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Algebraic independence of power series generated
by linearly independent positive numbers

Taka-aki Tanaka

Abstract

In this paper we establish, using Mahler’s method, the algebraic indepen-
dence of the values at an algebraic number of power series closely related to
decimal expansion of linearly independent positive numbers. First we con-
sider a simpler case in Theorem 1 and then generalize it to Theorem 3, which
includes Nishioka’s result quoted as Theorem 2 of this paper. Lemma 7 plays
an essential role in the proof of Theorems 1 and 3.
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1 Introduction.

Let ω > 0 and let d be an integer greater than 1. The number ω is expressed as a

d-adic expansion

ω =
∞∑

i=−l

εid
−i, l = max{[logd ω], 0}, εi ∈ {0, 1, . . . , d− 1},

where [x] denotes the largest integer not exceeding the real number x. For those ω

having two ways of expression such as 2 = 1.9999 . . . (10-adic), we adopt only the

left-hand side expression. Then this expansion is uniquely determined. Let

ak = [ωdk] (k = 0, 1, 2, . . .).

It is clear that

ak =
k∑

i=−l

εid
k−i,
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namely the integer ak is expressed as the d-adic number ε−lε−l+1 . . . εk−1εk. Hence

we see that the sequence {ak}k≥0 satisfies the recurrence formula

a0 = [ω], ak = dak−1 + εk (k = 1, 2, 3, . . .).

The author [5] proved that the number
∑∞

k=0 αak is transcendental for any alge-

braic number α with 0 < |α| < 1. In this paper we prove the following algebraic

independence result. Let ω1, . . . , ωm > 0. Define

fid(z) =
∞∑

k=0

z[ωid
k] (i = 1, . . . , m; d = 2, 3, 4, . . .). (1)

In what follows, Q and R denote the sets of rational and real numbers, respectively.

Theorem 1. If the numbers ω1, . . . , ωm are linearly independent over Q, then

the numbers fid(α) (i = 1, . . . , m; d = 2, 3, 4, . . .) are algebraically independent for

any algebraic number α with 0 < |α| < 1.

Corollary 1. If the numbers ω1, . . . , ωm are linearly independent over Q, then

the functions fid(z) (i = 1, . . . , m; d = 2, 3, 4, . . .) are algebraically independent over

the field C(z) of rational functions.

Example. Let

f1,d(z) =
∞∑

k=0

zdk
, f2,d(z) =

∞∑

k=0

z[
√

2dk],

f3,d(z) =
∞∑

k=0

z[
√

3dk], f4,d(z) =
∞∑

k=0

z[πdk] (d = 2, 3, 4, . . .).

For example we have

f2,10(z) = z + z14 + z141 + z1414 + z14142 + z141421 + · · · ,
f3,10(z) = z + z17 + z173 + z1732 + z17320 + z173205 + · · · ,

and

f4,10(z) = z3 + z31 + z314 + z3141 + z31415 + z314159 + · · · .
Then by Theorem 1 the numbers fi,d(α) (i = 1, . . . , 4; d = 2, 3, 4, . . .) are alge-

braically independent for any algebraic number α with 0 < |α| < 1 since the numbers

1,
√

2,
√

3, and π are linearly independent over Q.
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Theorem 1 is proved by using the method developed from that of Nishioka used

for proving the following:

Theorem 2 (Nishioka [4, Theorem 1]). Let

fd(z) =
∞∑

k=0

σdkz
dk

(d = 2, 3, 4, . . .),

where the σdk (k = 0, 1, 2, . . .) are in a finite set of nonzero algebraic numbers for

every d. Then the numbers fd(α) (d = 2, 3, 4, . . .) are algebraically independent for

any algebraic number α with 0 < |α| < 1.

We further obtain the following, which includes both Theorems 1 and 2.

Theorem 3. Let ω1, . . . , ωm > 0. Define

fid(z) =
∞∑

k=0

σidkz
[ωid

k] (i = 1, . . . , m; d = 2, 3, 4, . . .),

where the σidk (k = 0, 1, 2, . . .) are in a finite set of nonzero algebraic numbers for

every i and for every d. If the numbers ω1, . . . , ωm are linearly independent over Q,

then the numbers fid(α) (i = 1, . . . , m; d = 2, 3, 4, . . .) are algebraically independent

for any algebraic number α with 0 < |α| < 1.

Theorem 3 implies the following result, which also includes Theorem 1.

Theorem 4. Let ω1, . . . , ωm > 0 and η1, . . . , ηm ∈ R. Define

fid(z) =
∞∑

k=0

z[ωid
k+ηi] (i = 1, . . . , m; d = 2, 3, 4, . . .).

If the numbers ω1, . . . , ωm are linearly independent over Q, then the numbers

fid(α) (i = 1, . . . , m; d = 2, 3, 4, . . .) are algebraically independent for any algebraic

number α with 0 < |α| < 1.

Remark. Concerning the transcendence of a single value of a power series,

Corvaja and Zannier [1] proved, as an application of Schmidt’s subspace theorem,

the following result: Let {mk}k≥0 be an increasing sequence of positive integers such

that lim infk→∞ mk+1/mk > 1. Let α be an element of an algebraic number field K

with 0 < |α| < 1 and let {σk}k≥0 be a sequence of nonzero elements of K satisfying
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a suitable growth condition on their Weil heights. Then the number
∑∞

k=0 σkα
mk is

transcendental. Although this result can treat a wider class of power series, their

method does not seem to yield any algebraic independence result of the values of

power series.

2 Lemmas.

We prepare the notation for stating the lemmas. For any algebraic number α, we

denote by α the maximum of the absolute values of the conjugates of α and by

den(α) the smallest positive integer such that den(α) ·α is an algebraic integer. It is

easily seen that α + β ≤ α + β and αβ ≤ α β for any algebraic numbers

α and β. Furthermore, for any algebraic number α, we define

‖α‖ = max{ α , den(α)}.

Then for any α 6= 0 we have the inequalities

log |α| ≥ −2[Q(α) : Q] log ‖α‖ (2)

and

log
∥∥α−1

∥∥ ≤ 2[Q(α) : Q] log ‖α‖
(cf. [3, Lemma 2.10.2]). If Ω = (ωij) is an n × n matrix with nonnegative integer

entries and if z = (z1, . . . , zn) is a point of Cn with C the set of complex numbers,

we define the transformation Ω : Cn → Cn by

Ωz =

(
n∏

j=1

zj
ω1j ,

n∏
j=1

zj
ω2j , . . . ,

n∏
j=1

zj
ωnj

)
.

Let {Ω(k)}k≥0 be a sequence of n× n matrices with nonnegative integer entries. We

put

Ω(k) = (ω
(k)
ij ) and Ω(k)z = (z

(k)
1 , . . . , z(k)

n ).

In what follows, N and N0 denote the sets of positive and nonnegative integers,

respectively. For λ = (λ1, . . . , λn) ∈ (N0)
n, we define zλ = zλ1

1 · · · zλn
n and |λ| =

λ1+· · ·+λn. Let K be an algebraic number field. Let {f (k)
1 (z)}k≥0, . . . , {f (k)

m (z)}k≥0

be sequences of power series in K[[z1, . . . , zn]]. Let χ = (z1, . . . , zn) be the maximal

ideal generated by z1, . . . , zn in the ring K[[z1, . . . , zn]]. In what follows, c1, c2, . . .

denote positive constants independent of k.
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Lemma 1 (cf. Nishioka [4, Theorem 2]). Assume that

f
(k)
i (z) → fi(z) as k →∞

with respect to the topology defined by χ for any i (1 ≤ i ≤ m). Suppose that all the

f
(k)
i (z) (k ≥ 0), fi(z) (1 ≤ i ≤ m) converge in the n-polydisc {z = (z1, . . . , zn) ∈
Cn | |zj| < r (1 ≤ j ≤ n)}. If α = (α1, . . . , αn) is a point of Kn with 0 < |αj| <

min{1, r} (1 ≤ j ≤ n) and if the following three properties are satisfied, then the

values f
(0)
1 (α), . . . , f

(0)
m (α) are algebraically independent.

(I) There exists a sequence {ρk}k≥0 of positive numbers such that

lim
k→∞

ρk = ∞, ω
(k)
ij ≤ c1ρk, log |α(k)

j | ≤ −c2ρk.

(II) If we put

f
(0)
i (α) = f

(k)
i (Ω(k)α) + b

(k)
i (1 ≤ i ≤ m),

then b
(k)
i ∈ K and

log ‖b(k)
i ‖ ≤ c3ρk (1 ≤ i ≤ m).

(III) For any power series F (z) represented as a polynomial in

z1, . . . , zn, f1(z), . . . , fm(z) with complex coefficients of the form

F (z) =
∑

λ, µ=(µ1,...,µm)

aλ, µz
λf1(z)µ1 · · · fm(z)µm ,

where aλ, µ are not all zero, there exists a λ0 ∈ (N0)
n such that if k is sufficiently

large, then

|F (Ω(k)α)| ≥ c4|(Ω(k)α)λ0|.

Although Theorem 2 of Nishioka [4] requires the assumption that the coefficients

of f
(k)
i (z) are in a finite set S ⊂ K for all i and k, it can be weakened as in Lemma 1,

which is proved by the almost same way as in the proof of Theorem 2 of Nishioka [4].

We state here the proof of Lemma 1 for the sake of the readers. The following

lemmas 2 – 5, which are the same as in [4], are necessary for proving Lemma 1.

Lemma 2 (Nishioka [4]). Let f(z) =
∑

λ1,...,λn
cλ1,...,λnzλ1

1 · · · zλn
n ∈ C[[z1, . . . , zn]]

converge around the origin. If z is sufficiently close to the origin, then
∑

λ≥H

|cλ1,...,λn| · |z1|λ1 · · · |zn|λn ≤ γH+1 max
1≤i≤n

|zi|H ,
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where γ is a positive constant depending on f(z).

Lemma 3 (Nishioka [4]). (i) If f
(k)
i (z)− fi(z) ∈ χH , then

|f (k)
i (Ω(k)α)− fi(Ω

(k)α)| ≤ cH+1
5 e−c2ρkH .

(ii) Using the coefficients aλ, µ given in (III) of Lemma 1, we put

F (k)(z) =
∑

λ, µ=(µ1,...,µm)

aλ, µz
λf

(k)
1 (z)µ1 · · · f (k)

m (z)µm .

Then F (k)(Ω(k)α) 6= 0 if k is sufficiently large.

We assume that f
(0)
1 (α), . . . , f

(0)
m (α) are algebraically dependent and deduce a

contradiction. There exist a positive integer L and integers τµ, not all zero, for

µ = (µ1, . . . , µm) with 0 ≤ µi ≤ L such that

∑
µ

τµf
(0)
1 (α)µ1 · · · f (0)

m (α)µm = 0.

Let w1, . . . , wm, y1, . . . , ym, and tµ (µ = (µ1, . . . , µm), 0 ≤ µi ≤ L) be variables and

put

F (k)(z; t) =
∑

µ

tµf
(k)
1 (z)µ1 · · · f (k)

m (z)µm ,

F (z; t) =
∑

µ

tµf1(z)µ1 · · · fm(z)µm ,

and ∑
µ

tµ(w1 + y1)
µ1 · · · (wm + ym)µm =

∑
µ

Tµ(t; y)wµ1

1 · · ·wµm
m .

Then we obtain

0 = F (0)(α; τ)

=
∑

µ

τµ(f
(k)
1 (Ω(k)α) + b

(k)
1 )µ1 · · · (f (k)

m (Ω(k)α) + b(k)
m )µm

=
∑

µ

Tµ(τ ; b(k))f
(k)
1 (Ω(k)α)µ1 · · · f (k)

m (Ω(k)α)µm

= F (k)(Ω(k)α; T (τ ; b(k))).

We put R = K[t] = K[{tµ}µ=(µ1,...,µm), 0≤µi≤L] and

V (τ) = {Q(t) ∈ R | Q(T (τ ; y)) = 0}.

6

KSTS/RR-04/003
March 26, 2004



Definition. For P (z; t) =
∑

λ Pλ(t)z
λ ∈ R[[z1, . . . , zn]], we define

indexP (z; t) = min{|λ| | Pλ /∈ V (τ)}.

If Pλ ∈ V (τ) for any λ, then we define indexP (z; t) = ∞.

Lemma 4 (Nishioka [4]). The following two properties are equivalent for any

P (z; t) ∈ R[z].

(i) P (Ω(k)α; T (τ ; b(k))) = 0 for all large k.

(ii) indexP (z; t) = ∞.

Lemma 5 (Nishioka [4]). Let p be a sufficiently large integer. Then there ex-

ist polynomials P0(z; t), . . . , Pp(z; t) ∈ K[z; t] with degzj
Ph(z; t), degtµ Ph(z; t) ≤

p (0 ≤ h ≤ p) such that the following two properties are satisfied.

(i) indexP0(z; t) < ∞.

(ii) If we put Ep(z; t) =
∑p

h=0 Ph(z; t)F (z; t)h, then

indexEp(z; t) ≥ c6(p + 1)1+1/n.

Now we can complete the proof of Lemma 1. Let indexEp(z; t) = I and let

γ1, γ2, . . . denote positive constants depending only on Ep(z; t). Let k ≥ γ1, where

γ1 will be determined below. Let

Ep(z; t) =
∑

ν

gν(z)tν , gν(z) =
∑

λ

gνλz
λ.

Then gν(z) converges in the n-polydisc {z = (z1, . . . , zn) ∈ Cn | |zj| < r (1 ≤ j ≤
n)}. Since

lim
k→∞

f
(k)
i (Ω(k)α) = fi(0),

we have

|b(k)
i |, |Tµ(τ ; b(k))| ≤ c7.

Thus by Lemma 2,

|Ep(Ω
(k)α; T (τ ; b(k)))| ≤

∑
ν


∑

|λ|≥I

|gνλ| · |(Ω(k)α)λ|

 |T (τ ; b(k))ν | ≤ γ2 max

1≤j≤n
|α(k)

j |I .
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We choose a positive number θ with e−c2c6 < θ < 1. By the property (I) we have

|Ep(Ω
(k)α; T (τ ; b(k)))| ≤ 1

2
θρk(p+1)1+1/n

.

We put

E(k)
p (z; t) =

p∑

h=0

Ph(z; t)F (k)(z; t)h,

and choose a large H satisfying

e−c2H ≤ θ · θ(p+1)1+1/n

.

If f
(k)
i (z)− fi(z) ∈ χH , by Lemma 3 (i) we have

|E(k)
p (Ω(k)α; T (τ ; b(k)))− Ep(Ω

(k)α; T (τ ; b(k)))| ≤ γ3e
−c2Hρk .

Then

|E(k)
p (Ω(k)α; T (τ ; b(k)))| ≤ γ3e

−c2Hρk +
1

2
θρk(p+1)1+1/n ≤ θρk(p+1)1+1/n

.

On the other hand,

E(k)
p (Ω(k)α; T (τ ; b(k))) = P0(Ω

(k)α; T (τ ; b(k))) = (say) βk ∈ K.

By the properties (I) and (II), we easily see ‖βk‖ ≤ cρkp
8 . Since indexP0(z; t) < ∞,

by Lemma 4 there are infinitely many k with βk 6= 0. For such k, using (2), we have

ρk(p + 1)1+1/n log θ ≥ log |βk| ≥ −2[K : Q] log ‖βk‖ ≥ −2[K : Q]ρkp log c8.

Dividing both sides by ρk(p + 1)1+1/n and letting p tend to ∞, we obtain log θ ≥ 0,

a contradiction.

The following lemma is originally due to Masser [2] and improved by Nishioka [4].

Lemma 6 (Masser [2], Nishioka [4]). Let b1 > · · · > bn ≥ 2 be pairwise mul-

tiplicatively independent integers. Let θ = log b1 and θj = θ/ log bj (1 ≤ j ≤ n).

Suppose that for each α in a finite set A we are given real numbers λ1α, . . . , λnα, not

all zero, and define the sequence

Sα(k) =
n∑

j=1

λjαb
[θjk]
j (k = 0, 1, 2, . . .).

8
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If {kl}l≥1 is an increasing sequence of positive integers with {kl+1 − kl}l≥1 bounded,

then there exists a positive number δ such that

R(δ) = {kl | min
α∈A

|Sα(kl)| ≥ δbkl
1 } = {ml}l≥1, ml < ml+1,

is an infinite set and {ml+1 −ml}l≥1 is bounded.

Using Lemma 6, we have the following:

Lemma 7. Let b1, . . . , bn be integers as in Lemma 6 and let θ1, . . . , θn be defined

in Lemma 6. Let ω1, . . . , ωm > 0 be linearly independent over Q. Then there exist an

infinite set Λ of positive integers, a sequence {δ(l)}l≥1 of positive numbers, and a total

order Â in (N0)
mn such that if λ = (λij) Â µ = (µij) with |λ| = λ11 + · · ·+λmn, |µ| =

µ11 + · · ·+ µmn ≤ l, then

m∑
i=1

n∑
j=1

λij[ωib
[θjq]
j ]−

m∑
i=1

n∑
j=1

µij[ωib
[θjq]
j ] ≥ δ(l)bq

1

for all sufficiently large q ∈ Λ. Moreover, any subset S of (N0)
mn has the minimal

element with respect to the total order Â.

Proof. We put

A(l) = {(λ, µ) | λ, µ ∈ (N0)
mn, |λ|, |µ| ≤ l, λ 6= µ}.

For (λ, µ) ∈ A(l) we set

S(λ,µ)(q) =
m∑

i=1

n∑
j=1

(λij − µij)[ωib
[θjq]
j ].

We inductively define δ(l) and Λ(l) as follows. First we put Λ(0) = N. Letting

T(λ,µ)(q) =
m∑

i=1

n∑
j=1

(λij − µij)ωib
[θjq]
j =

n∑
j=1

(
m∑

i=1

(λij − µij)ωi

)
b
[θjq]
j ,

we have

|T(λ,µ)(q)− S(λ,µ)(q)| =

∣∣∣∣∣
m∑

i=1

n∑
j=1

(λij − µij)(ωib
[θjq]
j − [ωib

[θjq]
j ])

∣∣∣∣∣

≤
m∑

i=1

n∑
j=1

|λij − µij|

9
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≤
m∑

i=1

n∑
j=1

(|λij|+ |µij|)

≤ 2l

and so

|S(λ,µ)(q)| ≥ |T(λ,µ)(q)| − 2l.

Since ω1, . . . , ωm > 0 are linearly independent over Q, by Lemma 6 there exists a

positive number ε(l) such that

Λ(l) = {q ∈ Λ(l − 1) | min
(λ,µ)∈A(l)

|T(λ,µ)(q)| ≥ ε(l)bq
1 > 2l}

is an infinite set and the differences of two consecutive elements of Λ(l) are bounded.

Letting sl be the smallest number of Λ(l) and choosing δ(l) such that 0 < δ(l) ≤
ε(l)− 2lb−sl

1 , we have

min
(λ,µ)∈A(l)

|S(λ,µ)(q)| ≥ min
(λ,µ)∈A(l)

|T(λ,µ)(q)| − 2l ≥ ε(l)bq
1 − 2l ≥ δ(l)bq

1

for all q ∈ Λ(l). Noting that Λ(l) ⊃ Λ(l+1) for any l ≥ 0, we can choose a sequence

{ql}l≥1 satisfying both ql ∈ Λ(l) and ql < ql+1. There exists a subsequence {q(1)
l }l≥1

of {ql}l≥1 such that the signs of S(λ,µ)(q
(1)
l ) with |λ|, |µ| ≤ 1 are fixed for all l ≥ 1.

There exists a subsequence {q(2)
l }l≥2 of {q(1)

l }l≥1 such that the signs of S(λ,µ)(q
(2)
l )

with |λ|, |µ| ≤ 2 are fixed for all l ≥ 2. Continuing this process, we obtain a sequence

{q(m)
l }l≥m for every m ≥ 1. We set

Λ = {q(1)
1 , q

(2)
2 , . . . , q

(l)
l , . . .},

and for λ, µ ∈ (N0)
mn we define λ Â µ if and only if S(λ,µ)(q) > 0 for all large

q ∈ Λ. The proof of the former part of the lemma is completed by noting that

Λ(l) ⊃ Λ(l + 1) and that q
(l)
l ∈ Λ(l). For the latter part, we use the following fact

(cf. [3, Lemma 2.6.4]): If S is any subset of (N0)
p, then there is a finite subset T

of S such that for any (λ1, . . . , λp) ∈ S, there is an element (µ1, . . . , µp) ∈ T with

µi ≤ λi (1 ≤ i ≤ p). If µ is the minimal element of T with respect to the total order

Â, we easily see it is also the minimal element of S. This completes the proof of the

lemma.

Lemma 8 (Nishioka [4]). Let d be an integer greater than 1 and let

fl(z) =
∞∑

h=0

s
(l)
h zdlh

(l = 1, 2, . . .),

10
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where the coefficients s
(l)
h are nonzero complex numbers. Then fl(z) (l = 1, 2, . . .)

are algebraically independent over C(z).

3 Proof of Theorems 1, 3, and 4.

Proof of Theorem 1. Let

D = {d ∈ N | d 6= an (a, n ∈ N, n ≥ 2)}.

Then

N \ {1} =
⋃

d∈D

{d, d2, . . .},

which is a disjoint union since any two distinct elements of D are multiplicatively

independent by the definition of D. Let d1 > · · · > dn be elements of D and let

z = (z11, . . . , zm1, . . . , z1n, . . . , zmn), where z11, . . . , zm1, . . . , z1n, . . . , zmn are distinct

variables. For any i (1 ≤ i ≤ m) and for any dj ∈ D (1 ≤ j ≤ n), we define the

sequence {r(i,j)
k }k≥0 by

r
(i,j)
0 = 1, r

(i,j)
k = [ωid

k
j ] (k ≥ 1) (3)

and define

fijl0(z) =
∞∑

h=0

αr
(i,j)
lh −dlh

j z
dlh

j

ij (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t).

Letting α = (α, . . . , α, . . . , α, . . . , α), we have

fijl0(α) =
∞∑

h=0

αr
(i,j)
lh = α +

∞∑

h=1

α[ωid
lh
j ] = fidl

j
(α)− α[ωi] + α,

where fid is defined by (1). Hence it suffices to prove the algebraic independency of

the values fijl0(α) (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t). For the purpose we apply

Lemma 1.

Put bj = dt!
j , θ = log b1, and θj = θ/ log bj (1 ≤ j ≤ n). Noting that

0 ≤ r
(i,j)
lh+t![θjq] − r

(i,j)
t![θjq]d

lh
j ≤ dlh

j − 1 (1 ≤ i ≤ m),

we put

Σq =

(
α

r
(i,j)
lh+t![θjq]

−r
(i,j)
t![θjq]

dlh
j

)

1≤i≤m, 1≤j≤n, 1≤l≤t, h≥0

∈
∞∏

h=0

n∏
j=1

t∏

l=1

{1, α, . . . , αdlh
j −1}m

11
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for any q ∈ Λ with the Λ defined in Lemma 7. Since the right-hand side is a

compact set, there exists a converging subsequence {Σqk
}k≥1 of {Σq}q∈Λ, where q1

will be chosen sufficiently large. Let

lim
k→∞

Σqk
=

(
αs

(i,j,l)
h

)
1≤i≤m, 1≤j≤n, 1≤l≤t, h≥0

and define

fijlk(z) =
∞∑

h=0

α
r
(i,j)
lh+t![θjqk]

−r
(i,j)
t![θjqk]

dlh
j z

dlh
j

ij (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t, k ≥ 1)

and

fijl(z) =
∞∑

h=0

αs
(i,j,l)
h z

dlh
j

ij (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t).

Then

lim
k→∞

fijlk(z) = fijl(z).

Define the mn×mn matrix

Ω(k) = diag
(
[ω1b

[θ1qk]
1 ], . . . , [ωmb

[θ1qk]
1 ], . . . , [ω1b

[θnqk]
n ], . . . , [ωmb[θnqk]

n ]
)

.

We assert first that {Ω(k)}k≥1, α = (α, . . . , α, . . . , α, . . . , α), and ρk = bqk
1 (k ≥ 1)

satisfy the assumptions (I) and (II) of Lemma 1. Since b1 > · · · > bn, we have

bqk−1
1 ≤ b−1

j bqk
1 < b

[θjqk]
j ≤ bqk

1

and so

1

2

(
min

1≤i≤m
ωi

)
bqk−1
1 ≤

(
min

1≤i≤m
ωi

)
bqk−1
1 − 1 < [ωib

[θjqk]
j ] ≤ bqk

1 max
1≤i≤m

ωi

for any i (1 ≤ i ≤ m), j (1 ≤ j ≤ n), and for all k ≥ 1, if q1 is sufficiently large.

Hence the assumption (I) is satisfied.

Let K = Q(α). Then fijlk(z) ∈ K[[z]] (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t, k ≥ 0)

and

fijlk(Ω
(k)α) =

∞∑

h=0

α
r
(i,j)
lh+t![θjqk] = fijl0(α)−

(t!/l)[θjqk]−1∑

h=0

αr
(i,j)
lh

(1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t, k ≥ 1).
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Since r
(i,j)
l(k+1) > r

(i,j)
lk (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t) for all sufficiently large

k by the definition, there is a positive constant C such that max0≤h≤k−1 r
(i,j)
lh ≤

Cr
(i,j)
lk (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t) for all k ≥ 1. Hence

log

∥∥∥∥∥∥
−

(t!/l)[θjqk]−1∑

h=0

αr
(i,j)
lh

∥∥∥∥∥∥
≤ log(t!/l)[θjqk] +

(
max

0≤h≤(t!/l)[θjqk]−1
r
(i,j)
lh

)
log ‖α‖

≤
(

1 + C( max
1≤i≤m

ωi) log ‖α‖
)

ρk,

and the assumption (II) is satisfied.

Therefore, if the assumption (III) is also satisfied, the proof is completed. Noting

that z11, . . . , zm1, . . . , z1n, . . . , zmn are distinct variables, we see by Lemma 8 that the

functions fijl(z) (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t) are algebraically independent

over C(z11, . . . , zm1, . . . , z1n, . . . , zmn). Let

F (z) =
∑

µ=(µij), ν=(νijl)

aµ,νz
µf ν111

111 · · · f νmnt
mnt =

∑

λ=(λij)∈(N0)mn

cλz
λ,

where the coefficients aµ,ν are not all zero, and let λ0 = (λ
(0)
ij ) be the minimal

element in (N0)
mn with respect to the total order Â defined in Lemma 7 among λ

with cλ 6= 0. Let l = 2(|λ0| + 1)

([
max1≤i≤m ωi

min1≤i≤m ωi

]
+ 1

)
b1. If k is sufficiently large,

then by Lemma 2

∑

|λ|≥l

|cλ| · |α|λ11[ω1b
[θ1qk]
1 ] · · · |α|λm1[ωmb

[θ1qk]
1 ] · · · |α|λ1n[ω1b

[θnqk]
n ] · · · |α|λmn[ωmb

[θnqk]
n ]

≤ γl+1
(
|α| 12 (min1≤i≤m ωi)b

qk−1
1

)l

≤ γl+1|α|(max1≤i≤m ωi)b
qk
1 (|λ0|+1).

Since

λ
(0)
11 [ω1b

[θ1qk]
1 ] + · · ·+ λ

(0)
m1[ωmb

[θ1qk]
1 ] + · · ·+ λ

(0)
1n [ω1b

[θnqk]
n ] + · · ·+ λ(0)

mn[ωmb[θnqk]
n ]

≤ |λ0|( max
1≤i≤m

ωi)b
qk
1 ,

we have
|∑|λ|≥l cλ(Ω

(k)α)λ|
|(Ω(k)α)λ0| ≤ γl+1|α|(max1≤i≤m ωi)b

qk
1
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if k is sufficiently large. If |λ| < l and λ 6= λ0, then by Lemma 7

|cλ(Ω
(k)α)λ|

|(Ω(k)α)λ0| ≤ |cλ| · |α|δ(l)b
qk
1

for all sufficiently large k. Therefore

|F (Ω(k)α)/(Ω(k)α)λ0 − cλ0| → 0 (k →∞),

which implies (III), and the proof of the theorem is completed.

Proof of Theorem 3. We use the same notation as in the proof of Theorem 1.

It suffices to prove the algebraic independency of the numbers

ζijl =
∞∑

h=0

σijlhα
[ωid

lh
j ] (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t),

where for any h ≥ 0,

σijlh ∈ Sijl = {β(i,j,l)
1 , . . . , β

(i,j,l)
p(i,j,l)}

with β
(i,j,l)
1 , . . . , β

(i,j,l)
p(i,j,l) nonzero algebraic numbers. Define

fijl0(z) =
∞∑

h=0

σijlhα
r
(i,j)
lh −dlh

j z
dlh

j

ij (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t),

where the sequence {r(i,j)
k }k≥0 is defined by (3) in the proof of Theorem 1. Letting

α = (α, . . . , α, . . . , α, . . . , α), we have

fijl0(α) =
∞∑

h=0

σijlhα
r
(i,j)
lh = σijl0α +

∞∑

h=1

σijlhα
[ωid

lh
j ] = ζijl − σijl0α

[ωi] + σijl0α.

Hence it is enough to prove the algebraic independency of the values fijl0(α) (1 ≤
i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t).

Put

Σq =

(
σijl h+(t!/l)[θjq]α

r
(i,j)
lh+t![θjq]

−r
(i,j)
t![θjq]

dlh
j

)

1≤i≤m, 1≤j≤n, 1≤l≤t, h≥0

∈
∞∏

h=0

m∏
i=1

n∏
j=1

t∏

l=1

{β(i,j,l)
τ αs | 1 ≤ τ ≤ p(i, j, l), 0 ≤ s ≤ dlh

j − 1}
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for any q ∈ Λ with the Λ defined in Lemma 7. Since the right-hand side is a

compact set, there exists a converging subsequence {Σqk
}k≥1 of {Σq}q∈Λ, where q1

will be chosen sufficiently large. Let

lim
k→∞

Σqk
=

(
β

(i,j,l)
τ(i,j,l,h)α

s
(i,j,l)
h

)
1≤i≤m, 1≤j≤n, 1≤l≤t, h≥0

and define

fijlk(z) =
∞∑

h=0

σijl h+(t!/l)[θjqk]α
r
(i,j)
lh+t![θjqk]

−r
(i,j)
t![θjqk]

dlh
j z

dlh
j

ij

(1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t, k ≥ 1)

and

fijl(z) =
∞∑

h=0

β
(i,j,l)
τ(i,j,l,h)α

s
(i,j,l)
h z

dlh
j

ij (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t).

Then

lim
k→∞

fijlk(z) = fijl(z).

Define the mn×mn matrix

Ω(k) = diag
(
[ω1b

[θ1qk]
1 ], . . . , [ωmb

[θ1qk]
1 ], . . . , [ω1b

[θnqk]
n ], . . . , [ωmb[θnqk]

n ]
)

.

Then

fijlk(Ω
(k)α) =

∞∑

h=0

σijl h+(t!/l)[θjqk]α
r
(i,j)
lh+t![θjqk] = fijl0(α)−

(t!/l)[θjqk]−1∑

h=0

σijlhα
r
(i,j)
lh

(1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ t, k ≥ 1)

and the assumptions (I) and (II) of Lemma 1 are satisfied. The rest of the proof is

the same as that of Theorem 1.

Proof of Theorem 4. Define

gid(z) =
∞∑

k=0

α[ωid
k+ηi]−[ωid

k]z[ωid
k] (i = 1, . . . , m; d = 2, 3, 4, . . .).

Then

α[ωid
k+ηi]−[ωid

k] ∈ {α[ηi], α[ηi]+1},
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since 0 ≤ [ωid
k + ηi]− [ωid

k]− [ηi] ≤ 1 for any i, d, and for all k. By Theorem 3 the

numbers gid(α) (i = 1, . . . , m; d = 2, 3, 4, . . .) are algebraically independent, which

implies the theorem.
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