 and an algebraic point & = («v, ..., @), where «; are nonzero

algebraic numbers, have the following four properties:

(I) Q is non-singular and none of its eigenvalues is a root of unity, so that in

particular p > 1.
(IT) Every entry of the matrix Q¥ is O(p*) as k tends to infinity.
(III) If we put QFa = (ozgk), . ,oz,(lk)), then
logla”| < —cp* (1<i<n)
for all sufficiently large k, where ¢ is a positive constant.

(IV) For any nonzero f(z) € C[[z1, ..., z,]] which converges in some neighborhood
of the origin, there are infinitely many positive integers k such that f(Q*a) #
0.

We note that the property (II) is satisfied if every eigenvalue of Q2 of absolute
value p is a simple root of the minimal polynomial of 2.
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Lemma 1 (Tanaka [4, Lemma 4, Proof of Theorem 2|). Suppose that ®(£1) # 0
and the ratio of any pair of distinct roots of ®(X) is not a root of unity, where ®(X)
is the polynomial defined by (2). Let

cgc 1 0 ... 0

c 0 ’ :

(5) 1 = 0
S 1

c, 0O 0

and let B, ..., Bs be multiplicatively independent algebraic numbers with 0 < |3;] <
1 (1 <j<s). Letp be a positive integer and put

Q' = diag(QP, ..., QP).
—_——

Then the matriz € and the point

have the properties (I)—(IV).

Lemma 2 (Kubota [2], see also Nishioka [3]). Let K be an algebraic number
field. Suppose that fi(2z),..., fm(2) € K[|z1,...,2,]] converge in an n-polydisc U

around the origin and satisfy the functional equations
fi(Qz) = a;(2) fi(z) + bi(z) (1 <i<m),

where a;(z),bi(z) € K(z1,...,2,) and a;(2z) (1 <i < m) are defined and nonzero at
the origin. Assume that the n xn matriz Q) and a point o € U whose components are
nonzero algebraic numbers have the properties (I)—(IV) and that a;(z) (1 <i < m)
are defined and nonzero at Q*ac for all k > 0. If fi(2),..., fm(2) are algebraically
independent over K(zi,...,z,), then the values fi(a),..., fm(a) are algebraically
independent.

Lemma 2 is essentially due to Kubota [2] and improved by Nishioka [3].

In what follows, C' denotes a field of characteristic 0. Let L = C(z1,...,2,)
and let M be the quotient field of C[[zy, ..., 2,])]. Let Q be an n x n matrix with

nonnegative integer entries having the property (I). We define an endomorphism
7: M — M by

[T(z) = [(Qz) (f(z) e M)

6
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and a subgroup H of L* by
H={gg"'|geL"}.
Lemma 3 (Kubota [2], see also Nishioka [3]). Let f; € M (i =1,...,h) satisfy
I =Jfi+b,
where b; € L (1 <i < h), and let f; € M* (i=h+1,...,m) satisfy
I =aifi,
where a; € L™ (h+1 < i <m). Suppose that a; and b; have the following properties:

(i) If ¢; € C (1 <@ < h) are not all zero, there is no element g of L such that
h
9—9 = Z cibi.
i=1

(il) api1,---,am are multiplicatively independent modulo H .
Then the functions f; (1 <i <m) are algebraically independent over L.

Let {ax}r>o0 be a linear recurrence satisfying (1) with the conditions stated in
the beginning of this paper. We define a monomial

(6) P(z)=z""" 2%

n

which is denoted similarly to (4) by
(7) P(z) = (an-1,- .., a)z.
Let © be the matrix defined by (5). It follows from (1), (4), and (7) that

P(QFz) = 25410 (] > 0).

n

In what follows, let C' be an algebraically closed field of characteristic 0.

Lemma 4 (Tanaka [5]). Suppose that G(z) € C[[z1, ..., z,]] satisfies the func-
tional equation of the form

p+g—1

G(z) = aG(2) + > Qu(P(Q*2)),
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where o # 0 is an element of C, 2 is defined by (5), p >0, q¢ > 0 are integers, and
Qu(X) e O(X) (< k<p+q—1) are defined at X = 0. If G(z) € C(z1,...,2,),
then G(z) € C and Qp(X) € C (¢ <k<p+q—1).

Lemma 5 (Tanaka [5]). Suppose that G(z) is an element of the quotient field of
COllz1, - - -, za]] satisfying the functional equation of the form

(H Qr(P ) G(z),

where Q, p, q, and Qr(X) are as in Lemma 4. Assume that Qr(0) # 0. If G(z) €
(21, 2), then G(z) € C and Qu(X) € C~ (¢<k <p+q—1).

3 Proof of Theorems 1 and 4

Proof of Theorem 1. If the algebraic numbers aq, ..., a, are {a}r>o-dependent,
then the numbers f(a;), g(;), h(a;) (1 < i <r) are algebraically dependent, since
so are the numbers f(a;) (1 < i < r) by Remark 1. Conversely, if the algebraic
numbers ay, ..., are not {ay}r>o-dependent, then by Theorem 4 with p =
the numbers f(«;), g(o;), h(a;) (1 < i < r) are algebraically independent. This
completes the proof of the theorem.

Proof of Theorem 4. Suppose on the contrary that the num-
bers f(a1),..., f(ay,), g(cn), ..., g(a), h(cr), ..., h(a,) are algebraically dependent.
There exist multiplicatively independent algebraic numbers f3;,...,3s with 0 <
18;] <1 (1 <j<s)such that

(8) a =GB a<i<n,
j=1
where (i, ..., are roots of unity and e;; (1 <i <r, 1 < j < s) are nonnegative

integers (cf. Nishioka [3, Lemma 3.4.9]). Take a positive integer N such that ¢V = 1
for any 7 (1 <14 <r). We can choose a positive integer p and a nonnegative integer
q such that ayy, = a; (mod N) for any £ > ¢q. Let y;» (1 <j<s, 1 <A<n)be
variables and let y; = (y;1, ..., ym) (1 <j<s),y=(y;,...,y,). Define

fily) = ZC‘”HP By (1<i<p),
k=q

= L Pty
gily) = a = I (1<i<r),
2T L, Py

8
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and

hxy):H( C“kHP y)@)  (<i<n),

where P(z) and () are defined by (6) and (5), respectively. Letting

B=(1,...,1,80,...... 1., 1,8),
~1 ~1
we see by (8) that
o0 & oo o
N S L | (R
k=q & k=q

Hence the values fi(8),...,f,(B),91(8),...,9.(B),h(8),...,h,(B) are alge-
braically dependent. Let
O = diag(QP, ..., QP).
————
Then fi(y), ..., [,(¥),51(y), ..., 9:(y), h1(y), ..., h,(y) satisty the functional equa-
tions

ptq—1

fily) = Z c%HP

p+g—1 ak H P(Qk'y )eij
g(y) = g(Qy)+ G = L
V) 2 - I Py

k=q
and
p+q—1
hi(y) = (H( C“’“HP “y;) )) hi(Qy),
k=q
where Qy = (Qy,,...,0Py,). By Lemmas 1 and 2 the functions

iy, W), 01(y), .-, 9-(y), ha(y), ..., h(y) are algebraically dependent over
Q(y). Hence by Lemma 3 at least one of the following two cases arises:

(i) There are algebraic numbers by,...,b,, c1,..., ¢, not all zero, and F(y) €
Q(y) such that

(9) F(y)
= F(Qy)

pta=1 / p s ak ko, e
“ ) GGt [T P(Qy;)
S O | S S ]
k=q i=1 =1 J=1
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(ii) There are rational integers d; (1 <14 < r), not all zero, and G(y) € Q(y) \ {0}

such that
ptg—1 r d;
wow (T o)) aew
k=q =1
Let M be a positive integer and let
Y= Wit yn) = (7, (1< <),

where M is so large that the following two properties are both satisfied:

(A) If (Gil, Ce ,61‘5) 7é (Gill, c. 7€i’s)7 then Zj‘:l 6iij 7é ijl ei/jM

(B) F*(z) = F(M, ... 2M M M)
G (z) =G, .. 2M MM

(2’1, ey Zn),

(z1,.--,2,) \ {0}

Then by (9) and (10), at least one of the following two functional equations holds:

F*(z) = F*(QP Ayl pbakPQk el P2
(11) F*(2) = F*(2)+ > _ > b P( +Z PG )

k=q =1

(12) (pﬁlﬁ (1 (PR 2)E ) ) G*(Pz),

k=q =1
where F; = 7% ;M7 >0 (1 <4 <r). By Lemmas 4, 5, and the property (B), at
least one of the following two properties are satisfied:

(i) Forany k (¢ <k <p+q—1),

(13) Zbg“kXE +Z Cibi kf(;E

Zbg“kXE +Zczz (¢ XE)h e Q.
i=1 =

(i) For any k (¢ <k <p+q—1),

T

(14) [J0—¢exryh =y e Q™.

=1

10
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Suppose first that (11) is satisfied with ¢; = 0 (1 < ¢ < r). Let S = {i €
{1,...,p} | b; # 0} and let {iy,...,4;} be a subset of S such that E;, =--- = E,
and E;, < Ej for any j € S\ {i1,...,4}. Then by (13)

Zb” ("=0 (g<k<p+q-1)

and hence

Zbuca’“ =0 (k>gq)

since agyp = ar (mod N) for any k > ¢. By the property (A), E;

= = B,
implies (€1, .-, ¢€is) = -+ = (€,1,...,¢€,5). Putting v = [[7_; 3,1/, we have
= (v (1 <1 < t) by (8). Therefore the algebraic numbers oy, ..., q, are
{ax }r>0-dependent, which contradicts the assumption.
Secondly suppose that (11) is satisfied with ¢,...,¢, not all zero. Let T =
{i € {1,...,r} | ¢; # 0} and let {iy,...,i,} be a subset of T such that E; =
- =F;,, and E;, < E; for any j € T\ {i1,...,%,}. Let m be any integer with
0 <m < N — 1 such that g.c.d.(m, N) = 1. By Dirichlet’s theorem on arithmetical
progressions, there exists a prime number P,, such that P, = m (mod N) and
P,, > maxi<;<, E;. Since P, E;, is not divided by any E; with j € T'\ {i1,..., 4.},
the term " ¢;, (¢ X1 )P must vanish in (13). Hence

Zcz, (" =0 (q<k<p+q-—1)

and so the algebraic numbers ay, . .., «, are strongly {ay }x>o-dependent, which con-
tradicts the assumption.

Finally suppose that (12) is satisfied. Taking the logarithmic derivative of (14),

we get
—~ —d; B¢t X P!
! =0 <k< —1
; 1= (T XE: (¢<k<p+q-1)
and so
dECEXP o x )
21 CTXE ZdEZ ¢ X B (g<k<p+q-—1).
i=1
Therefore the algebraic numbers ay, ..., o, are strongly {aj }r>o-dependent also in

this case by the same way as above. This completes the proof of the theorem.

11
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