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Algebraic independence of power series generated
by linearly independent positive numbers

TAKA-AKI TANAKA

Abstract

In this paper we establish, using Mahler’s method, the algebraic indepen-
dence of the values at an algebraic number of power series closely related to
decimal expansion of linearly independent positive numbers. First we con-
sider a simpler case in Theorem 1 and then generalize it to Theorem 3, which
includes Nishioka’s result quoted as Theorem 2 of this paper. Lemma 7 plays
an essential role in the proof of Theorems 1 and 3.
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1 Introduction.

Let w > 0 and let d be an integer greater than 1. The number w is expressed as a

d-adic expansion
w=Y gd, |=max{[log,w],0}, & €{0,1,...,d—1},
i=—1

where [z] denotes the largest integer not exceeding the real number x. For those w
having two ways of expression such as 2 = 1.9999... (10-adic), we adopt only the
left-hand side expression. Then this expansion is uniquely determined. Let

ap = [wd*] (k=0,1,2,...).

It is clear that

ap = E 8idk’1,

1=—
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namely the integer a; is expressed as the d-adic number €_je_;,1...x_16x. Hence
we see that the sequence {ay}r>o satisfies the recurrence formula

ap = [w], ar =dag_1+er (E=1,2,3,...).

The author [5] proved that the number ) .°  a® is transcendental for any alge-
braic number o with 0 < || < 1. In this paper we prove the following algebraic

independence result. Let wy,...,w, > 0. Define
falz) =Y 2 (=1, m; d=2,34,..). (1)
k=0

In what follows, Q and R denote the sets of rational and real numbers, respectively.

THEOREM 1. If the numbers wy,...,w, are linearly independent over Q, then
the numbers fig(a) (i =1,...,m; d =2,3,4,...) are algebraically independent for
any algebraic number o with 0 < |a| < 1.

COROLLARY 1. If the numbers wy, . ..,w, are linearly independent over Q, then
the functions fiy(z) (i=1,...,m; d=2,3,4,...) are algebraically independent over
the field C(z) of rational functions.

EXAMPLE. Let

fra(z) = 24, fralz) =) 2V,
k=0 k=0

fza(z) = Zz[ﬁdk], faa(z) = Zz[“dk] (d=2,3,4,...).
k=0 k=0

For example we have

14 141 1414 14142 141421
;2,]_0<Z) - Z+Z +Z +Z +Z +Z +7
17 173 1732 17320 173205
;3,]_O<Z) - Z+Z +Z +Z +Z +Z +7
and
3 31 314 3141 31415 314159
)4’10(2) _—Z+Z +Z +Z +Z +Z +"'

Then by Theorem 1 the numbers f;q () (i = 1,...,4; d = 2,3,4,...) are alge-
braically independent for any algebraic number o with 0 < || < 1 since the numbers
1,v/2,v/3, and 7 are linearly independent over Q.

2
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Theorem 1 is proved by using the method developed from that of Nishioka used
for proving the following:

THEOREM 2 (Nishioka [4, Theorem 1]). Let
fd(Z) = Zadkzdk (d: 2,3,4,...),
k=0

where the g, (k = 0,1,2,...) are in a finite set of nonzero algebraic numbers for
every d. Then the numbers fq(a) (d = 2,3,4,...) are algebraically independent for
any algebraic number o with 0 < |af < 1.

We further obtain the following, which includes both Theorems 1 and 2.

THEOREM 3. Let wy,...,w, > 0. Define
fia(z) = Zaidkz[”idk} (t=1,....,m; d=2,3,4,...),
k=0

where the o, (k= 0,1,2,...) are in a finite set of nonzero algebraic numbers for
every v and for every d. If the numbers wy, . ..,w,, are linearly independent over Q,
then the numbers fig(a) (i =1,...,m; d=2,3,4,...) are algebraically independent
for any algebraic number a with 0 < |a] < 1.

Theorem 3 implies the following result, which also includes Theorem 1.

THEOREM 4. Let wy,...,wy, >0 and ny,...,n, € R. Define

fia(z) = Z Zlwid ] (t=1,....,m; d=2,3,4,...).
k=0
If the numbers wq,...,w, are linearly independent over Q, then the numbers

fiala) (1 =1,...,m; d=2,3,4,...) are algebraically independent for any algebraic
number o with 0 < |a| < 1.

REMARK. Concerning the transcendence of a single value of a power series,
Corvaja and Zannier [1] proved, as an application of Schmidt’s subspace theorem,
the following result: Let {my }x>0 be an increasing sequence of positive integers such
that liminfy . my.1/mg > 1. Let o be an element of an algebraic number field K

with 0 < |a| < 1 and let {0} }r>0 be a sequence of nonzero elements of K satisfying
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a suitable growth condition on their Weil heights. Then the number )"/, oo™ is
transcendental. Although this result can treat a wider class of power series, their
method does not seem to yield any algebraic independence result of the values of

power series.

2 Lemmas.

We prepare the notation for stating the lemmas. For any algebraic number «, we
denote by m the maximum of the absolute values of the conjugates of o and by
den(a) the smallest positive integer such that den(«) -« is an algebraic integer. It is

easily seen that | a4+ (| < m + W and | af | < mm for any algebraic numbers

a and (. Furthermore, for any algebraic number «, we define

||| = max{m,den(a)}.

Then for any a # 0 we have the inequalities
log laf = —2[Q(c) : Q] log [|a] (2)

and
log [la™"|| < 2[Q(a) : Q] log [l
(cf. [3, Lemma 2.10.2]). If Q = (w;;) is an n x n matrix with nonnegative integer

entries and if z = (z1,..., 2,) is a point of C" with C the set of complex numbers,

we define the transformation 2 : C* — C" by

n n n
_ w14 waj Wi
QZ = HZJ J,HZJ' J,...,HZ]' nJ .
Jj=1 Jj=1 Jj=1

Let {Q®™} ;>0 be a sequence of n x n matrices with nonnegative integer entries. We
put
QF = (wfjk)) and Qb z = (z%k), 28,

In what follows, N and Ny denote the sets of positive and nonnegative integers,
respectively. For A = (A1,..., \,) € (No)®, we define z* = 2" -z} and |\ =
A1+ -+ A,. Let K be an algebraic number field. Let {fl(k)(z)}kzo, e {f,(,f)(z)}kzo
be sequences of power series in K[[z1,. .., 2,]]. Let x = (21,...,2,) be the maximal
ideal generated by zi,...,z, in the ring K{[z1,..., 2z,])]. In what follows, ¢, co,. ..

denote positive constants independent of k.

4
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LEMMA 1 (cf. Nishioka [4, Theorem 2]). Assume that
(z) = fi(z) as k-0

with respect to the topology defined by x for any i (1 <i < m). Suppose that all the
fi(k)(z) (k> 0), fi(z) (1 <i<m) converge in the n-polydisc {z = (z1,...,2,) €
C'| 7l <r(1<j<n)} Ifao=(o,...,0) is a point of K™ with 0 < |a;] <
min{1,r} (1 < 7 < n) and if the following three properties are satisfied, then the

values fl(o)(a), . ﬁg?)(a) are algebraically independent.

(I) There ezists a sequence {py}r>o of positive numbers such that

Jlim py, = oo, Wi <apr,  loglal] < —capy.
(IT) If we put
(@) = {2(0Pa) + 7 (1<i<m),

then bgk) € K and
log [[B{”]| < espr (1 <i < m).

(IIT) For any power series F(z) represented as a  polynomial in

21y 2ny f1(Z), oy fn(2) with complex coefficients of the form

Flz)= 30 a2 A2 fulz),
A /.L:(/Ll 7777 “m)
where ay,, are not all zero, there exists a \g € (No)" such that if k is sufficiently

large, then
[FOQWa) > af (@ a)|.

Although Theorem 2 of Nishioka [4] requires the assumption that the coefficients
of fi(k)(z) are in a finite set S C K for all 7 and k, it can be weakened as in Lemma 1,
which is proved by the almost same way as in the proof of Theorem 2 of Nishioka [4].
We state here the proof of Lemma 1 for the sake of the readers. The following
lemmas 2 — 5, which are the same as in [4], are necessary for proving Lemma 1.

LEMMA 2 (Nishioka [4]). Let f(z) =325, 5. ez € Cllzg,y -y 2]

.........

Z L RN A e A e 112%5; Bl
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where 7 is a positive constant depending on f(z).
LeMMA 3 (Nishioka [4]). (i) If £ (2) — fi(z) € X¥, then
|f.(k)(Q(k)a) — fi(Q(k)a)| < c?“e‘”p’“H.
(i) Using the coefficients ay,, given in (I11I) of Lemma 1, we put

FOE) = 3 a2 e R

A lu‘:(lu‘l 7777 :u"m)
Then F®(QRa) £ 0 if k is sufficiently large.

We assume that fl(o)(a), . fr(r? )(a) are algebraically dependent and deduce a
contradiction. There exist a positive integer L and integers 7,, not all zero, for
= (41, pm) with 0 < p; < L such that

> i) D ey =0,
I

Let wi, ..., Wn, Y1, Ym, and ¢, (= (1, .., fm), 0 < p; < L) be variables and
put

FO(zit) =3 iV (2 S0 (2,
I

F(zit) = tufilz)" - fulz)"™,
and

D tulwr +y)" e (W )™ = Ty y)wht - whe
Iz Iz

Then we obtain

0 = FOa7)
= S n (P O@Wa) + 60y (FP QB ) 4 by
"

= DLW P @Way - PP a
n
= FOQ®a; T(r;6™)).

i), 0<pi<z] and

V(r) ={Q(t) € R | Q(T(7;y)) = 0}.

6
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DEFINITION. For P(z;t) = >, PA(t)z* € R[[21, - .., 2,]], we define
indexP(z;t) = min{|\| | P\ ¢ V(7)}.
If P, € V(7) for any A, then we define indexP(z;t) = oo.

LEMMA 4 (Nishioka [4]). The following two properties are equivalent for any
P(z;t) € R[z].

(i) P(QWea; T(r;6%)) =0 for all large k.
(i) indexP(z;t) = oo.

LEMMA 5 (Nishioka [4]). Let p be a sufficiently large integer. Then there ex-
ist polynomials Po(z:t), ..., By(z;t) € Klz:t] with deg, Pu(z;t),deg,, Pu(z;t) <
p (0 < h < p) such that the following two properties are satisfied.

(i) indexPy(z;t) < oo.
(ii) If we put Ey(z;t) = > 1_, Pu(z;t)F(2;t)", then
indexF,(z;t) > cg(p + 1)/
Now we can complete the proof of Lemma 1. Let indexE,(z;t) = I and let

V1,72, - - - denote positive constants depending only on E,(z;t). Let k > v, where
~v1 will be determined below. Let

Ey(zit) =) a(2)t",  g(2) =) gz

Then g¢,(z) converges in the n-polydisc {z = (21,...,2,) € C" | |z;| <7 (1 < j <
n)}. Since

Jim f9(QWa) = £(0).
we have

0], 1T, (73 8% < er.

Thus by Lemma 2,

|E,(Q®a; T(7;6M))| < Z Z lgoal - [(QE )M | 1T (7 8%)"| < 7, max |a§k)|1.

1<j<n
v A>T
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We choose a positive number § with e=% < § < 1. By the property (I) we have
1 14+1/n
E(QO® T (7P| < —gerp+1) )
| P( (&2 (T7 >)| -9

We put
p

EW(zit) = Pu(z:t)F®(z:t)",
h=0

and choose a large H satisfying

el < g g+

If f*(2) — fi(z) € x¥, by Lemma 3 (i) we have
|EISk)(Q(k)a; T(T; b(k:))) _ Ep(Q(k)a; T(T; b(k)))| < ,}/36—02Hpk.
Then
|Ez()k)(Q(k)a;T(T; b)) < yge2Hor 4 %8Pk(?+1)1+1/" < gerpr1)
On the other hand,
EP QW a; T(r;8W)) = Ry(QWe; T(r56W)) = (say) B € K.

By the properties (I) and (II), we easily see ||G| < ¢&*’. Since indexFPy(z;t) < oo,
by Lemma 4 there are infinitely many & with §j # 0. For such k, using (2), we have

pr(p+ 1)/ log 6 > log | 5] > —2[K : Q]log 6]l > ~2[K : Qloplog cs.

Dividing both sides by pi(p + 1)/ and letting p tend to oo, we obtain logf > 0,

a contradiction.

The following lemma is originally due to Masser 2] and improved by Nishioka [4].

LEMMA 6 (Masser [2], Nishioka [4]). Let by > -+ > b, > 2 be pairwise mul-
tiplicatively independent integers. Let § = logb, and 6; = 6/logb; (1 < j < n).
Suppose that for each o in a finite set A we are given real numbers Aiq, . . ., Apa, N0t

all zero, and define the sequence
Salk) =3 Nl (k=0,1,2,...).
j=1

8
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If {ki}1>1 is an increasing sequence of positive integers with {ki11 — ki }i>1 bounded,
then there exists a positive number o such that

R(d) = {ki | min|Sa(k)| 2 oYy = {midisr, oy <,
is an infinite set and {my41 — my};>1 is bounded.
Using Lemma 6, we have the following:

LEMMA 7. Let by, ...,b, be integers as in Lemma 6 and let 04, ...,0, be defined
i Lemma 6. Let wy, ..., wy, > 0 be linearly independent over Q. Then there exist an
infinite set A of positive integers, a sequence {3(1) }i>1 of positive numbers, and a total
order = in (No)™ such that if X = (N;;) = p = (pij) with |A| = A1+ -+ X, [t =
P11+ - e < L, then

Z Z Aij[wz-bg- 9 - Z Zuij[wibg N> 51
i=1 j=1 i=1 j=1

for all sufficiently large ¢ € A. Moreover, any subset S of (No)™ has the minimal

element with respect to the total order .

Proof. We put

Al =L\ ) | A e (No)™, (A |l <1, A # p}

For (A, p) € A(l) we set

n

=> > (- i) widl}" ).

i=1 j=1

We inductively define §(1) and A(l) as follows. First we put A(0) = N. Letting

VTR ) SIVEVRRELED of S VRV R L

3

i=1 j=1 J=1 \i=1
we have
T (@) = Soun@] = |33 (g — pig) (wib” — [wibﬁ»%‘
i=1 j=1
< DD Nyl
i=1 j=1

9
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n

< ZZ |)‘m| + |Mw

i=1 j=1
< 2
and so
1S (@] = [T (@)] = 2L
Since wy,...,w, > 0 are linearly independent over Q, by Lemma 6 there exists a

positive number £(I) such that

= — 1 > q
A ={g € AU=1)|  min (To(0)] > (8 > 21)

is an infinite set and the differences of two consecutive elements of A(l) are bounded.
Letting s; be the smallest number of A(l) and choosing (1) such that 0 < §(I) <
e(l) — 2167, we have

min |S > min |7 — 20l > ()b? — 21 > 6(1)b?
(WGA(DI oo (0] (M)GA()I () (@) > e(1)b > 6(1)b]

for all ¢ € A(l). Noting that A(l) D A(l+1) for any [ > 0, we can choose a sequence
{q }i>1 satistying both ¢ € A(l) and ¢; < ¢+1. There exists a subsequence {ql(l)}lzl
of {¢};>1 such that the signs of S(Ayﬂ)(ql(l)) with |A[, [p] < 1 are fixed for all [ > 1.
There exists a subsequence {ql(2)}122 of {ql(l)}lzl such that the signs of S(Ml)(ql@))
with |\, |u| < 2 are fixed for all [ > 2. Continuing this process, we obtain a sequence
{ql(m)}lzm for every m > 1. We set

1 2 l
AZ{Q%%Q%%)QZ()’}U

and for A\, € (No)™" we define A > g if and only if S ,)(q) > 0 for all large
q € A. The proof of the former part of the lemma is completed by noting that
A(l) D A(l+ 1) and that ql(l) € A(l). For the latter part, we use the following fact
(cf. [3, Lemma 2.6.4]): If S is any subset of (Ny)?, then there is a finite subset T
of S such that for any (A\1,...,\,) € 9, there is an element (uy,...,u,) € T with
i < N (1 <i<p). If pis the minimal element of 7" with respect to the total order
>, we easily see it is also the minimal element of S. This completes the proof of the

lemma.

LEMMA 8 (Nishioka [4]). Let d be an integer greater than 1 and let

oo

=Y sy (=12,

h=0

10
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where the coefficients sgll) are nonzero complex numbers. Then fi(z) (I = 1,2,...)

are algebraically independent over C(z).

3 Proof of Theorems 1, 3, and 4.

Proof of Theorem 1. Let
D={deN|d#d" (a,n €N, n>2)}.

Then
N\ {1} =  J{a.4*,. . .},
deD
which is a disjoint union since any two distinct elements of D are multiplicatively
independent by the definition of D. Let d; > --- > d,, be elements of D and let
Z = (211, s Zmls s Zny -« s Zmn)s WHET€ 211, ...\ Zimly - Ziny - - -y Zmn are distinct

variables. For any i (1 <1 < m) and for any d; € D (1 < j < n), we define the

sequence {r,ii’j )}kzo by

reg? =1, g =[wd] (k>1) (3)
and define
F(59) d”” dlh . ]
fiiiol= Zalh (1<i<m,1<j<n, 1<I<t)
Letting a = (a, ..., 0, ..., ..., ), we have

i,7) >
fole) = S = 4 S b gy (0) a4
J
h=1

where f;4 is defined by (1). Hence it suffices to prove the algebraic independency of
the values fijo(a) (1 <i<m, 1 <j<mn, 1<1[<t). For the purpose we apply
Lemma 1.
Put b; = df, 6 = logby, and 6; = 0/logb; (1 < j < n). Noting that
0< rl(zi’i)t![ejq] T ’g)q]déh <d!—1 (1<i<m),

we put

P9 D) g o n 1 A
Eq: L DT IO EHHH{l’@"' }m
1<i<m, 1<j<n, 1<ISt, h>0 20 j=1 1=1

11
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for any ¢ € A with the A defined in Lemma 7. Since the right-hand side is a
compact set, there exists a converging subsequence {X,, }x>1 of {3,},ea, where ¢
will be chosen sufficiently large. Let

. AR
lim >, <a h >
k—oo 1<i<m, 1<j<n, 1<I<t, h>0
and define
6D (i) gih gk . '
Fin(z EI TIh 410, q] ﬂeqk]izijf (1<i<m, 1<j5j<n, 1<I<t k=>1)
h=
and

©© id Ih
Fin(z) = Zasgmzjj (1<i<m,1<j<n, 1<I<t).
h=0
Then
kli_)rgofiﬂk(z) = fiu(2).

Define the mn x mn matrix
m@:m%QwﬁmH”wpwﬁmyuwmwmmnwmmwmm.

We assert first that {Q®}s), a = (a,...,q,...,q,...,a), and p, = b (k > 1)
satisfy the assumptions (I) and (II) of Lemma 1. Since b; > --- > b,,, we have

b < b g < b < b
and so

1
— ( min wi> bl < ( min wi) A [wlb[gjqk}] < b¥* max w;
2 \1<i<m 1<i<m 1<i<m
forany i (1 <i<m), j (1 <j<mn), and for all £ > 1, if ¢; is sufficiently large.
Hence the assumption (I) is satisfied.

Let K = Q(«). Then fiu(z) e K[[z]] (1 <i<m, 1<j<n, 1<I[<t k>0)
and

(#/0)10;qx] -1

(i.9)
fijur (€2 Zoz lh“'["ﬂk] = fijio(a) — Z o’

h=0
(1<i<m, 1§j§n, 1<i<t, k>1).

12
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Since Tl((i}jll) > Tl(,i7j) (1<i<m, 1<j<n,1<I<t) for all sufficiently large
k by the definition, there is a positive constant C' such that maxo<p<p—1 rl(,i’j) <
Cri (1<i<m, 1<j<n, 1<1<t)forall k> 1. Hence

(#1/1)[6q1]—1

(i.5) N
log || - W< log(t/0)[4; )\ |
og hz:% ain < log(t!/1)[0;qk] + <oghg({!r}%f§jqk]—1rlh ) og ||a]]

< (1 +C(max w;)log IIOéH) Pk

and the assumption (II) is satisfied.
Therefore, if the assumption (III) is also satisfied, the proof is completed. Noting
that 211, ..., Zm1, - -+ Z1ny - - - » Zmn are distinct variables, we see by Lemma 8 that the

functions fi;i(z) (1 <i<m, 1 <j <n, 1 <[ <t) are algebraically independent

over C(2z11, -+, Zmls -+ Z1ny - - - Zmn)- L€t
F(z)= > auz'fit-for= Y a2
n=(piz), v=vi;1) A=(Xij)€(No)™"
where the coefficients a,, are not all zero, and let Ay = ()\g))) be the minimal

element in (No)™" with respect to the total order > defined in Lemma 7 among A
with ¢y # 0. Let I = 2(|Ao| + 1) ([maxlﬁ—gmw] + 1> bi. If k is sufficiently large,
then by Lemma 2

My <j<m Wi

Z lea] - |a|A11[W1b[f”’“]] .. |a|Am1[me[f”’“]} . |a|A1n[W1b[f"q’“]] . Ialkm"[wmbg?nq’“]]
[A[>1

. —1\ !
1+1 (|a|%(mm1§i§m wi)blllk )

IA

g

< | (mesagicm @b (ol+1)

Since

AP forbd ] 4+ A b ] -+ 4 A w0 9] - AD) [ bl
< |)\0’(1T§Ili3£§nwz‘)b‘fka

we have o
|Z|>\|zl e (QWa)|
(2P )|

7l+1 |a| (maxy << m wi)by

13
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if k is sufficiently large. If |A\| <[ and A # A, then by Lemma 7

e (2P )|

RS | pmb‘i’“
(@B a)v]

< el - |e

for all sufficiently large k. Therefore
IF(QWa)/( QWP a)* — ¢y | =0 (k— o0),

which implies (III), and the proof of the theorem is completed.

Proof of Theorem 3. We use the same notation as in the proof of Theorem 1.

It suffices to prove the algebraic independency of the numbers
Giji = Zo'z‘jlha[widgh} (1<i<m, 1<j<n, 1<I<t),

where for any h > 0,

.7 ‘7l k2 l
oim € Sip = {810, 85I
3 (1/7j7l) (27J7l) ]
with 6,777, . .. ,ﬁp(ij ;) onzero algebraic numbers. Define
(3) _gth _d" . .
fzglO Zgzlhal ]ZJ <1§Z§m71§j§n71§l§t)a

where the sequence {r,(f’j )}kzo is defined by (3) in the proof of Theorem 1. Letting
a=(a,...,q,...,q,...,«a), we have

f g, O{ (2J> = 0 Oé+ [0} a[ i lh C — O a[wl] _|_0— e}
zglO ijlh 510 ijlh a5l 7510 g0tk
h=1

Hence it is enough to prove the algebraic independency of the values fijo(a) (1 <
i<m,1<j<n, 1<I<1).

Put
P(63) _(9) dlh
th+t![0,q) ' t10;4] %3

)1gz’§m, 1<j<n, 1<I<t, h>0

Yy = (Uz‘jlh+(t!/l>[6jq]0<

n t

e TIITTITIA 0t 1< <pligd). 0 < s < ~1)

h=0 i=1 j=1 |=1

14
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for any ¢ € A with the A defined in Lemma 7. Since the right-hand side is a
compact set, there exists a converging subsequence {X,, }x>1 of {3,},ea, where ¢
will be chosen sufficiently large. Let

lim %, = (5“7?@

(4,5 l))
) 1<i<m, 1<j<n, 1<I<t, h>0

7(4,5,L,h
and define
(1J>‘ —7"<,i’j) dl_h dlh
fijun(2 Z%l B (210 O e )OI
h=0
(1<i<m,1<j<n, 1<Ii<t k>1)
and
(wl) dlh . .
fin(z Zﬁ;ﬁ;lh 5 (1<i<m, 1<j<n, 1<I<t)
Then

]}Hgo fijlk(z) = fijl(z)-
Define the mn X mn matrix

0 = diag ([wid" @], fomb{" @], b, b))

Then

(@) /D[05ar] -1

| P(63)
fzglk(Q(k) Z Ol h+(t!/1)[0 qu] Tintel 10 9] fzle( ) Z Oijln & th

h=0 h=0
(1<i<m,1<j<n, 1<Ii<t k>1)

and the assumptions (I) and (II) of Lemma 1 are satisfied. The rest of the proof is
the same as that of Theorem 1.

Proof of Theorem 4. Define
gia(z) =Y aled - lad o lod] G =1 s d=2,3,4,..).
k=0

Then
a[widk-l-m}—[widk] c {a[m}’ a[’h'}‘f'l}’
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since 0 < [w;d® + ;] — [wid*] — [n;] < 1 for any i, d, and for all k. By Theorem 3 the
numbers g;q(c) (i =1,...,m; d = 2,3,4,...) are algebraically independent, which

implies the theorem.
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