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ABSTRACT. -Let a be a non-isolated point of a topological space S and X0 = (X0
t , 0 ≤ t <

ζ0, P 0
x ) be a symmetric diffusion on S0 = S\{a} such that P 0

x (ζ0 <∞, X0
ζ0− = a) > 0, x ∈ S0. By

making use of Poisson point processes taking values in the spaces of excursions around a whose
characteristic measures are uniquely determined by X0, we construct a symmetric diffusion X̃

on S with no killing inside S which extends X0 on S0. We also prove that such a process X̃ is
unique in law and its resolvent and Dirichlet form admit explicit expressions in terms of X0.

Keywords: symmetric diffusion, Poisson point process, excursions, entrance law, energy func-
tional, Dirichlet form

1 Introduction

Let S be a locally compact separable metric space and a be a non-isolated point of S.
We put S0 = S \ {a}. The one point compactification of S is denoted by S∆. When S is
compact already, ∆ is added as an isolated point. Let m be a positive Radon measure
on S0 with Supp[m] = S0. m is extended to S by setting m({a}) = 0.

We assume that we are given an m-symmetric diffusion X0 = (X0
t , P

0
x ) on S0 with

life time ζ0 satisfying the following four conditions:

A.1 P 0
x (ζ0 <∞, X0

ζ0− ∈ {a} ∪ {∆}) = P 0
x (ζ0 <∞), ∀x ∈ S0.

We define the functions ϕ(x), uα(x), α > 0, of x ∈ S0 by

ϕ(x) = P 0
x (ζ0 <∞, X0

ζ0− = a), uα(x) = E0
x(e

−αζ0 ;X0
ζ0− = a).

A.2 ϕ(x) > 0, ∀x ∈ S0,

A.3 uα ∈ L1(S0;m), ∀α > 0.

A.4 uα ∈ Cb(S0), G0
α(Cb(S0)) ⊂ Cb(S0), α > 0,

where G0
α is the resolvent of X0 and Cb(S0) is the space of all bounded continuous

functions on S0.

By making use of excursion-valued Poisson point processes whose characteristic mea-
sures are uniquely determined by X0, or to be a little more precise, by piecing together
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those excursions which start from a and return to a and then possibly by adding the last
one that never returns to a, we shall construct in §4 of the present paper a process X̃ on
S satisfying

(1) X̃ is an m-symmetric diffusion process on S with no killing inside S,

(2) X̃ is an extension of X0: the process on S0 obtained from X̃ by killing upon the
hitting time of a is identical in law with X0.

We call a process X̃ on S satisfying (1),(2) a symmetric extension of X0.

We shall also prove in §5 that, under conditions A.1, A.2 for the given m-symmetric
diffusion X0 on S0, its symmetric extension is unique in law, satisfies condition A.3
automatically and admits the resolvent expressible as

Gαf(x) = G0
αf(x) + uα(x) ·Gαf(a), x ∈ S0, Gαf(a) =

(uα, f)
α(uα, ϕ) + L(m0, ψ)

,

where (·, ·) denotes the inner product in L2(S0;m) and L(m0, ψ) is the energy functional
in Meyer’s sense [21] of the X0-excessive measure m0 = ϕ ·m and X0-excessive function
ψ = 1 − ϕ.

Furthermore the associated Dirichlet form (E ,F) on L2(S;m) will be seen in §5 to
have the following simple expression; if we donote by Fe its extended Dirichlet space,
then

Fe = {w = u0 + cϕ : u0 ∈ F0,e, c constant}, F = Fe ∩ L2(S;m),

E(w,w) = E(u0, u0) + c2E(ϕ,ϕ), E(ϕ,ϕ) = L(m0, ψ),

where (F0,e, E) is the extended Dirichlet space for the given diffusion X0.

In §6, we shall present four examples. Example 6.1 concerns the uniqueness of the
symmeric extension of the one dimensional absorbing Brownian motion.

Example 6.2 treats the case where S0 is a bounded open subset of Rd, (d ≥ 1),
S = S0 ∪ {a} is the one point compactification of S0 and X0 is the absorbing Brownian
motion on S0. In this case, ϕ(x) = 1, x ∈ S0. The resulting Dirichlet form on L2(S;m)
(m is the Lebsegue measure on S0 extended to S by m({a}) = 0) is given by

F = {w = u0 + c : u0 ∈ H1
0 (S0), c constant},

E(w,w) =
1
2

∫
S0

|∇u0|2(x)dx,

which is easily seen to be regular, strongly local and irreducible recurrent. A more general
Dirichlet form of this type will be presented in §3.2. This type of Dirichlet form first
appeared in the paper [8] by the first author and it is recently utilized in a study of
the asymptotics of the spectral gap for one parameter family of energy forms([17]). Our
study is motivated by a wish to conceive a clearer picture of the sample path of the
diffusion on S associated with such a Dirichlet form.

Example 6.3 is essentially one-dimensional, where we shall see that the conditions
A.2 and A.3 are satisfied if and only if the boundary is regular in Feller’s sense. This
example is reminiscent of an example by N. Ikeda and S. Watanabe[14].

Example 6.4 is higher dimensional, where the Dirichlet form associated with the
constructed process X̃ may not be regular.
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In order to identify right quantities to describe the excursion-valued Poisson point
processes to be constructed in §4, we shall study in §2 and §3 a strongly local regular
Dirichlet form on L2(S;m) for which the point {a} has a positive capacity. In particular,
we shall find that the Dirichlet form and the associated resolvent admit exactly the above
mentioned expressions. Furthermore, we shall see that the entrance law {µt} governing
the excursion law ought to be determined by

m0 =
∫ ∞

0
µtdt,

an equation investigated by E.B.Dynkin, R.K.Getoor, P.J.Fitzsimmons and others ([11]).

In a seminal work [15], K.Itô considered a standard process X on S for which a point
a is regular for itself. A Poisson point process Y taking value in the space of excursions
around a was then associated, and it was shown that the stopped process X0 obtained
from X by the hitting time at a and the characteristic measure of Y together determine
the law of X uniquely. It was implicitly assumed in [15] that the point a is recurrent in
the sense that

ϕ(x) = Px(σa <∞) = 1, x ∈ S, σa = inf{t > 0 : Xt = a}.
But, as was shown in P.A. Meyer [20], an absorbed Poisson point process can be still
associated with X when {a} is non-recurrent. See Remark 4.2 in this regard.

Since our present assumption on X0 requires ϕ only to be positive, we must handle
not only returning excursions from the point a but also non-returning excursions. By
restricting ourselves to the case that bothX0 and X̃ are symmetric diffusions however, we
shall see that the characteristic measures on these different type of excursion spaces are
uniquely determined byX0 so that, starting withX0, we can give an explicit construction
of X̃.

The Dirichlet form (E ,F) on L2(S;m) associated with a symmetric extension X̃ of
X0 may not be regular but it is quasi-regular in the sense of [19]. Accordingly we can
make use of the quasi-homeomorphism in [3] to connect X̃ with the regular Dirichlet
form studied in §2, yielding the uniqueness of X̃ and the explicit expression of (E ,F).

There are quite a few works [1], [24], [25], [26] dealing with generalizations of Itô’s one
[15]. See Remark 2.2 and Remark 4.1 in these regards. But construction and uniqueness
of a symmetric extension X of a symmetric X0 as are formulated in the present paper
have never been considered.

2 Strongly local Dirichlet form with a point of positive
capacity

2.1 Description of the form and resolvent by absorbed process

Let S be a locally compact separable metric space and a be a non-isolated point of S.
We denote the complementary set S \ {a} by S0. Let m be a positive Radon measure
on S with Supp[m] = S and with m({a}) = 0. The inner product in each of the spaces
L2(S;m), L2(S0,m) will be designated by (·, ·).

A Dirichlet form (E ,F) on L2(S;m) is called regular if F ∩ C0(S) is E1-dense in F
and uniformly dense in C0(S), where C0(S) denotes the space of continuous functions on
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S with compact support. It is called strongly local if E(u, v) vanishes whenever u, v ∈ F ,
Supp[u], Supp[v] are compact and v is constant on a negibourhood of Supp[u], where
Supp[u] denotes the topological support of the measure u ·m. For the sake of a use in
§3.2, we make here a remark:

Remark 2.1. If a Dirichlet form (E ,F) on L2(S;m) is regular and strongly local,
then the strong locality stated above holds without assuming that Supp[v] is compact.
Indeed, assuming the boundedness of v, take a function w ∈ F ∩ C0(S) with w = 1 on
a neighbourhood of K = Supp[u] and put v1 = v · w, v0 = v − v1. Then E(u, v1) = 0.
Since v0 belongs to the part FG of (E ,F) on the open set G = S \K and (E ,FG) is a
regular Dirichlet form on L2(G;m) (cf.[9, Th.4.4.3]), we can find vn ∈ F ∩ C0(G) which
are E1-convergent to v0. Hence E(u, v0) = limn→∞ E(u, vn) = 0 and E(u, v) = 0.

We consider a strongly local regular Dirichlet form (E ,F) on L2(S;m) and an asso-
ciated m-symmetric Hunt process X = (Xt, Px) on S. In view of [9, The.4.5.3], X can
then be taken to be a diffusion on S∆ in the sense that all sample paths are continuous
functions from [0,∞) to S∆, where S∆ is the one-point compactification of S when S is
non-compact and ∆ is an extra point isolated from S when S is compact. In either case
∆ will be the cemetery of the sample paths. Furthermore, X can be taken to be of no
killing inside S in the sense that

Px(Xζ− = ∆, ζ <∞) = Px(ζ <∞), x ∈ S,

where ζ(ω) denotes the life time, namely, the hitting time of the cemetery ∆ of the sample
path ω. In particular, when S is compact, Px(ζ = ∞) = 1 for all x ∈ S.

We make the assumption that

B.1 Cap({a}) > 0.

Here Cap(A) for A ⊂ S is its 1-capacity relative to (E ,F). In what follows, the
quasi-continuity of functions on S will be understood with respect to this capacity. Each
function u ∈ F admits its quasi-continuous version denoted by ũ. ‘q.e.’ will means
‘except for a set of zero capacity’.

The hitting probability and the α-order hitting probability of {a} are denoted by ϕ
and uα respectively:

ϕ(x) = Px(σ <∞), uα(x) = Ex(e−ασ), x ∈ S, (2.1)

where σ is the hitting time of a by the process X defined by

σ = inf{t > 0 : Xt = a}. (2.2)

The assumption B.1 implies that uα is a non-trivial element of F and it is the α-potential
Uανα of a positive measure να concentrated on {a} (cf. [9, §2.2]):

Eα(uα, v) = ṽ(a)να({a}) v ∈ F . (2.3)

Put
F0 = {u ∈ F : ũ(a) = 0}. (2.4)

Then (E ,F0) is a regular strongly local Dirichlet form on L2(S0;m), which is associated
with the part X0 = (X0

t , P
0
x ) of X on the set S0, namely, the diffusion process X0
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obtained from X by killing upon the hitting time σ (cf. [9, §4.4]). X0 is of no killing
inside S0 and, if we denote the life time of X0 by ζ0, then ϕ, uα admit the expressions

ϕ(x) = P 0
x (ζ0 <∞, X0

ζ0− = a), uα(x) = E0
x(e

−αζ0 ;Xζ0− = a), x ∈ S0, (2.5)

in terms of the absorbed process X0. We further consider the functions

ψ(1)(x) = P 0
x (ζ0 <∞, Xζ0− = ∆), ψ(2)(x) = P 0

x (ζ0 = ∞), x ∈ S0, (2.6)

and put ψ = ψ(1) + ψ(2) so that ψ = 1 − ϕ.
Denote by pt and Gα the transition function and the resolvent of X respectively. The

same notions for the absorbed process X0 will be denoted by p0
t and G0

α. The functions
ϕ, ψ(1), ψ(2) on S0 are X0-excessive. In particular, ψ(2) is X0-invariant in the sense that
ψ(2) = p0

tψ
(2), t > 0. Because of the m-symmetry of X0, the measure

m0 = ϕ ·m (2.7)

is an X0-excessive measure with m0p
0
t = p0

tϕ ·m.
Our first aim in this section is to show under the present setting that the form E as

well as the resolvent Gα are uniquely and explicitly determined by quantities depending
only on the absorbed process X0.

We prepare a lemma.

Lemma 2.1. For an X0-excessive function v on S0,

L(m0, v) = lim
t↓0

1
t
〈m0 −m0p

0
t , v〉 = lim

t↓0
1
t
(ϕ− p0

tϕ, v)(≤ ∞). (2.8)

is well defined as an increasing limit and it holds that

L(m0, v) = lim
α→∞α(uα, v). (2.9)

If v is p0
t -invariant, then for each t > 0 and α > 0,

L(m0, v) =
1
t
(ϕ− p0

tϕ, v) = α(uα, v).

Proof. If we set e(t) = (ϕ− p0
tϕ, v), then

e(t+ s) = e(t) + (p0
tϕ− p0

t+sϕ, v) = e(t) + (ϕ− p0
sϕ, p

0
t v) ≤ e(t) + e(s),

and hence e(t)/t is increasing as t decreases and constant if v is p0
t -invariant.. We also

see that

α(uα, v) = α(ϕ− αG0
αϕ, v) =

∫ ∞

0
e−t(t/α)−1(ϕ− p0

t/αϕ, v) t dt

increases to L(v) as α ↑ ∞.

We note that L(m0, v) is nothing but the energy functional of the X0-excessive mea-
sure m0 and the X0-excessive function v in the sense of P.A. Meyer [21] when X0 is
transient (cf.[4, §39], [11, p16]). In [4, §39], it is called the mass of v relative to m0.
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Let Fe (resp.F0,e) be the extended Dirichlet space of (F , E) (resp.(F0, E)). Each
element u ∈ Fe admits its quasi continuous version denoted by ũ again. In view of [9,
§4.6], it holds then that

F0,e = Fe,0 = {u ∈ Fe : ũ(a) = 0},

ϕ ∈ Fe, E(ϕ,u) = 0 ∀u ∈ Fe,0, (2.10)

F = Fe ∩ L2(S;m) F0 = F0,e ∩ L2(S0,m). (2.11)

Furthermore any w ∈ Fe can be decomposed as

w = u0 + c ϕ, u0 ∈ Fe,0, c constant (2.12)

and
E(w,w) = E(u0, u0) + c2E(ϕ,ϕ). (2.13)

Theorem 2.1. (i) It holds that

E(ϕ,ϕ) = L(m0, ψ)(= L(m0, ψ
(1)) + L(m0, ψ

(2))). (2.14)

(ii) uα is a non-trivial element of F ∩ L1(S0;m).
(iii) For any f ∈ L2(S,m) and x ∈ S,

Gαf(x) = G0
αf(x) +

(uα, f)
α(uα, ϕ) + L(m0, ψ)

uα(x), Gαf(a) =
(uα, f)

α(uα, ϕ) + L(m0, ψ)
.

(2.15)
(iv) Let δa be a unit mass concentrated at {a}. Then it is of finite energy integral and its
α-potential Uαδa is related to uα by

Ũαδa =
1

α(uα, ϕ) + L(m0, ψ)
uα. (2.16)

(v) The point a is regular for itself and also an instantaneous state with respect to X:

Pa(σ = 0, τa = 0) = 1, τa = inf{t > 0 : Xt ∈ S0}. (2.17)

Proof. We first give a proof of (ii). According to a general theorem ([9, Chap 4]), the
formula obtained by the strong Markov property

Gαf(x) = G0
αf(x) + uα(x)Gαf(a) x ∈ S, f ∈ L2(S;m), (2.18)

represents the orthogonal decomposition of Gαf ∈ F into the space F0 and its orthogonal
complement Hα = {c·uα : c constant} in the Hilbert space (F .Eα). We see that Gαf(a) >
0 for some f ∈ C+

0 (S), because otherwise F = F0 from (2.18) contradicting to uα ∈ F .
By (2.18),

(uα, 1)Gαf(a) ≤ (Gαf, 1) = (f,Gα1) ≤ 1
α

(f, 1) <∞.

Next we prove (i) and (iii). For f ∈ C0(S), the function w = Gαf has two expressions:

w = G0
αf + cuα = u0 + cϕ, c = Gαf(a), u0 ∈ Fe,0.
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By [9, Cor.1.6.3, Th.2.1.7], We can find a sequence {gn} of uniformly bounded functions
in F such that

lim
n→∞ gn = ϕ m−a.e., lim

n→∞ E(gn − ϕ, gn − ϕ) = 0.

Letting n→ ∞ in the equation

E(w, gn) + α(w, gn) = (f, gn),

we get
cE(ϕ,ϕ) + cα(uα, ϕ) = (f, ϕ) − (αG0

αf, ϕ).

Since the right hand side equals

(f, ϕ− αG0
αϕ) = (f, uα),

we arrive at
Gαf(a) =

(uα, f)
α(uα, ϕ) + E(ϕ,ϕ)

, f ∈ C0(S). (2.19)

(2.19) holds for any bounded Borel f. In particular, we have for any α > 0,

Gα1(a) =
(uα, 1)

α(uα, ϕ) + E(ϕ,ϕ)
≤ 1
α
,

and hence
E(ϕ,ϕ) ≥ α(uα, ψ).

By letting α→ ∞, we get from Lemma 2.1

E(ϕ,ϕ) ≥ L(m0, ψ).

In order to prove (2.14), notice that the assumption of the strong locality of E implies
that the killing measure k in the Beurling-Deny representation of E vanishes (cf. [9,
Th.4.5.3]). On account of [9, Lemma 4.5.2],∫

S
f2dk = lim

α→∞α

∫
S
f(x)2(1 − αGα1(x))m(dx), f ∈ F ∩C0(S).

From (2.18) and (2.19), we have

1 − αGα1(x) = 1 − αG0
α1(x) − α(uα, 1)

α(uα, ϕ) + E(ϕ,ϕ)
uα(x)

≥ uα(x) − α(uα, 1)
α(uα, ϕ) + E(ϕ,ϕ)

uα(x)

=
E(ϕ,ϕ) − α(uα, ψ)
α(uα, ϕ) + E(ϕ,ϕ)

uα(x).

Take f ∈ F ∩ C0(S) such that f(a) �= 0. We have from (2.19) and the above inequality

α

∫
S
f2(1 − αGα1)dm ≥ (E(ϕ,ϕ) − α(uα, ψ))(αGαf2)(a).

7

KSTS/RR-04/001
January 13, 2004



By letting α→ ∞, we get

0 ≥ (E(ϕ,ϕ) − L(m0, ψ))f(a)2,

proving the desired identity (2.14).

Proof of (iv). By (2.3),

(uα, f) = Eα(uα, Gαf) = Gαf(a)να({a}),

which combined with (2.15) gives

να = (α(uα, ϕ) + L(m0, ψ))δa.

Proof of (v). The regularity Pa(σ = 0) = 1 of the point a for itself follows from A.1
and a general fact that, for any Borel set B, the set of irregular points x ∈ B for B is
of zero capacity ([9, Chap. 4]). If Pa(0 < τa < ∞) > 0, then Pa(Xτa ∈ S0 ∪ ∆) = 1
contradicting the sample continuity and absence of the killing inside S for X. If a were
a trap with respect to X, then Gαf(a) = f(a)/α for any f ∈ L2(S;m) contradicting
(2.15). Accordingly, a is an instantaneous state.

Remark 2.2. (i) The present assumptions can be relaxed as follows:
(a) The measure m on S is replaced by m̄ = m+ γδa for a non-negative constant γ.
(b) (E ,F) is assumed to be a (not necessarily strongly) local regular Dirichlet form on
L2(S; m̄), while its part (E ,F0) on S0 is assumed to be a strongly local Dirichlet form on
L2(S0;m).

Then, in view of the above proof of Theorem 2.1, we readily see that (2.14) and (2.15)
remain true under the following modifications:

E(ϕ,ϕ) = L(m0, ψ) + δ,

Gαf(x) = G0
αf(x) +

(uα, f) + γf(a)
α(uα, ϕ) + L(m0, ψ) + δ + αγ

uα(x),

for a non-negative constant δ.
Example 6.1 will indicate stochastic interpretations of the parameters γ and δ.

(ii) The parameters γ, δ have appeared in Rogers’ description [24] of the most general
extension of a general resolvent G0

α under a setting corresponding to ψ(1) = 0. Another
parameter appearing in [24] is a family of measures nα, α > 0, on S0, which is reduced
to uα ·m under the present symmetry assumption.
(iii) In the setting (i) in the above, Gα is conservative if and only if ψ(1) = 0 and δ = 0,
and in this case the above expression is reduced to

Gαf(x) = G0
αf(x) +

(1 − αG0
α1, f) + γf(a)

α(1 − αG0
α1, 1) + αγ

(1 − αG0
α1(x)).

Such a formula was found by Y. Le Jan [18](see also [4, §78]) in a general setting to pro-
duce conservative resolvents out of a (not necessarily symmetric) submarkovian resolvent
and its dual preserving the duality.
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2.2 Description of the inverse local time

In §4, we shall construct a diffusion on S with resolvent (2.15) by means of Poisson point
processes of excursions, namely, by piecing together the excursions. In this subsection,
let us study more about the roles of the measure m0 and the energy functional L(m0, ψ)
played in the present diffusion X on S.

Let L(t) be the positive continuous additive functional (admitting exceptional set)
associated with the smooth measure δa (cf.[9, §5.1]):

Ũαδa(x) = Ex

(∫ ∞

0
e−αtdL(t)

)
for q.e. x ∈ S. (2.20)

In particular, (2.20) holds for x = a. L(t) is a local time at {a} in the sense that it
increases only when Xt = a:

L(t) =
∫ t

0
Ia(Xs)dL(s).

We consider the right continuous inverse S(t) = inf{s : L(s) > t} of L(t).
It is well known that the increasing process (S(t), Pa) is a subordinator killed upon an

exponential holding time (cf.[2]). Theorem 2.1 enables us to identify the Lévy measure
of the subordinator and the killing rate. Indeed, according to [2, v (3.17)], (2.20) implies
the identity

Ea(e−αS(t)) = exp(−t/Ũαδa(a)),
which combined with (2.16) leads us to

Ea

(
e−αS(t)

)
= e−tL(m0,ψ) exp[−tα(uα, ϕ)]. (2.21)

We need a lemma which will play a basic role in §4 again. A family {νt}t>0 of
σ-finite measures on S0 is called an X0-entrance law if νtp0

s = νs+t, s, t > 0. Then
νt(f), f ∈ B+(S0), is measurable in t and we may let

ν̂α(f) =
∫ ∞

0
e−αtνt(f)dt, α > 0, f ∈ B+(S0).

Lemma 2.2. (i) There exists a unique X0-entrance law {µt} such that

m0 =
∫ ∞

0
µt dt. (2.22)

(ii) µ̂α(f) = (uα, f), α > 0, f ∈ B+(S0).
Consequently,∫ t

0
µs(f)ds =

∫
S0

P 0
x (ζ0 ≤ t, Xζ0− = a)f(x)m(dx), t > 0, f ∈ B(S0). (2.23)

(iii) µt(S0) <∞, t > 0.
(iv) For any bounded X0-excessive function v on S0, µt(v) is right continuous in t > 0.
(v) For any X0-excessive function v on S0, the energy functional L(m0, v) introduced in
Lemma 2.1 admits an expression

L(m0, v) = lim
t↓0

µt(v).
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When v is p0
t -invariant, it holds for any t > 0 that

L(m0, v) = µt(v).

(vi) L(m0, ϕ) = ∞.

Proof. (i) Since

p0
tϕ(x) = P 0

x (t < ζ0 <∞,X0
ζ− = a) ↓ 0, t→ ∞,

limt↓0m0p
0
t (f) = (p0

tϕ, f) = 0 for f ∈ L1(S0,m), namely, m0 is purely excessive. Hence
the desired assertion follows from a well known representation theorem provided that X0

is transient ([11, Th. 5.25]). But the present situation can be reduced to this case by
observing that

S1 = {x ∈ S0 : ϕ(x) > 0}
is a non-trivial X0-invariant set q.e. and the restriction of X0 to S1 is transient (cf. [9,
§4.6]).
(ii) For f ∈ C+

0 (S0), we have∫ ∞

t
µt(f)dt =

∫ ∞

0
µt+s(f)dt =

∫ ∞

0
µs(p0

t f)ds = (ϕ, p0
t f),

and
µt(f) = − d

dt
(ϕ, p0

t f), a.e. t.

Hence

µ̂α(f) = −
∫ ∞

0
e−αt

d

dt
(ϕ, p0

t f)dt

=
[−e−αt(ϕ, p0

t f)
]∞
0

− α

∫ ∞

0
e−αt(ϕ, p0

t f)dt

= (ϕ, f) − α(ϕ,G0
αf) = (ϕ− αG0

αϕ, f) = (uα, f).

(iii) By (ii) and Theorem 2.1 (ii), µ̂α(1) = (uα, 1) <∞, from which the desired finiteness
follows.
(iv) On account of (iii), we have µt+s(v) = µt(p0

sv) → µt(v), s ↓ 0.
(v) Since 〈µt, v〉 is increasing as t ↓ 0 (independent of t when v is p0

t -invariant), the
assertions follow from

〈m0 −m0p
0
t , v〉 =

∫ t

0
〈µs, v〉ds.

(vi) Since S(t) is the right continuous inverse of an increasing continuous process L(t),
Pa(S(t) > 0) = 1 and consequently we have

L(m0, ϕ) = lim
α→∞α(uα, ϕ) = ∞

by letting α→ ∞ in (2.21).

We see by the above lemma that µt(ϕ) is decreasing and right continuous in t > 0
and so we can define a measure Θ on (0,∞) by

Θ((s, t]) = µs(ϕ) − µt(ϕ), 0 < s < t. (2.24)
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It then holds that

Θ((s, t]) = µs(ϕ− p0
t−sϕ) = 〈µs, P·(σ ≤ t− s)〉,

and we get by letting t→ ∞,
Θ((s,∞)) = µs(ϕ). (2.25)

We note that
Θ([δ,∞)) <∞

for each δ > 0 by virtue of Lemma 2.2 (iii).

Lemma 2.3. It holds that

α(uα, ϕ) =
∫ ∞

0

(
1 − e−αu

)
Θ(du).

Proof. we have from Lemma 2.2 (ii) and (2.25)

α(uα, ϕ) = αµ̂α(ϕ) = α

∫ ∞

0
e−αtΘ((t,∞))dt

=
∫ ∞

0

∫ s

0
αe−αtdtΘ(ds) =

∫ ∞

0
(1 − e−αs)Θ(ds).

On account of the formula (2.21), Lemma 2.3 and by noting that lim
α↓0

α(uα, ϕ) = 0,

we can get the next theorem from [2, Theorem 3.21].

Theorem 2.2. Define a measure Θ on (0,∞) by (2.24). On a certain probablity space
(Ω,B, P ), construct a subordinator {Yt}t≥0 with Lévy measure Θ and zero drift and a
random variable Z, independent of {Yt}, with

P (Z ≥ t) = e−L(m0,ψ)t, t ≥ 0.

If we let

S∗(t) =
{
Y (t) t < Z,
∞ t ≥ Z,

then the process ({S∗(t)}t≥0, P ) is equivalent in law to ({S(t)}t≥0, Pa).

3 Strongly local Dirichlet form with a recurrent point

Let S and m be as in §2. In this section, we consider a special case of the Dirichlet form
of §2 for which the point a is recurrent.

3.1 Description of associated Poisson point process and entrance law

Let (E ,F) be a strongly local regular Dirichlet form on L2(S;m) and X = (Xt, Px) be
an associated diffusion on S. In place of the assumption B.1 of §2, let us assume that
B.2 ϕ(x) > 0 m− a.e. x ∈ S0

B.3 1 ∈ Fe and E(1, 1) = 0.
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In the next subsection, we shall construct a typical example of a Dirichlet form (E ,F)
satisfying these conditions by a method of the one point compactification.

The assumption B.2 implies that u1 > 0, m-a.e. and Cap({a}) = E1(u1, u1) ≥
(u1, u1) > 0, namely, the assumption B.1 of §1 (cf. [9, Lemma 4.2.1]). Further, the
Dirichlet form (E ,F) becomes irreducible because, from (2.15), we have for any Borel
sets B1, B2 ⊂ S of positive m-measures

(IE , GαIF ) ≥ (uα, IE)(uα, IF )/α(uα, ϕ) > 0.

Since (E ,F) is recurrent by B.3, we have actually the property

ϕ(x) = 1, q.e. x ∈ S, (3.1)

stronger than the assumption B.2 in view of [9, Th.4.6.6].
Thus the point a is not only regular for itself, instantaneous, but also recurrent. (2.15)

is now reduced to

Gαf(x) = G0
αf(x) +

(uα, f)
α(uα, 1)

uα(x), x ∈ S, Gαf(a) =
(uα, f)
α(uα, 1)

. (3.2)

The positive continuous additive functional L(t) of X associated with the unit mass δa
has the property that L(∞) = ∞ and its right continuous inverse S(t) is a subordinator
satisfying

Ea

(∫ ∞

0
e−αS(s)ds

)
=

1
α(uα, 1)

(3.3)

on account of (2.16) and (2.20).
Therefore we can follow directly the argument of [15, §6 case 2(b)] to conclude that

Dp = {s : S(s) − S(s−) > 0}, (3.4)
ps(t) = XS(s−)+t, s ∈ Dp, 0 ≤ t < S(s) − S(s−), (3.5)

defines, under the law Pa, a Wa-valued Poisson point process p, where Wa is the space
of continous excursions in S0 from a to a:

Wa = {w : [0, ζ(ω)) → S0, continuous, 0 < ζ(ω) <∞, w(0) = a,w(ζ−) = a}. (3.6)

Let n be the characteristic measure of the Poisson point process p. Then n is a σ-
finite measure on the space Wa and {w(t),n} is Markovian with respect to the transition
function p0

t of X0. The entrance law {νt} associated with the characteristic measure n is
defined by

νt(B) = n{w : ζ(w) > t, w(t) ∈ B}, B ∈ B(S), t > 0. (3.7)

Recall that we have already considered an X0-entrance law {µt} specified by (2.22) which
is now reduced to

m =
∫ ∞

0
µt dt. (3.8)

The description (2.23) of {µt} now reads∫ t

0
µs(f)ds =

∫
S0

P 0
x (ζ0 ≤ t)f(x)m(dx), t > 0, f ∈ B(S0). (3.9)
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Theorem 3.1. νt = µt, t > 0.

Proof. By virtue of Lemma 2.2, it suffices to show that

ν̂α(f) = (uα, f), f ∈ Bb(S0). (3.10)

We make use of the next general formula

Ea

⎛
⎝∑
s≤t

a(s,ps, ω)

⎞
⎠ = Ea

(∫
Wa×(0,t]

a(s,w, ω)n(dw)ds

)
(3.11)

holding for any non-negative predictable function a(s,w, ω) on [0,∞)×Wa×Ω, Ω being
a filtered sample space on which the diffusion process X is defined (cf. [14, p62].)

Since m({a}) is assumed to be zero,
∫ ∞

0
Ia(Xt)dt = 0, Pa-almost surely. By (3.4)

and (3.5), we have for f ∈ Bb(S),

Gαf(a) = Ea

(∫ ∞

0
e−αtf(Xt)dt

)
= Ea

(∑
s>0

∫ S(s)

S(s−)
e−αtf(Xt)dt

)

= Ea

(∑
s>0

e−αS(s−)

∫ ζ(ps)

0
e−αtf(ps(t))dt

)
.

We let

Γ(w) =
∫ ζ(w)

0
e−αtf(w(t))dt.

a(s,w, ω) = Γ(w) · e−αS(s−,ω) is then predictable and we get by (3.11)

Gαf(a) = Ea

(∑
s>0

e−αS(s−)Γ(ps)

)

=
∫
Wa

Γ(w)n(dw) ·
∫ ∞

0
Ea

(
e−αS(s)

)
ds.

Since ∫
Wa

Γ(w)n(dw) = ν̂α(f),

(3.2) and (3.3) lead us to the desired identity (3.10).

By Theorem 3.1 and [15, Th. 6.3], the finite dimensional distribution of {Wa,n} can
be described as follows:∫
Wa

f1(w(t1))f2(w(t2)) · · · fn(w(tn))n(dw) = µt1f1p
0
t2−t1f2 · · · p0

tn−1−tn−2
fn−1p

0
tn−tn−1

fn,

(3.12)
for any 0 < t1 < t2 < · · · < tn−1, tn, f1, f2, · · · , fn ∈ Bb(S0). Here we use the convention
that w ∈W satisfies w(t) = ∆,∀t ≥ ζ(w), and any function f on S0 is extended to S0∪∆
by setting f(∆) = 0.

In §4, we shall start with an m-symmetric diffusion X0 on S0 and an expression like
the above with µt being specified by (2.22). See §4 for the abbrevaited notation appearing
on the right hand side of (3.12).
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Actually Theorem 3.1 can be extended to a general case where condition B.3 of the
recurrence is not assumed as we shall see in Remark 4.2 at the end of §4.

We note that the excursion law around a regular point of a general Markov process
can be also formulated in terms of Maisonneuve’s exit system[5]. Some property of the
integral in t of the associated entrance law was investigated by R.K. Getoor [10].

3.2 Construction of form by one-point compactification

In this subsection, we start with a Dirichlet form with underlying space S0 and extend it
by the one-point compactification to a Dirichlet form with underlying space S = S0 ∪ a
satisfying B.2 and B.3 (and consequently B.1).

Let S0 be a locally compact separable metric space and m be a bounded positive
measure on S0 with Supp[m] = S0. We consider a regular strongly local Dirichlet form
(E ,F0) on L2(S0;m) satisfying the Poincaré inequailty:

(u, u) ≤ A · E(u, u) u ∈ F0 ∃A > 0. (3.13)

Denote by S = S0 ∪ a the one-point compactification of S0 and by L2(S;m)(=
L2(S0;m)) the space of square integrable functions on S with respect to IS0 · m. Let
us introduce a space (E ,F) by

F = F0 + constant functions on S, (3.14)
E(w1, w2) = E(f1, f2), w1 = f1 + c1, w2 = f2 + c2, fi ∈ F0, ci constant. (3.15)

Theorem 3.2. (i) (E ,F) is a regular strongly local Dirichlet form on L2(S;m) possessing
as its core the space

C = C0 + constant functions on S0,

where C0 = F0 ∩C0(S0).
(ii) (E ,F) and the associated diffusion on S satisfy B.2, B.3.

Proof. (i) Suppose f ∈ F0 is a constant. By the regularity of (E ,F0), there exist fn ∈
F0 ∩ C0(S0) which are E1-convergent to f. We have then E(f, f) = limn→∞ E(f, fn) = 0
on account of the strong locality of (E ,F0) and Remark 2.1 stated in the beginning of
§2.1. (3.13) then implies f = 0 and the definition (3.14) and (3.15) makes sense.

If wn = fn + cn ∈ F is an E1-Cauchy sequence、then fn is E1-convergent to some
f ∈ F0 by (3.13) and hence wn is E1-convergent to f + c for some constant c.

Clearly C is dense both in F and C(S), namely, (E ,F) is regular.
Suppose, for wi = fi + ci ∈ C, that w1 is constant on a neighbourhood of Supp(w2).

When c2 = 0, E(w1, w2) = 0 by the strong locality of (E ,F0). When c2 �= 0, the set
U = S \ Supp(w2) is either empty or a non-empty relatively compact open subset of S0.
In the former case, f1 = 0 and E(w1, w2) = 0. In the latter case, f2 = −c2 on U, while
Supp(f1) ⊂ U and E(w1, w2) = E(f1, f2) = 0 again. Hence (E ,F) is strongly local on
account of [9, Th.3.1.2].

The Markov property

w ∈ F ⇒ v = (0 ∨ w) ∧ 1 ∈ F , E(v, v) ≤ E(w,w)

is evident, because, for w = f+c, w ∈ F0, c constant, we have v = [(−c)∨f ]∧(1−c) + c.
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(ii) B.2 follows from the Poincaré inequality (3.13). Denote by X and X0 = (X0
t , P

0
x , ζ

0)
the diffusions associated with (E ,F) and (E ,F0) respectively. Then X0 is the part of X
on S0 and hence

ϕ(x) = P 0
x (ζ0 <∞), x ∈ S0,

Denote by G0 the 0-order resolvent operator of X0. Since m(S0) < ∞, (3.13) implies
that G01 ∈ F0 and

E0
x(ζ

0) = G01(x) <∞ q.e.

proving (3.1). It is obvious from (3.14),(3.15) that 1 ∈ F and E(1, 1) = 0.

(E ,F0) is not necessarily irreducible on S0, but (E ,F) defined by (3.14),(3.15) is
irreducible recurrent on S in view of the observation made in the preceding subsection.
See Example 6.2.

4 Construction of a symmetric extension via excursion val-
ued Poisson point processes

In this section, we start with an m-symmetric diffusion X0 on S0 and construct first
an excursion law with which Poisson point processes of two different kinds of excusions
around the point a are associated. We then construct an m-symmetric diffusion X̃ on
S = S0 ∪ a by piecing together those excursions. The resolvent of the resulting diffusion
X̃ turns out to be identical with (2.15).

4.1 An excursion law and its basic properties

Let S be a locally compact separable metric space and a be a non-isolated point of S.
We put S0 = S \ {a}. The one point compactification of S is denoted by S∆. When S is
compact already, ∆ is added as an isolated point. Let m be a positive Radon measure
on S0 with Supp[m] = S0. m is extended to S by setting m({a}) = 0.

We assume that we are given an m-symmetric diffusion X0 = (X0
t , P

0
x ) on S0 with

life time ζ0 satisfying the following:

A.1 P 0
x (ζ0 <∞, X0

ζ0− ∈ {a} ∪ {∆}) = P 0
x (ζ0 <∞), ∀x ∈ S0.

We define the functions ϕ, uα, ψ(1), ψ(2), ψ by (2.5) and (2.6), namely, for x ∈ S0,

ϕ(x) = P 0
x (ζ0 <∞, X0

ζ0− = a), uα(x) = E0
x(e

−αζ0 ;Xζ0− = a),

ψ = 1 − ϕ = ψ(1) + ψ(2), ψ(1)(x) = P 0
x (ζ0 <∞, Xζ0− = ∆), ψ(2)(x) = P 0

x (ζ0 = ∞).

Let us assume that

A.2 ϕ(x) > 0, ∀x ∈ S0,

and

A.3 uα ∈ L1(S0;m), ∀α > 0.

Denote by p0
t , G

0
α the transition function and the resolvent of X0 respectively. Our last

assumption concerns the regularity:
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A.4 uα ∈ Cb(S0), G0
α(Cb(S0)) ⊂ Cb(S0), α > 0,

where Cb(S0) is the space of all bounded continuous functions on S0.
The measure m could be infinite on a compact neighbourhood of a in S, but it is finite

on each level set of uα due to the condition A.3. We also note here the next relation
which will be utilized in the sequel:

uα(x) = ϕ(x) − αG0
αϕ(x) ≤ 1 − αG0

α1(x), x ∈ S0.

Define m0 by
m0 = ϕ ·m,

which is an X0-excessive measure with m0p
0
t = p0

tϕ · m. In view of Lemma 2.2, there
exists a unique X0-entrance law {µt} related to the measure m0 by (2.22), namely,

m0 =
∫ ∞

0
µt dt.

and it satisfies that
µ̂α(f) = (uα, f), f ∈ B+(S0). (4.1)

On account of the assumption (A.3), we then have that

µt(S0) <∞, t > 0,
∫ 1

0
µt(S0)dt <∞. (4.2)

We now introduce the spaces W ′, W of excursions by

W ′ = {w : ∃ζ(w) ∈ (0,∞], w is a continuous function from (0, ζ(w)) to S0},

W = {w ∈W ′ : if ζ(w) <∞, then ∃w(ζ(w)−) ∈ {a} ∪ {∆}}. (4.3)

ζ(w) will be called the terminal time of the excursion w.
We are concerned with a measure n on the space W specified in terms of the entrance

law {µt} and the transition function p0
t by∫

W
f1(w(t1))f2(w(t2)) · · · fn(w(tn))n(dw) = µt1f1p

0
t2−t1f2 · · · p0

tn−1−tn−2
fn−1p

0
tn−tn−1

fn,

(4.4)
for any 0 < t1 < t2 < · · · < tn, f1, f2, · · · , fn ∈ Bb(S0). Here, we use the convention that
w ∈ W satisfies w(t) = ∆,∀t ≥ ζ(w), and any function f on S0 is extended to S0 ∪ ∆
by setting f(∆) = 0. Further, on the right hand side of (4.4), we employ an abbreviated
notation for the repeated operations

µt1 [f1p
0
t2−t1{f2 · · · p0

tn−1−tn−2
(fn−1p

0
tn−tn−1

fn)}].

Proposition 4.1. There exists a unique measure n on the space W satisfiying (4.4).
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Proof. Let n be the Kuznetsov measure on W ′ uniquely associated with the transition
semigroup {p0

t} and the entrance rule {ηu} defined by

ηu = 0 for u ≤ 0, ηu = µu for u > 0

as is constructed in [5, Chap XIX, 9] for a right semigroup. Because of the present choice
of the entrance rule, it holds that α = 0 where α is the birth time which is random in
general(cf. [11, p54].)

On account of the assumption A.1 for the diffusion X0 on S0, the same method of
the construction of the Kuznetsov measure as in [5, Chap.XIX, 9] works in proving that
n is supported by the space W and satisfies (4.4).

We call n the excursion law associated with the entrance law {µt}. We split the space
W of excursions into two parts:

W+ = {w ∈W : ζ(w) <∞, w(ζ−) = a}, W− = W \W+. (4.5)

Note that W− = W−
1 ∪W−

2 with

W−
1 = {w ∈W : ζ(w) <∞, w(ζ−) = ∆}, W−

2 = {w ∈W : ζ(w) = ∞}.

For w ∈W+, we define ŵ ∈W by

ŵ(t) = w(ζ − t), 0 < t < ζ. (4.6)

The next lemma says that the restriction of the excursion law to W+ is invariant
under time reversion. This is a present variant of the time reversal arguments that have
been formulated in general contexts ([23], [12], [6], [7]).

Lemma 4.1. For any tk > 0 and fk ∈ Bb(S0), (1 ≤ k ≤ n),

n

{
n∏
k=1

fk(w(t1 + · · · + tk));W+

}
= µt1f1p

0
t2f2 · · · p0

tn−1
fn−1p

0
tnfnϕ, (4.7)

n

{
n∏
k=1

fk(w(t1 + · · · + tk));W+

}
= n

{
n∏
k=1

fk(ŵ(t1 + · · · + tk));W+

}
. (4.8)

Proof. (4.7) readily follows from (4.4) and the Markov property of n. As for (4.8) we
observe that, for α1, · · · , αn > 0,

∫ ∞

0
· · ·
∫ ∞

0
e−α1t1−···−αntnn

{
n∏
k=1

fk(w(t1 + · · · + tk));W+

}
dt1 · · · dtn (4.9)

equals
n{F (w); ζ <∞, w(ζ−) = a}

with

F (w) =
∫

· · ·
∫

0<t1<···<tn<ζ

n∏
k=1

{
e−αk(tk−tk−1)fk(w(tk))

}
dt1 · · · dtn, (t0 = 0).
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Hence, for (4.8), it suffices to prove

n{F (w); ζ <∞, w(ζ−) = a} = n{F (ŵ); ζ <∞, w(ζ−) = a}. (4.10)

Performing the change of variables

ζ − tk = sk, 1 ≤ k ≤ n,

in the expression of F (ŵ) and by noting that

tk = ζ − sk, tk − tk−1 = sk−1 − sk, 1 ≤ k ≤ n, s0 = ζ,

0 < t1 < · · · < tn < ζ ⇐⇒ 0 < sn < · · · < s1 < ζ,

we obtain

F (ŵ) =
∫

· · ·
∫

0<sn<···<s1<ζ

n∏
k=1

{
e−αk(sk−1−sk)fk(w(sk))

}
ds1 · · · dsn

=
∫

· · ·
∫

0<sn<···<s1<∞
Γs1···sn(w)ds1 · · · dsn

with

Γs1···sn(w) =
n∏
k=2

{
e−αk(sk−1−sk)fk(w(sk))

}
· e−α1(ζ−s1)f1(w(s1))I(0,ζ)(s1).

On the other hand, we get from (4.4) and the Markov property of n that

n {Γs1s2···sn(w); ζ <∞, w(ζ−) = a}
= n

{
fn(w(sn))e−αn(sn−1−sn) · · ·

f2((w(s2))e−α3(s1−s2)f1(w(s1)uα1(w(s1)); s1 < ζ
}

= e−αn(sn−1−sn)−αn−1(sn−2−sn−1)−···−α2(s1−s2) ·
µsnfnp

0
sn−1−sn

fn−1p
0
sn−2−sn−1

fn−1 · · · p0
s2−s3f2p

0
s1−s2f1uα1 .

Therefore,

n {F (ŵ); ζ <∞, w(ζ−) = a} =
∫ ∞

0
dsnµsnfnG

0
αn
fn−1G

0
αn−1

· · · f3G
0
α3
f2G

0
α2
f1uα1 .

In view of (2.7), the symmetry of G0
α, (4.7) and (4.9), we arrive at

n {F (ŵ); ζ <∞, w(ζ−) = a} = 〈m0, fnG
0
αn
fn−1G

0
αn−1

· · · f3G
0
α3
f2Gα2f1uα1〉

= (fnϕ,G0
αn
fn−1G

0
αn−1

· · · f3G
0
α3
f2Gα2f1uα1) = (f1G

0
α2
f2G

0
α3
f3 · · ·Gαnfnϕ, uα1)

=
∫ ∞

0
e−α1t1µt1f1G

0
α2
f2G

0
α3
f3 · · ·G0

αn
fnϕdt1 = n {F (w); ζ <∞, w(ζ−) = a}

the desired identity (4.10).

Next we put
Wa = {w ∈W : lim

t↓0
w(t) = a}. (4.11)
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Lemma 4.2. n {W \Wa} = 0.

Proof. The preceding lemma implies that

n
{
W+ \Wa

}
= n

{
W+ ∩ (w(0+) = a)c

}
= n

{
W+ ∩ (ŵ(0+) = a)c

}
= n

{
W+ ∩ (w(ζ−) = a)c

}
= 0.

We then have for each t > 0

n {ϕ(w(t)); (ζ > t) ∩ (w(0+) = a)c} = n
{
(W+ \Wa) ∩ (ζ > t)

}
= 0,

which combined with the assumption A.2 leads us to

n {(W \Wa) ∩ (ζ > t)} = 0.

It then suffices to let t ↓ 0.

Lemma 4.3. For any neighbourhood U of a in S, we let

τUc = inf{t > 0 : w(t) ∈ U c}, w ∈W.
It holds then that

n {τUc < ζ} <∞.

Proof. We may assume that the closure U in S is compact. Let f(x) = ϕ(x)−u1(x), x ∈
S0. Then

f(x) = E0
x

{
1 − e−ζ

0
; ζ0 <∞,Xζ0− = a

}
> 0, ∀x ∈ S0.

Since uα(x) − u1(x) ↑ f(x), α ↓ 0, the assumption A.3 implies that f is lower semicon-
tinuous on S0 and hence

c = inf
x∈∂U

f(x)

is positive. We then have, for each δ > 0 and x ∈ ∂U,
P 0
x (δ < ζ0 <∞,Xζ0− = a) ≥ E0

x

{
1 − e−ζ

0
; δ < ζ0 <∞,Xζ0− = a

}
≥ c− E0

x

{
1 − e−ζ

0
; ζ0 ≤ δ,Xζ0− = a

}
≥ c− (1 − e−δ).

Choose δ > 0 so small that
r = c− (1 − e−δ)

is positive. For such δ,

P 0
x (δ < ζ0 <∞,Xζ0− = a) ≥ r, ∀x ∈ ∂U. (4.12)

We shall use the notation τUc not only for w ∈ W but also for the sample path of the
Markov process X0. Using the preceding lemma, (4.12) and (4.2), we are led to

n {τUc < ζ} = lim
ε↓0

n {ε < τUc < ζ} = lim
ε↓0

∫
U
µε(dx)P 0

x

{
τUc < ζ0

}
≤ limε↓0

∫
U
µε(dx)E0

x

{
r−1P 0

XτUc
(δ < ζ0 <∞,Xζ0− = a); τUc < ζ0

}
≤ r−1 lim

ε↓0

∫
S0

µε(dx)P 0
x (δ < ζ0 <∞,Xζ0− = a) ≤ r−1 lim

ε↓0

∫
S0

µε(dx)P 0
x (δ < ζ0)

= r−1 lim
ε↓0

µε+δ(S0) ≤ r−1µδ(S0) <∞.
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The next lemma states a relation of the excursion law n to energy functionals L(m0, v)
introduced in Lemma 2.1.

Lemma 4.4.
(i) n(W+) = L(m0, ϕ), n(W−) = L(m0, ψ), n(W−

i ) = L(m0, ψ
(i)), i = 1, 2.

(ii) n(W−
1 ) <∞, n(W−

2 ) = µt(ψ(2)) = αµ̂α(ψ(2)) = α(uα, ψ(2)) <∞, t > 0, α > 0.

Proof. (i) Since n(ζ > t;W+) = 〈µt, ϕ〉, the first identity follows from Lemma 2.2 (v) by
letting t ↓ 0. The proof of the other indentities is the same.
(ii) Take a neighbourhood U of a in S with compact U . We have then by the preceding
lemma

n(W−
1 ) = n(ζ <∞, w(ζ−) = ∆) ≤ n {τUc < ζ} <∞.

Since ψ(2) is p0
t -invariant, the second assetion follows from (i), Lemma 2.1, Lemma 2.2

and assumption A.3.

In particular, n(W−) = n(W−
1 ) + n(W−

2 ) is finite. We shall see that n(W+) = ∞.

4.2 Poisson point processes on Wa and a new process X

By Lemma 4.2, the excursion law n is concentrated on the space Wa defined by (4.11).
Accordingly, we consider the spaces

W+
a = {w ∈W+ : lim

t↓0
w(t) = a}, W−

a = {w ∈W− : lim
t↓0

w(t) = a},

so that Wa = W+
a + W−

a . In the sequel however, we shall employ slightly modified but
equivalent definitions of those spaces by extending each w from an S0-valued excursion
to S-valued continuous one as follows:

Wa = {w : ∃ζ(w) ∈ (0,∞], w is a continuous function from [0, ζ(w)) to S,w(0) = a.

w(t) ∈ S0, t ∈ (0, ζ(w)), w(ζ(w)−) ∈ {a} ∪ {∆} if ζ(w) <∞}, (4.13)

Any w ∈ Wa for which ζ(w) < ∞, w(ζ(w)−) = a will be regarded to be a continuous
function from [0, ζ(w)] to S by setting w(ζ(w)) = a. We further let

W+
a = {w : ∃ζ(w) ∈ (0,∞), w is a continuous function from [0, ζ(w)] to S,

w(t) ∈ S0, t ∈ (0, ζ(w)), w(0) = w(ζ(w)) = a}, (4.14)

W−
a = Wa \W+

a . (4.15)

The excursion law n will be considered to be a measure on Wa defined by (4.13) and
we denote by n+, n−, the restrictions of n to W+

a , W
−
a defined by (4.14) and (4.15)

respectively.

Let {ps, s > 0} be a Poisson point process on Wa with characteristic measure n
defined on an appropriate probability space (Ω, P ). We then let

p+
s =

{
ps if ps ∈W+

a ,
∂ otherwise,

(4.16)
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p−
s =

{
ps if ps ∈W−

a ,
∂ otherwise,

(4.17)

where ∂ is an extra point disjoint of Wa. Then {p+
s , s > 0}, {p−

s , s > 0} are mutually
independent Poisson point processes on W+

a , W
−
a with characteristic measures n+, n−

respectively. Furthermore
ps = p+

s + p−
s . (4.18)

By means of the terminal time ζ(p+
r ) of the excursion p+

r , we let

J(s) =
∑
r≤s

ζ(p+
r ), s > 0. (4.19)

We put J(0) = 0.

Lemma 4.5. (i) J(s) <∞ a.s. for s > 0.
(ii) {J(s)}s≥0 is a subordinator with

E
{
e−αJ(s)

}
= exp {−α(uα, ϕ)s} . (4.20)

Proof. (i) We write J(s) as J(s) = I + II with

I =
∑

r≤s,ζ(p+
r )≤1

ζ(p+
r ), II =

∑
r≤s,ζ(p+

r )>1

ζ(p+
r ).

Since n+(ζ > 1) ≤ µ1(S0) <∞ by (4.2), r in the sum II is finite a.s. and hence II <∞
a.s. On the other hand,

E(I) = sn+(ζ; ζ ≤ 1) ≤ sn+(ζ ∧ 1)

= sn+

{∫ 1

0
I(0,ζ)(t)dt

}
= s

∫ 1

0
n+(ζ > t)dt ≤ s

∫ 1

0
µt(S0)dt,

which is finite by (4.2). Hence I <∞ a.s.
(ii) Clearly {J(s)}s≥0 is increasing and of stationary independent increment. Since

e−αJ(s) − 1 =
∑
r≤s

{
e−αJ(r) − e−αJ(r−)

}
=
∑
r≤s

e−αJ(r−)
{
e−αζ(p

+
r ) − 1

}
,

we have
E
{
e−αJ(s)

}
− 1 = −c

∫ s

0
E
{
e−αJ(r)

}
dr,

with

c = n+(1 − e−αζ) = n(1 − e−αζ ; ζ <∞, w(ζ) = a)

= n
{
α

∫ ζ

0
e−αtdt; ζ <∞, w(ζ) = a

}

= α

∫ ∞

0
e−αtn(t < ζ <∞, w(ζ) = a)dt

= α

∫ ∞

0
e−αtµt(ϕ)dt = αµ̂α(ϕ) = α(uα, ϕ) <∞.
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In virtue of Lemma 4.3 and Lemma 4.5, we may assume that the next three properties
hold for any ω ∈ Ω by subtracting a P -negligible set from Ω if necessary:

J(s) <∞ ∀s > 0, (4.21)

lim
s→∞ J(s) = ∞, (4.22)

and, for any finite interval I ⊂ (0,∞) and any neighbourhood U of a in S,{
s ∈ I : τUc(p+

s ) < ζ(p+
s )
}

is a finite set. (4.23)

Let T be the time of occurrence of the first excursion of the point process {p−
s , s > 0},

namely,
T = min{s > 0 : p−

s �= ∂}. (4.24)

Since n(W−
a ) = L(m0, ψ) <∞ by Lemma 4.4, we can see that T and p−

T are independent
and

P (T > t) = e−L(m0,ψ)t, the distribution of p−
T = L(m0, ψ)−1n−. (4.25)

We are now in a position to produce a new process X = {Xt}t≥0 out of the point
processes of excursions p±.
(i) For 0 ≤ t < J(T−), we determine s by

J(s−) ≤ t ≤ J(s), (4.26)

and let

Xt =
{

p+
s (t− J(s−)) if J(s) − J(s−) > 0,
a if J(s) − J(s−) = 0.

(4.27)

(ii) For J(T−) ≤ t < ζω ≡ J(T−) + ζ(p−
T ), we let

Xt = p−
T (t− J(T−)). (4.28)

In this way, the S-valued continuous path

Xt, 0 ≤ t < ζω,

is defined and
Xζω− = ∆ if ζω <∞.

Continuity of the path is a consequaence of (4.23).

For this process {Xt, 0 ≤ t < ζω, P}, let us put

Gαf(a) = E

(∫ ζω

0
e−αtf(Xt)dt

)
, α > 0, f ∈ B(S). (4.29)
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Proposition 4.2. It holds that

Gαf(a) =
(uα, f)

α(uα, ϕ) + L(m0, ψ)
. (4.30)

Proof. We use the notation

f̂α(w) =
∫ ζ(w)

0
e−αtf(w(t))dt, w ∈Wa.

We have then∫ ζω

0
e−αtf(Xt)dt =

∑
s<T

∫ J(s)

J(s−)
e−αtf(Xt)dt+

∫ J(T−)+ζ(p−
T )

J(T−)
e−αtf(Xt)dt

=
∑
s<T

e−αJ(s−)f̂α(p+
s ) + e−αJ(T−)f̂α(p−

T ),

and consequently

Gαf(a) = E

(∑
s<T

e−αJ(s−)f̂α(p+
s ) + e−αJ(T−)f̂α(p−

T )

)

= E

(∫ T

0
e−αµ̂α(ϕ)sds

)
n+(f̂α) + E

(
e−αµ̂α(ϕ)T

)
L(m0, ψ)−1n−(f̂α)

=
n+(f̂α)

αµ̂α(ϕ) + L(m0, ψ)
+

n−(f̂α)
αµ̂α(ϕ) + L(m0, ψ)

=
n(f̂α)

αµ̂α(ϕ) + L(m0, ψ)
=

µ̂α(f)
αµ̂α(ϕ) + L(m0, ψ)

.

It then suffices to substitute (4.1) in the last expression.

4.3 Continuity of resolvent along X

Lemma 4.6. For α > 0 and f ∈ B(S), define Gαf(a) by the right hand side of (4.30)
and extend it to a function on S by setting

Gαf(x) = G0
αf(x) +Gαf(a)uα(x), x ∈ S0. (4.31)

Then {Gα}α>0 is an m-symmetric (sub)Markovian resolvent on S.

Proof. By making use of the resolvent equation for G0
α, the m-symmetry of G0

α and the
equation

uα(x) − uβ(x) + (α− β)G0
αuβ(x) = 0, α, β > 0, x ∈ S0,

we can easily check the resolvent equation

Gαf(x) −Gβf(x) + (α− β)GαGβf(x) = 0, x ∈ S.

The m-symmetry of Gα∫
S
Gαf(x)g(x)m(dx) =

∫
S
f(x)Gαg(x)m(dx)
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holding for any non-negative Borel functions f, g is clear. Moreover we get by Lemma
2.1 that

αGα1(x) = αG0
α1(x) + uα(x)

α(uα, ϕ+ ψ)
α(uα, ϕ) + L(m0, ψ)

≤ 1 − uα(x) + uα(x) = 1, x ∈ S0,

and similarly, αGα1(a) ≤ 1.

Let {Un} be a decreasing sequence of open neighbourhoods of the point a in S such
that Un ⊃ Un+1 and ∩∞

n=1Un = {a}. Let

A = Aα,ρ = {x ∈ S0 : uα(x) < ρ} for α > 0, 0 < ρ < 1.

We then set

σn = inf{t > 0 : X0
t ∈ Un ∩ S0}, σa = lim

n→∞σn, τn = inf{t > 0 : X0
t ∈ Un ∩A},

with the convention that inf ∅ = ∞.

Lemma 4.7. For any α > 0, ρ ∈ (0, 1) and x ∈ S0,

lim
n→∞P 0

x {τn < σa <∞} = 0. (4.32)

Proof. Since
{σa <∞} = {ζ0 <∞, X0

ζ0− = a}
and σa = ζ0 on the set {σa <∞}, we have for x ∈ S0 and m < n

uα(x) = E0
x

{
e−ασa ; τn < σa

}
+ E0

x

{
e−ασa ; τn ≥ σa

}
= E0

x

{
e−ατnuα

(
X0
τn

)
; τn < σa

}
+ E0

x

{
e−ασa ; τn ≥ σa

}
≤ ρE0

x

{
e−ατn ; τn < σa

}
+ E0

x

{
e−ασa ; τn ≥ σa

}
≤ ρE0

x

{
e−α(τn∧σa); τm < σa

}
+ E0

x

{
e−ασa ; τn ≥ σa

}
.

By letting first n→ ∞ and then m→ ∞, we obtain

uα(x) ≤ ρ lim
m→∞E0

x

{
e−ασa ; τm < σa

}
+ lim
n→∞E0

x

{
e−ασa ; τn ≥ σa

}
= E0

x

{
e−ασa

}− (1 − ρ) lim
n→∞E0

x

{
e−ασa ; τn < σa

}
= uα(x) − (1 − ρ) lim

n→∞E0
x

{
e−ασa ; τn < σa

}
,

which implies
lim
n→∞E0

x

{
e−ασa ; τn < σa

}
= 0

and so (4.32) must hold.

Lemma 4.8. Let α > 0.
(i) For any x ∈ S0,

lim
t↑σa

uα(X0
t ) = 1 P 0

x -a.s. on {σa <∞}. (4.33)

(ii) n(Λ) = 0 where

Λ =
{
w ∈W+

a : ∃α > 0, lim
t↑ζ

uα(w(t)) �= 1
}
.
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Proof. If σa < ∞ and if limt↑σa
uα(X0

t ) < ρ, then for any small ε > 0 there exists
t ∈ (σa − ε, σa) such that uα(X0

t ) < ρ, and so τn < σa for all n. Therefore by the
preceding lemma

P 0
x

{
limt↑σa

uα(X0
t ) < ρ, σa <∞} = 0.

Since uα is decreasing in α and ρ can be taken arbitrarily close to 1, we obtain (4.33).
(ii) follows from (i) as

n(Λ) = lim
ε↓0

n(Λ ∩ {ε < ζ})

= lim
ε↓0

∫
S0

µε(dx)P 0
x (lim
t↑σa

uα(X0
t ) �= 1) = 0.

We extend uα to a function on S by setting uα(a) = 1. By Lemma 4.8 (ii) combined
with Lemma 4.1 and a similar reasoning as in the proof of Lemma 4.2, we may assume,
subtracting a suitable n-negligible set from W+

a (resp. W−
a ), that u1(w(t)) is continuous

in t ∈ [0, ζ] (resp. t ∈ [0, ζ).)

Lemma 4.9. Let 0 < ρ < 1 and set

W̃ρ =
{
w ∈W+

a : max
0≤t≤ζ

{1 − u1(w(t))} > ρ

}
.

Then n+(W̃ρ) <∞.

Proof. The proof is similar to that of Lemma 4.3. For any x such that 1− u1(x) = ρ and
for δ = − log(1 − ρ

2 ) > 0, we have

P 0
x (σa > δ) ≥ E0

x

{
1 − e−σa ;σa > δ

}
= E0

x

{
1 − e−σa

}− E0
x

{
1 − e−σa ;σa ≤ δ

}
≥ 1 − u1(x) − (1 − e−δ) = ρ− (1 − e−δ) =

ρ

2
.

Therefore if we set

A = {x ∈ S0 : 1 − u1(x) ≤ ρ}, τ = inf{t > 0 : w(t) ∈ S0 \A},

then

n+(W̃ρ) = n+(τ < ζ) = lim
ε↓0

n+(ε < τ < ζ0) = lim
ε↓0

∫
A
µε(dx)P 0

x (τ < ζ0)

≤ limε↓0
∫
A
µε(dx)E0

x

{(
2
ρ

)
P 0
X0

τ
(σa > δ); τ < ζ0

}

≤ 2
ρ
limε↓0

∫
S0

µε(dx)P 0
x (σa > δ)

≤ 2
ρ

lim
ε↓0

∫
S0

µε(dx)P 0
x (ζ0 > δ) +

2
ρ

lim
ε↓0

∫
S0

µε(dx)P 0
x (ζ0 < σa = ∞)

=
2
ρ

lim
ε↓0

µε+δ(1) +
2
ρ

lim
ε↓0

µε(ψ(1)),
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which is finite in view of (4.2) and Lemma 4.4.

For α > 0, f ∈ B(S), we defined the resolvent Gαf by

Gαf(x) = G0
αf(x) +Gαf(a)uα(x), x ∈ S0

with Gαf(a) of Proposition 4.2. We now extend G0
αf(x) to S by setting

G0
αf(a) = 0.

In the last subsection, we have constructed a process {Xt}t∈[0,ζω) out of the Poisson point
processes p+, p− on W+

a , W
−
a defined on a probability space (Ω, P ).

Proposition 4.3. Let u = Gαf with f ∈ Cb(S). Then u(Xt) is continuous in t ∈
[0, ζω), P -a.s.

Proof. As was remarked immediately after the proof of Lemma 4.8, u1 is continuous along
any sample point functions of p+ = {p+

s , s > 0} and p− = {p−
s , s > 0}. Moreover, by

Lemma 4.9, we can subtract a suitable P -negligible set from Ω so that, in addition to the
properties (4.21),(4.22) and (4.23), p+ satisfies the following property for every sample
point ω ∈ Ω: for any finite interval I ⊂ (0,∞) and for any ρ ∈ (0, 1),

{s ∈ I : max
0≤t≤ζ(p+

s )
(1 − u1(p+

s (t))) > ρ} is a finite set. (4.34)

Then it is not hard to see that not only Xt but also u1(Xt) are continuous in t ∈ [0, ζω).
From the inequality G0

11(x) ≤ 1 − u1(x), x ∈ S, we see that

lim
t→t0

G0
11(Xt) = 0 if Xt0 = a.

Hence G0
1f(Xt) has the same property as the above for f ∈ Cb(S). Since G0

1f(Xt) is
clearly continuous on {t ∈ [0, ζω) : Xt �= a} by the assumption A.4, it is continuous
on [0, ζω). We have thus proved the continuity of G1f(Xt). The continuity of Gαf(Xt)
follows from the resolvent equation proved in Lemma 4.6.

4.4 Markov property of X

Let us define ptf(x) for t > 0, x ∈ S, f ∈ B(S), as follows:

ptf(a) = E (f(Xt); ζω > t) , (4.35)

ptf(x) = p0
t f(x) + E0

x {pt−σaf(a);σa ≤ t} , x ∈ S0. (4.36)

Evidently ∫ ∞

0
e−αtptfdt = Gαf, α > 0. (4.37)

Lemma 4.10. pt+s = ptps, t, s > 0.

Proof. Take any f ∈ Cb(S). By (4.36) and the resolvent equation in Lemma 4.6, we have
for any x ∈ S∫ ∞

0
e−αt

{∫ ∞

0
e−βspt+sf(x)ds

}
dt =

∫ ∞

0
e−αt {pt(Gβf)(x)} dt, (4.38)
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because the left hand side equals
1

α− β
(Gβf(x) −Gαf(x)) = GαGβf(x).

We first consider the case where x = a. Then the functions inside {·} of the both hand
sides of (4.38) are continuous in t > 0 in virtue of the continuity of X and Proposition
4.3. Hence we have for any t > 0∫ ∞

0
e−βspt+sf(a)ds = ps(Gβf)(a) =

∫ ∞

0
e−βspt(psf)(a)ds.

Since both pt+sf(a), pt(psf)(a) are right continuous in s > 0, we get

pt+sf(a) = pt(psf)(a), t > 0, s > 0. (4.39)

We next consdier the case where x ∈ S0. Using (4.37), we obtain

pt+sf(x) = p0
t+sf(x) +E0

x {pt+s−σaf(a);σa ≤ t+ s}
= p0

t+sf(x) +E0
x {pt−σa(psf)(a);σa ≤ t}

+ E0
x {pt+s−σaf(a) : t < σa ≤ t+ s} .

On the other hand,

pt(psf)(x) = p0
t (psf)(x) + E0

x {pt−σa(psf)(a);σa ≤ t} .

Hence it suffices to prove that

p0
t+sf(x) + E0

x {pt+s−σaf(a); t < σa ≤ t+ s} = p0
t (psf)(x). (4.40)

Put
g(x) = E0

x {ps−σaf(a);σa ≤ s} ,
then, we are led from psf(x) = p0

sf(x) + g(x) to

p0
t (psf)(x) = p0

t+sf(x) + p0
t g(x),

and consequently, (4.40) is reduced to

E0
x {pt+s−σaf(a); t < σa ≤ t+ s} = E0

x(g(X
0
t ); ζ

0 > t). (4.41)

With the notation θt to denote the usual shift, the left hand side of (4.41) equals

E0
x

{
pt+s−σaf(a); ζ0 > t, σa > t, σa ◦ θt ≤ s

}
= E0

x

{
ps−σa◦θtf(a); ζ0 > t, σa ◦ θt ≤ s

}
= E0

x

[
E0
X0

t
{ps−σaf(a);σa ≤ s} ; ζ0 > t

]
,

which coincides with the right hand side of (4.41) as was to be proved.

Lemma 4.11. Suppose g ∈ B(S) and lim
ε↓0

pεg(x) = g(x), x ∈ S. Then, for any f ∈
Cb(S), t > 0,

lim
ε↓0

pε(fptg)(x) = f(x)ptg(x), x ∈ S. (4.42)
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Proof. Fix x ∈ S. Clearly, for any neighbourhood U of x,

lim
ε↓0

pεIU (x) = 1,

and hence
pε|fptg|(x) = pε|fIUptg|(x) + o(ε).

For any δ > 0, take a neighbourhood U of x such that

|f(y) − f(x)| < δ, y ∈ U.

Then

|pε(fptg)(x) − f(x)pε(ptg)(x)|
≤ pε (|f − f(x)||ptg|) (x)
≤ pε (|f − f(x)|IU |ptg|) (x) + o(ε) ≤ δ||g||∞ + o(ε).

On the other hand, we have from the preceding lemma that

lim
ε↓0

f(x)pε(ptg)(x) = lim
ε↓0

f(x)pt(pεg)(x) = f(x)ptg(x).

Consequently
limε↓0|pε(fptg)(x) − f(x)ptg(x)| ≤ δ||g||∞,

which means (4.42) because δ > 0 can be taken arbitrarily small.

Proposition 4.4. (i) For α1, · · · , αn > 0,

E

⎧⎪⎨
⎪⎩

∫
· · ·
∫

0<t1<···<tn<ζω

n∏
k=1

(
e−αk(tk−tk−1)fk(Xtk )

)
dt1 · · · dtn

⎫⎪⎬
⎪⎭ = Gα1f1Gα2f2 · · ·Gαnfn(a),

(4.43)
where we set t0 = 0 by convention.
(ii). X = {Xt, 0 ≤ t < ζω, P} is a Markov process on S with transition function pt and
initial distribution concentrated at {a}.
Proof. We shall employ the following notations:

F (X; t;α1, f1, · · · , αn, fn) =
∫

· · ·
∫

t<t1<···<tn<ζω

n∏
k=1

{
e−αk(tk−tk−1)fk(Xtk)

}
dt1 · · · dtn,

and, for w ∈Wa,

F (w; t;α1, f1, · · · , αn, fn) =
∫

· · ·
∫

t<t1<···<tn<ζ(w)

n∏
k=1

{
e−αk(tk−tk−1)fk(w(tk))

}
dt1 · · · dtn.

(i). The left hand side of (4.43) will be denoted by G(α1, f1, · · · , αn, fn), namely,

E {F (X; 0;α1, f1, · · · , αn, fn)} = G(α1, f1, · · · , αn, fn). (4.44)
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For 0 < s < T, we denote by I(s) the expression

∫
J(s−)<t1<J(s)

e−α1t1f1(Xt1)

⎧⎪⎨
⎪⎩

∫
· · ·
∫

t1<t2<···<tn<ζω

n∏
k=2

(
e−αk(tk−tk−1)fk(Xtk)

)
dt2 · · · dtn

⎫⎪⎬
⎪⎭ dt1.

Then

F (X; 0;α1, f1, · · · , αn, fn) =
∑

0<s<T

I(s) + F (X;J(T−);α1, f1, · · · , αn, fn).

Further, if we put for 1 ≤ m ≤ n

Im(s) =
∫

· · ·
∫

J(s−)<t1<···<tm<J(s)

m∏
k=1

{
e−αk(tk−tk−1)fk(Xtk )

}
dt1 · · · dtm

·
∫

· · ·
∫

J(s)<tm+1<···<tn<ζω

n∏
�=m+1

{
e−α�(t�−t�−1)f�(Xt�)

}
dtm+1 · · · dtn,

then

I(s) =
n∑

m=1

Im(s).

Moreover, each Im(s) can be written as

Im(s) = Fm(s)Gm(s)

with

Fm(s) =
∫

· · ·
∫

J(s−)<t1<···<tm<J(s)

m∏
k=1

{
e−αk(tk−tk−1)fk(Xtk)

}
e−αm+1(J(s)−tm)dt1 · · · dtm,

Gm(s) =
∫

· · ·
∫

J(s)<tm+1<···<tn<ζω

e−αm+1(tm+1−J(s))
n∏

�=m+2

{
e−α�(t�−t�−1)f�(Xt�)

}
dtm+1 · · · dtn.

Therefore

F (X; 0;α1, f1, · · · , αn, fn) =
∑

0<s<T

n∑
m=1

Fm(s)Gm(s) + F (X;J(T−);α1, f1, · · · , αn, fn).

(4.45)

Next, let us put (with the convention that αn+1 = 0)

F (w;α1, f1, · · · , αm, fm;αm+1)

=
∫

· · ·
∫

0<t1<···<tm<ζ(w)

m∏
k=1

{
e−αk(tk−tk−1)fk(w(tk))

}
e−αm+1(ζ(w)−tm)dt1 · · · dtm, (4.46)

so that
Fm(s) = e−α1J(s−)F (p+

s ;α1, f1, · · · , αm, fm;αm+1). (4.47)
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We furthrmore put Yt = XJ(s)+t so that

Gm(s) =
∫

· · ·
∫

0<tm+1<···<tn<ζω−J(s)

n∏
�=m+1

{
e−α�(t�−t�−1)f�(Xt�)

}
dtm+1 · · · dtn, (4.48)

where we set tm = 0.

For p = {pt, t > 0}, we may use the following notations:

G(p;αm+1, fm+1, · · · , αn, fn)

=
∫

· · ·
∫

0<tm+1<···<tn<ζω

n∏
�=m+1

{
e−α�(t�−t�−1)f�(Xt�)

}
dtm+1 · · · dtn, (4.49)

(with the convention that tm = 0), and

θsp = {ps+t, t > 0}. (4.50)

θsp then has the same distribution as p and independent of {pt, 0 < t < s}. Since Yt is
constructed from θsp in the same way as Xt is from p, (4.48) can be rewritten as

Gm(s) = G(θsp;αm+1, fm+1, · · · , αn, fn), (4.51)

which is identical in law to

G(p;αm+1, fm+1, · · · , αn, fn)
for each fixed s > 0. Further

F (X;J(T−);α1, f1, · · · , αn, fn) = e−α1J(T−)F (p−
T ; 0;α1, f1, · · · , αn, fn). (4.52)

Combining (4.45),(4.47),(4.51) and (4.52), we arrive at

F (X; 0;α1, f1, · · · , αn, fn)

=
∑

0<s<T

n∑
m=1

e−α1J(s−)F (p+
s ;α1, f1, · · · , αm, fm;αm+1)

·G(θsp;αm+1, fm+1, · · · , αn, fn) + e−α1J(T−)F (p−
T ; 0;α1, f1, · · · , αn, fn).(4.53)

Here we compute the expectations of the random variables appearing in the last
formula.

n+ {F (w;α1, f1, · · · , αm, fm;αm+1)} = µ̂α1(f1G
0
α2
f2 · · ·G0

αm−1
fm−1G

0
αm
fmuαm+1).

(4.54)
When m = n, the last factor uαn+1 in the above expression is understood to be u0 = ϕ.
In fact, the left hand side equals

n

⎧⎪⎨
⎪⎩

∫
· · ·
∫

0<t1<···<tm<ζ(w)

m∏
k=1

(
e−αk(tk−tk−1)fk(w(tk))

)
e−αm+1(ζ(w)−tm)dt1 · · · dtm;W+

a

⎫⎪⎬
⎪⎭

=
∫

· · ·
∫

0<t1<···<tm<∞
n

{
m∏
k=1

(
e−αk(tk−tk−1)fk(w(tk))

)
uαm+1(w(tm)); ζ > tm

}
,
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which can be seen to coincide with the right hand side of (4.54) by (4.4).
We further have for any constant time s > 0,

E {G(θsp;αm+1, fm+1, · · · , αn, fn)} = G(αm+1, fm+1, · · · , αn, fn). (4.55)

On the other hand, we have in view of §4.2

E
{
F (p−

T ; 0;α1, f1, · · · , αn, fn
}

= L(m0, ψ)−1n− {F (w; 0;α1, f1, · · · , αn, fn)}
= L(m0, ψ)−1µ̂α1(f1G

0
α2
f2 · · ·G0

αn−1
fn−1G

0
αn
fnψ),

E

{∫ T

0
e−α1J(s)ds

}
=

1
α1(uα1 , ϕ) + L(m0, ψ)

, (4.56)

E
{
e−α1J(T−)

}
=

L(m0, ψ)
α1(uα1 , ϕ) + L(m0, ψ)

. (4.57)

We can now get from (4.53) that

G(α1, f1, · · · , αn, fn) = E {F (X; 0;α1, f1, · · · , αn, fn)}

=
n∑

m=1

E

{∫ T

0
e−α1J(s)ds

}
n+ {F (w;α1, f1, · · · , αm;αm+1)}

×G(αm+1, fm+1, · · · , αn, fn) + E
{
e−α1J(T−)

}
E
{
F (p−; 0;α1, f1, · · · , αn, fn)

}
=

n−1∑
m=1

1
α1(uα1 , ϕ) + L(m0, ψ)

µ̂α1(f1G
0
α2
f2 · · ·G0

αm−1
fm−1G

0
αm
fmuαm+1)

×G(αm+1, fm+1, · · · , αn, fn) +
1

α1(uα1 , ϕ) + L(m0, ψ)
µ̂α1(f1G

0
α2
f2 · · ·G0

αn−1
fn−1G

0
αn
fnϕ)

+
L(m0, ψ)

α1(uα1 , ϕ) + L(m0, ψ)
L(m0, ψ)−1µ̂α1(f1G

0
α2
f2 · · ·G0

αn−1
fn−1G

0
αn
fnψ)

=
1

α1(uα1 , ϕ) + L(m0, ψ)

n∑
m=1

µ̂α1(f1G
0
α2
f2 · · ·G0

αm−1
fm−1G

0
αm
fmuαm+1)

·G(αm+1, fm+1, · · · , αn, fn).

In the above and in what follows, we use the convention that

uαm+1 = G(αm+1, fm+1, · · · , αn, fn) = 1

for m = n. This combined with (4.1) and (4.30) eventually leads us to

G(α1, f1, · · · , αn, fn) =
n∑

m=1

Gα1(f1G
0
α2
f2 · · ·G0

αm−1
fm−1G

0
αm
fmuαm+1)(a)

· G(αm+1, fm+1, · · · , αn, fn). (4.58)

Based on this formula, we shall prove the desired identity (4.43), namely,

G(α1, f1, · · · , αn, fn) = Gα1f1Gα2f2 · · ·Gαnfn(a) (4.59)
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by induction in n.
(1). When n = 1, (4.59) is just (4.30).
(2). Suppose (4.59) holds up to n− 1. Then

G(αm+1, fm+1, · · · , αn, fn) = (Gαm+1fm+1 · · ·Gαnfn)(a),

and (4.58) can be written as

G(α1, f1, · · · , αn, fn) =
n∑

m=1

Gα1(f1G
0
α2
f2 · · ·G0

αm−1
fm−1G

0
αm
fmuαm+1)(a)

· (Gαm+1fm+1 · · ·Gαnfn)(a). (4.60)

Let us rewrite the right hand side of (4.59) by applying the formula (4.31) to the operation
Gα2 in getting

(Gα1f1Gα2f2 · · ·Gαnfn)(a) = (Gα1f1G
0
α2
f2Gα3f3 · · ·Gαnfn)(a)

+ (Gα1f1uα2)(a)(Gα2f2 · · ·Gαnfn)(a).

Apply the same procedure to the operation Gα3 to see that the right hand side of (4.59)
equals

(Gα1f1G
0
α2
f2G

0
α3
f3Gα4f4 · · ·Gαnfn)(a)

+ (Gα1f1G
0
α2
f2uα3)(a)(Gα3f3 · · ·Gαnfn)(a)

+ (Gα1f1uα2)(a)(Gα2f2 · · ·Gαnfn)(a).

Repeating the same procedures, we finally find that the right hand side of (4.59) coincides
with the right hand side of (4.60) as was to be proved.

(ii). For t1 > 0, · · · , tn > 0, let

F (t1, · · · , tn) = E

{
n∏
k=1

fk (Xt1+···+tk) ; ζω > t1 + · · · + tn

}
,

G(t1, · · · , tn) = (pt1f1pt2f2 · · · ptnfn) (a).

(4.43) is then equivalent to∫ ∞

0
· · ·
∫ ∞

0
e−α1t1−···−αntnF (t1, · · · , tn)dt1 · · · dtn

=
∫ ∞

0
· · ·
∫ ∞

0
e−α1t1−···−αntnG(t1, · · · , tn)dt1 · · · dtn. (4.61)

Clearly F (t1, · · · , tn) is right continuous. Further, by virtue of Lemma 4.11, we can easily
see that G(t1, · · · , tn) is separately right continuous. Consequently, (4.61) implies

F (t1, · · · , tn) = G(t1, · · · , tn)

the desired Markov property of X.

We add a lemma saying that the point a is regular for itself with respect to (Xt, P ).
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Lemma 4.12. (i) P (ηa = 0) = 1, where ηa = inf{t > 0 : Xt = a}.
(ii) n+(Wa) = ∞.

Proof. (i). In view of the proof of Proposition 4.3, lim
t↓0

u1(Xt) = 1. Hence, if we put

ηa,ε = inf{t > ε : Xt = a}, then owing to the Markov property

E(e−ηa) = lim
ε↓0

E(e−ηa,ε)

= lim
ε↓0

E(e−εu1(Xε); ζω > ε) = 1.

(ii). By the construction of Xt, the point a is evidently instantaneous in the sense that

P (τa = 0) = 1, where τa = inf{t > 0 : Xt ∈ S0}.

Hence (i) holds if and only if the domainDp+ of the Poisson point process p+ accumulates
at 0 P -a.s., which is also equivalent to (ii) (cf. [15, §4]).

4.5 A symmetric extension X̃ of X0

In §4.1, we have started with an m-symmetric diffusion

X0 =
{
X0
t , 0 ≤ t < ζ0, P 0

x , x ∈ S0

}
on S0, where P 0

x , x ∈ S0, are probability measures on a certain sample space, say Ω0.
In §4.2, we have constructed a continuous process

X = {Xt, 0 ≤ t < ζω, P}

on S by piecing together the excursions, where P is a probability measure on another
sample space Ω to define the excursion valued Poisson point processes.

For convenience, we assume that Ω0 contains an extra point ωa with P 0
x ({ωa}) =

0, x ∈ S0, and we set P 0
a = δωa , ωa representing a path taking value a at any time.

We now let
Ω̃ = Ω0 × Ω, P̃x = P 0

x × P, x ∈ S. (4.62)

For ω̃ = (ω0, ω) ∈ Ω̃, let us define X̃t = X̃t(ω̃) as follows:

(1) When ω0 ∈ Ω0 \ {ωa},

X̃t(ω̃) =
{
X0
t (ω

0) 0 ≤ t < ζ0(ω0) ≤ σa(ω0) ≤ ∞
Xt−σa(ω0)(ω) σa(ω0) ≤ t < σa(ω0) + ζω, if σa(ω0) <∞.

(4.63)

(2) When ω0 = ωa,
X̃t(ω̃) = Xt(ω) 0 ≤ t < ζω. (4.64)

The life time ζ̃ of X̃t is defined by

ζ̃ =
{
ζ0 if σa(ω0) = ∞,
σa(ω0) + ζω if σa(ω0) <∞.

(4.65)
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Lemma 4.13. X̃ = {X̃t, 0 ≤ t < ζ̃, P̃x, x ∈ S} is a Markov process on S with transition
function {pt} defined by (4.35) and (4.36).

Proof. This is an easy consequence of the Markov property of (X0
t , P

0
x ) and the Markov

property of (Xt, P ) proved in Propisition 4.4. To see this, we put, for any 0 < s1 < s2 <
· · · < sn, f1, f2, · · · , fn ∈ B(S),

Ik = Ẽx

(
f1(X̃s1) · · · fk−1(X̃sk−1

)fk(X̃sk
) · · · fn(X̃sn); sk−1 < σa ≤ sk

)
,

for 1 ≤ k ≤ n with s0 = 0, and

J = Ẽx(f1(X̃s1) · · · fn(X̃sn); sn < σa).

Using the definition of X̃ , Proposition 4.4, the Markov property of X0 and (4.36)
successively, we are led to

Ik = E0
x

(
f1(X0

s1) · · · fk−1(X0
sk−1

)E (fk(Xsk−σa) · · · fn(Xsn−σa)) ; sk−1 < σa ≤ sk

)
= E0

x

(
f1(X0

s1) · · · fk−1(X0
sk−1

)psk−σa

(
fkpsk+1−sk

fk+1 · · · psn−sn−1fn
)
(a); sk−1 < σa ≤ sk

)
= E0

x

{
f1(X0

s1) · · · fk−1(X0
sk−1

)

·E0
X0

sk−1

(
psk−sk−1−σa(fkpsk+1−sk

fk+1 · · · psn−sn−1fn);σa ≤ sk − sk−1

)
; sk−1 < σa ≤ sk

}

= E0
x

(
f1(X0

s1) · · · fk−1(X0
sk−1

)

·(psk−sk−1
− p0

sk−sk−1
)(fkpsk+1−sk

fk+1 · · · psn−sn−1fn)(X
0
sk−1

); sk−1 < σa ≤ sk

)
.

By the Markov property of X0, we thus get

Ik = p0
s1f1 · · · p0

sk−1−sk−2
fk−1psk−sk−1

fkpsk+1−sk
fk+1 · · · psn−sn−1fn(x)

− p0
s1f1 · · · p0

sk−1−sk−2
fk−1p

0
sk−sk−1

fkpsk+1−sk
fk+1 · · · psn−sn−1fn(x).

Clearly we also have

J = E0
x

(
f1(X0

s1) · · · fn(X0
sn

); sn < σa
)

= p0
s1f1 · · · p0

sn−sn−1
fn.

Hence we arrive at

Ẽx(f1(X̃s1)f2(X̃s2) · · · fn(X̃sn)) =
n∑
k=1

Ik + J = ps1f1ps2−s1f2 · · · psn−sn−1fn(x),

the desired Markov property of X̃ .

We now state main theorems of the present paper. In this section, we have started
with an m-symmetric diffusion X0 on S0 satisfying conditions A.1,A.2,A.3,A.4 and
constructed a Markov process X̃ on S. The resolvent {Gα}α>0 of the Markov process X̃
is defined by

Gαf(x) = Ẽx

(∫ ∞

0
e−αtf(X̃t)dt

)
, f ∈ B(S). (4.66)

The resolvent of X0 was denoted by G0
α.
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Theorem 4.1. The process X̃ enjoys the following properties:
(1) X̃ is an m-symmetric diffusion process on S. It admits no killing inside S and is a
Hunt process on S in the sense that

X̃ζ̃(ω̃)−(ω̃) = ∆ if ζ̃(ω̃) <∞.

(2) X0 is identical in law with the process obtained from X̃ by killing upon the hitting
time σa of the point a.

Further the resolvent of X̃ admits the next expression for f ∈ B(S):

Gαf(x) = G0
αf(x) + uα(x)

(uα, f)
α(uα, ϕ) + L(m0, ψ)

, x ∈ S0, (4.67)

Gαf(a) =
(uα, f)

α(uα, ϕ) + L(m0, ψ)
, (4.68)

where L(m0, ψ) is the energy functional of the X0-excessive measure m0 = ϕ ·m and the
X0-excessive function ψ = 1 − ϕ.

Proof of Theorem 4.1. By Lemma 4.6, (4.37) and Lemma 4.13, we see that X̃ is a Markov
process on S with the m-symmetric resolvent (4.67),(4.68).

On account of A.1, we may assume that

X0
t (ω

0) is continuous in t ∈ [0, ζ0(ω0)) and Xζ0(ω0)−(ω0) = a ∪ ∆

for every ω0 ∈ Ω0. We have already chosen Ω in a way that

Xt(ω) is continuous in t ∈ [0, ζω) and X0(ω) = a.

Hence the path X̃·(ω̃) defined by (4.63),(4.64),(4,65) is continuous on [0, ζ̃).
Consider a function u = Gαf on S for f ∈ Cb(S). By the assumptions A.2,A.3 and

the expression (4.67),(4.68), u(X0
t (ω0)) is then continuous in t ∈ [0, σa) for any ω0 ∈ Ω0.

By the proof of Proposition 4.3, u(Xt(ω)) is continuous in t ∈ [0, ζω) for any ω ∈ Ω.
Hence u(X̃t(ω̃)) is right continuous in t ∈ [0, ζ̃(ω̃)) for any ω̃ ∈ Ω̃. (In view of (4.33), we
even know that u(X̃t) is continuous in t ∈ [0, ζ̃) P̃x-a.s. for any x ∈ S). Therefore we
can conclude that X̃ is a strong Markov process with continuous sample paths, namely,
a diffusion process on S (cf.[2]). Clearly X̃ is of no killing inside S and a Hunt process
on S. The property (2) is also evident from the construction of X̃.

Remark 4.1. A prime reason for us to impose a regularity condition A.4 on the given
processX0 on S0 is in that it implies an important property in Lemma 4.3 of the excursion
law n of (4.4), which is essential in deriving the continuity near the point a of the process
X constructed in §4.2.

Given a standard process X̃ on S for which the point a is recurrent, K.Itô [15]
assoicated with X̃ a Poisson point process p of excursions in the manner of §3.1 and gave
a list of necessary conditions for the charactersitic measure n of p should obey. Conversely
T.S. Salisbury [25], [26] constructed a right process on S for which a is recurrent by means
of X0 and an excusion law n satisfying Itô’s conditions being strengthened by adding the
property as in Lemma 4.3 and some others.
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Remark 4.2. By invoking the work of P.A. Meyer[20] on the absorbed Poisson point
process and by adopting a similar argument to §4.2, we can show that Theorem 3.1 of
§3.1 remains true without assuming condition B.3 on the recurrence of the point {a}.

In this general case, the right continuous inverse S(s) of the local time L(t) at {a}
of the given process X on S is defined for s ≥ L(∞) as S(L(∞)) = ∞, and we see from
Lemma 2.3 and by letting α ↓ 0 in (2.21) that L(∞) has an exponetial distribution with
mean L(m0, ψ)−1.

Let

Dp = {s : S(s) − S(s−) > 0},
ps(t) = XS(s−)+t, s ∈ Dp, 0 ≤ t < S(s) − S(s−).

Then Dp ⊂ (0, L(∞)], L(∞) ∈ Dp and {ps, s > 0} is a point process with values in the
space Wa defined by (4.13) instead of (3.6). Moreover, if we define the spaces W+

a , W
−
a

by (4.14), (4.15) respectively, then

ps ∈W+
a for s ∈ Dp ∩ (0, L(∞)), pL(∞) ∈W−

a .

By Theorem 5 of Meyer[20], {ps, s > 0} is an absorbed Poission point process. More
precisely, on a certain probability space (Ω̃, P̃ ), there is a Poisson point process {p̃s, s > 0}
on Wa with domain Dp̃ and with the following properties.
(a) Let ζ̃ = inf{s > 0 : p̃s ∈W−

a } and consider the stopped point process {p̄, s > 0}:

p̄s = p̃s for s ∈ Dp̄ = Dp̃ ∩ (0, ζ̃ ].

Then the point process {ps, s > 0} and {p̄s, s > 0} are equivalent in law.
(b) Let n be the characteristic measure of {p̃s, s > 0}. Then {w(t),n} is Markovian with
respect to the transition funtion p0

t of X0. Let {νt} be the entrance law associated with
n. Then νt is a finite measure for each t > 0 and

∫∞
0 e−tνtdt has a total mass not greater

than 1.
We now prove that Theorem 3.1 remains valid for this {νt} and for the entrance law

{µt} specified by the equation (2.22).
Take a bounded Borel function f on S and define f̂α(w), w ∈ Wa, α > 0, as in the

proof of Proposition 4.2. We have, almost surely with respect to Pa,∫ ζ

0
e−αtf(Xt)dt =

∑
s<L(∞)

∫ S(s)

S(s−)
e−αtf(Xt)dt+

∫ ∞

S(L(∞)−)
e−αtf(Xt)dt

=
∑

s<L(∞)

e−αS(s−)f̂α(ps) + e−αS(L(∞)−)f̂α(pL(∞)),

which is equivalent in law to∑
s<ζ̃

e−αS̃(s−)f̂α(p̃+
s ) + e−S̃(ζ̃−)f̂α(p̃ζ̃), (4.69)

where {p̃+
s , s > 0} is a Poisson point process defined by p̃+

s = p̃s for s ∈ Dp̃+ = Dp̃∩{s :
p̃s ∈ W+

a } and S̃(s) =
∑

r≤s ζ(p̃
+
r ). The characteristic measure of {p̃+

s , s > 0} is the
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restriction n+ of n on W+
a . In the same way as in the proof of Lemma 4.5, we can prove

that
Ẽ(e−αS̃(s)) = exp(−αν̂α(ϕ)), ν̂α =

∫ ∞

0
e−αtνtdt.

Now the value Gαf(a) equals the expectation of the random variable (4.69) with respect
to P̃ , which can be evaluated by taking into account of the following facts.
(i) The three objects {p̃+

s , s > 0}, ζ̃ and p̃ζ̃ are independent.
(ii) ζ̃ has an exponential distribution with mean L(m0, ψ)−1.
(iii) The law of p̃ζ̃ is L(m0, ψ)−1n− where n− is the restriction of n on W−

a .
Indeed, exactly the same computation as in the proof of Propostion 4.2 leads us to

Gαf(a) =
ν̂α(f)

αν̂α(ϕ) + L(m0, ψ)
, (4.70)

which combined with (2.15) and Lemma 2.2 (ii) yields

ν̂α(f)
αν̂α(ϕ) + L(m0, ψ)

=
µ̂α(f)

αµ̂α(ϕ) + L(m0, ψ)

Therefore for each α > 0 there is a constant cα such that ν̂α = cαµ̂α. Inserting this into
the above equation, we easily obtain cα = 1 and so νt = µt, t > 0.

5 Uniqueness of the symmetric extension and expression

of its Dirichlet form

In the preceding section, we have started with anm-symmetric diffusion X0 on S0 satisfy-
ing conditions A.1,A.2,A.3,A.4, and constructed a process X̃ on S satisfying properties
(1),(2) stated in Theorem 4.1. Let us call a process on S satisfying conditions (1),(2)
a symmetric extension of X0. In this section, we are concerned with the uniqueness of a
symmetric extension of X0 and explicit expression of its Dirichlet form on L2(S;m). We
aim at proving the following:

Theorem 5.1. Assume that an m-symmetric diffusion X0 on S0 satisfies conditions
A.1,A.2. Let X̂ be a symmetric extension of X0 and (E ,F) be the Dirichlet form on
L2(S;m) of X̂.
(i) X̂ admits the resolvent identical with (4.67),(4.68).
(ii) (E ,F) admits the expression

Fe = {w = u0 + cϕ : u0 ∈ Fo,e, c constant}, F = Fe ∩ L2(S;m), (5.1)

E(w,w) = E(u0, u0) + c2E(ϕ,ϕ), E(ϕ,ϕ) = L(m0, ψ), (5.2)

where (F0,e, E) is the extended Dirichlet space of X0 and L(m0, ψ) is the energy functional
of m0 = ϕ ·m and ψ with respect to X0.
(iii) X0 satisfies (A.3) automatically: uα ∈ L1(S;m), α > 0.
(iv) P̂a(σa = 0, τa = 0) = 1
where σa = inf{t > 0 : Xt = a}, τa = inf{t > 0 : Xt ∈ S0}.
(v) (E ,F) is irreducible.
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Corollary 5.1. Under the conditions A.1,A.2 for an m-symmetric diffusion X0 on S0,
the symmetric extension of X0 is unique in law.

Corollary 5.1 follows from Theorem 5.1 (i). We prepare a lemma before the proof of
Theorem 5.1.

Assume that X = (Xt, Px) is an m-symmetric Hunt process on S and (E ,F) is the
associated Dirichlet form on L2(S;m). No regularity for the Dirichlet form (E ,F) is
assumed in advance.

In accordance with [19], we set for a closed set F ⊂ S,

FF = {u ∈ F : u = 0 m-a.e. on S \ F},

and call an increasing family {Fn} of closed subsets of S an E-nest if the space ∪∞
n=1FFn

is E1-dense in F . A set N is called E-exceptional if N ⊂ ∩∞
n=1F

c
n for some E-nest {Fn}.

On the other hand, we call a set N ⊂ S an X-exceptional set if there exists a Borel set
B1 ⊃ B with

Pm(σB1 <∞) = 0.

A nearly Borel set N ⊂ S is called X-properly exceptional if m(N) = 0 and S \ N is
X-invariant in the sense that

Px(Xt ∈ S∆ \N or Xt− ∈ S∆ \N ∃t ≥ 0) = 1, ∀x ∈ S \N.

Lemma 5.1. (i) The following properties of a set N ⊂ S are equivalent each other:
α. N is E-exceptional.
β. N is X-exceptional.
γ. N is contained in an X-properly exceptional Borel set.

(ii) If {Fn} is an E-nest, then

Px

(
lim
n→∞σS\Fn

≥ ζ
)

= 1 q.e., (5.3)

where q.e. means ‘except on a set N ⊂ S satisfying one of the properties in (i) ’.
(iii) (E ,F) is a quasi-regular Dirichlet form on L2(S;m) in the sense of [19, §IV 3].

Proof. (i). The equivalences α ⇔ β and β ⇔ γ were proved in [19, Th.5.29] and in [9,
Th.4.1.1] respectively.

(ii). Put σ = lim
n→∞σS\Fn

. On account of [19, Th.2.11, Th.5.4], we have for a strictly
positive bounded m-integrable function f on S,

Ex

(∫ ζ

σ∧ζ
e−sf(Xs)ds

)
= 0 m−a.e. x ∈ S.

Since the function of x on the left hand side of the above equation is X-excessive, it is
finely continuous on S and hence the above equation holds q.e. by [9, Lemma 4.1.5].

(iii) Since (E ,F) is associated with a Hunt process X, it must be quasi-regular by
virtue of [19, Th.5.1].

Proof of Theorem 5.1. Since X̂ is not only a diffusion process but also a Hunt process on
S, the Dirichlet form (E ,F) of X̂ is quasi-regular by the above lemma.
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Consequently we can invoke [3, Th.3.7] to find a regular Dirichlet space (S′,m′,F ′, E ′)
related to the quasi-regular Dirichlet space (S,m,F , E) by a quasi-homeomorphism q:
there exist an E-nest {Fn} on S and an E ′-nest {F ′

n} on S′ such that q is a one to
one mapping from S1 = ∪∞

n=1Fn onto S′
1 = ∪∞

n=1F
′
n and its restriction on each Fn is

homeomorphic to F ′
n. Further, m′ is the image measure of m by q and the space (F ′, E ′)

is also the image of (F , E) by q. Thus, if we put (Φu)(x′) = u(q−1(x′)), x′ ∈ S′
1, then∫

S′
(Φu)dm′ =

∫
S
udm, ∀u ≥ 0; F ′ = Φ(F), E ′(Φu,Φv) = E(u, v), u, v ∈ F . (5.4)

We note that S \ S1 (resp. S′ \ S′
1) is E−(resp. E ′−)exceptional and, when N ′ = q(N),

N is E-exceptional if and only if N ′ is E ′-exceptional (cf.[3, Cor.3.6].)
For a Borel set B ⊂ S, we denote by B∆ the subset B ∪ ∆ of S∆ with induced

topology. The above q can then be extended to a homeomorphism between (Fn)∆ and
(F ′

n)∆′ for each n, where ∆′ denotes the point at infnity of S′ (which is added as an
isolated point when S′ is compact).

We now apply Lemma 5.1 to the above E-nest {Fn} in finding an X̂-properly excep-
tional Borel set N̂ ⊂ S containing S \ S1 such that (5.3) holds for any x ∈ S \ N̂ . q is
then a one to one mapping between S \ N̂ and S′ \ N̂ ′, where

N̂ ′ = (S′ \ S′
1) ∪ q(S ∩ N̂).

In view of condition A.2 for X0, condition (2) for X̂ and the above observation, the
one point set {a} is not X̂-exceptional and consequently it is not E-exceptional by virtue
of Lemma 5.1. Therefore a must be located in S \ N̂ and furthermore

{a′} is not E ′ − exceptional, (5.5)

where a′ = q(a) ⊂ S′ \ N̂ ′.
The restriction of X̂ to S \ N̂ is a diffusion with no killing inside S \ N̂ and we denote

it again by
X̂ =

(
Ω,Ft, X̂t, ζ̂, P̂x

)
.

Let us transfer X̂ to a process

X̂ ′ =
(
Ω,Ft, X̂ ′

t, ζ̂
′, P̂ ′

x

)
on S′ \ N̂ ′ by the mapping q:

X̂ ′
t(ω) = q(X̂t)(ω), ζ̂ ′(ω) = ζ̂(ω), ω ∈ Ω, t ≥ 0,

P̂ ′
x(Λ) = P̂q−1x(Λ) x ∈ S′ \ N̂ ′, Λ ∈ F∞.

We may extend the state space of X̂ ′ to S′ by making each point of N̂ ′ trap. It is then
easy to see that X̂ ′ is a diffusion process on S′ with no killing inside S′ in the sense that

P̂ ′
x

(
ζ̂ ′ <∞, X̂ ′

ζ̂′− = ∆
)

= P̂ ′
x(ζ̂

′ <∞). (5.6)

Further X̂ ′ is associated with the Dirichlet form (E ′,F ′) which is regular. Since X̂ ′ is
a diffusion without killing inside S′, (E ′,F ′) must be strongly local (cf.[9, Th.4.5.3]).
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By (5.5) and Lemma 5.1, we see that the one point set {a′} is not X̂ ′-exceptional and
consequently it has a positive capacity with respect to (E ′,F ′) in virtue of [9, Th.4.2.1].

Therefore (E ′,F ′) and X̂ ′ fit the setting of §2 and they satisfy all the properties stated
in Theorem 2.1 of §2. In particular, we have the next expressions of the resolvent and
(E ′,F ′) of X̂ ′ in terms of the part X̂ ′,0 of X̂ ′ on S′

0 = S′\{a′} : if we denote the transition
function and the resolvent of X̂ ′ (resp. X̂ ′,0) by p′t, G′

α (resp. p′,0t , G
′,0
α ), then

G′
αg(a

′) =
(u′α, g)m′

α(u′α, ϕ′)m′ + L′(m′
0, ψ

′)
(5.7)

E ′(ϕ′, ϕ′) = L′(m′
0, ψ

′), (5.8)

where ϕ′ (resp. u′α) is the hitting (resp. α-order hitting) probability of {a′} of the process
X̂ ′, ψ′ = 1 − ϕ′ and

L′(m′
0, ψ

′) = lim
t↓0

1
t
(ϕ′ − p′,0t ϕ

′, ψ′)m′ . (5.9)

Notice that the part (E ′,F ′
0) of (E ′,F ′) on S′

0 is associated with X̂ ′,0 which can be sent
from X0 on S0 by the mapping q in the same way as above on account of the property
(2) of X̂. Hence we have for x ∈ S′ \ N̂ ′

Φ(Gαf)(x) = G′
α(Φf)(x), Φ(G0

αf)(x) = G′,0
α (Φf)(x), Φ(p0

t f)(x) = p′,0t (Φf)(x),
Φ(ϕ)(x) = ϕ′(x), Φ(uα)(x) = u′α(x). (5.10)

(5.4),(5.7),(5.8),(5.9) and (5.10) now imply L′(m′
0, ψ

′) = L(m0, ψ) and furthermore

E(ϕ,ϕ) = L(m0, ψ), Gαf(a) =
(uα, f)

α(uα, ϕ) + L(m0, ψ)
. (5.11)

We have obtained the expression (4.68) of the resolvent Gα of X̂. It then satifies (4.67)
for all x ∈ S0 because of the property (2) of X̂. We can also readily get the assertions
(ii) and (iii) of Theorem 5.1 using (5.4) and (5.10). As for (iv), we have obviously

P̂a(σa = 0, τa = 0) = P̂ ′
a′(σa′ = 0, τa′ = 0),

and the right hand side equals 1 by virtue of Theorem 2.1. From the expression (4.67)
of the resolvent of X̂ , we have

(IA, GαIB) > 0 for any A,B ∈ B(S) with m(A) > 0, m(B) > 0.

This property is equivalent to the irreducibility of the Dirichlet form (E ,F) proving
(v).

Remark 5.1. For the symmetric extension X̃ of X0 constructed in §4, not only the
expression (4.67),(4.68) of its resolvent but also the property (iv) in Theorem 5.1 have
been directly proved in Lemma 4.12.
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6 Examples

Example 6.1. Let X be the Brownian motion on R, X0 be the absorbed Brownian
motion on R \ {0} and m be the Lebesgue measure dx on R. Then X is the unique m-
symmetric extension of X0 (in the sense that X satisfies conditions (1),(2) of Theorem
4.1) in accordance with Corollary 5.1.

Let L(t) be the local time of X at 0 and Z be an independent exponential random
variable with mean δ−1. The process Xδ obtained from X killed upon the first time that
L(t) ≥ Z is a diffusion process extending X0 but not a symmetric extension of X0 in the
present sense because it violates the above condition (1).

For γ > 0, let Xγ be the process on R obtained from X by a time change with respect
to the inverse of its additive functional t + γL(t). Xγ is then a diffusion on R with a
canonical scale 2dx and the speed measure m(dx) = dx + γδ0(dx). Xγ extends X0 but
violates our assumption that m({0}) = 0.

The resolvents and Dirichlet forms of Xδ, X
γ have been exhibited in Remark 2.2.

Example 6.2. Let D be a bounded open set in Rd, (d ≥ 1), and L2(D) be the L2-space
based on the Lebesgue measure on D. Denote by H1

0 (D) the closure of C1
0 (D) in the

Sobolev space

H1(D) = {u ∈ L2(D) :
∂u

∂xi
∈ L2(D), 1 ≤ i ≤ n}

and put

D(u, v) =
∫
D
∇u · ∇v(x)dx, u, v ∈ H1

0 (D).

Then (1
2D,H

1
0 (D)) is a strongly local Dirichlet form on L2(D) satisfying the Poincaré

inequality (3.13). The associated symmetric diffusion X0 = (X0
t , 0 ≤ t < ζ0, P 0

x ) on D is
the absorbing Brownian motion.

Let D∗ = D∪{a} be the one point compactification of D. Regarding D as a subspace
of D∗, we have then

ϕ(x) = P 0
x (ζ0 <∞,X0

ζ0− = a) = 1, ψ(x) = 1 − ϕ(x) = 0, ∀x ∈ D, (6.1)

uα(x) = E0
x(e

−αζ0 ;X0
ζ0− = a) is continuous in x ∈ D, (α > 0). (6.2)

Obviously uα ∈ L1(D). Hence conditions A.1,A.2,A.3,A.4 are satisfied by X0 and we
can construct a diffusion X̃ on D∗ as in §4. By virtue of Theorem 4.1, the resolvent of
X̃ is expressed as

Gαf(x) = G0
αf(x) + uα(x)

(uα, f)
α(uα, 1)

, x ∈ D, Gαf(a) =
(uα, f)
α(uα, 1)

,

and in particular, X̃ is conservative.
L2(D∗) denotes the L2-space based on the 0-extension of the Lebesgue measure on D

to D∗. By virtue of Theorem 4.1 and Theorem 5.1, X̃ is symmetric with respect to this
measure and its Dirichlet form (E ,F) on L2(D∗) is describable as

F = H1
0 (D) + constant functions on D∗, (6.3)

E(w1, w2) =
1
2
D(f1, f2), wi = fi + ci, fi ∈ H1

0 (D), ci constant, i = 1, 2. (6.4)
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On account of Theorem 3.2 and a related observation in §3.1, this is a regular, strongly
local and irreducible recurrent Dirichlet form. This Dirichlet form first appeared in [8].

The entrance law {µt}t>0 governing the charactersitic measure of the excursion valued
Poisson point process attached to X̃ is given by

µt(B)dt =
∫
B
P 0
x (ζ0 ∈ dt)dx, B ∈ B(D) (6.5)

in view of (3.9). Let D = ∪iDi be the decomposition of the open set D into connected
components. The above identity tells us that the sample path of X̃ entering from the point
a is distributed among {Di} proportionally to their volumes and enters in Di according
to the restriction of µt to Di. As was observed in §3.1, X̃ is irreducible recurrent.

According to (2.24), the Lévy measure of the inverse local time of X̃ at the point a
is given by −dµt(D).

Example 6.3. We consider a finite number of disjoint rays �i, i = 1, · · · , N, on R2

merging at a point a ∈ R2. Each ray �i is homeomorphic to the open half line (0,∞) and
the point a is the boundary of each ray at 0-side. We put

S0 =
N∑
i=1

�i, S = S0 + a.

S is endowed with the induced topology as a subset of R2.
Let m be a positive Radon measure on S0 with Supp[m] = S0. m is extended to S

by setting m({a}) = 0. The restriction of m to �i is denoted by mi. For any function
g on S0, its restriction to �i will be denoted by gi. We consider a diffusion process
X0 = {X0

t , ζ
0, P 0

x} on S0 such that its restriction X0,i to each open half line �i ∼ (0,∞)
is the absorbing diffusion governed by the speed measure mi and a canonical scale, say
si.

We notice that X0 satisfies A.2,A.3 if and only if 0 is a regular boundary in Feller’s
sense for each diffusion X0,i on �i, 1 ≤ i ≤ N. Indeed,A.2 holds if and only if 0 is exit
(in the terminology used by [16]). If 0 is additionally non-entrance, then mi((0,1)) = ∞
and A.3 is not satisfied. If 0 is regular, then mi((0,1)) <∞ and uα,i is mi integrable on
(0, 1), while uα,i is always mi-integrable on [1,∞) (cf.[16, p 130].)

Thus we assume that 0 is regular for every X0,i so that A.1,A.2,A.3 are satisfied by
X0. A.4 is also clearly satisfied. m is finite on any compact neighbourhood of a.

Therefore, a diffusion X̃ on S can be constructed as in §4 and it is a unique m-
symmetric extension of X0 with no killing inside S according to Theorem 5.1. The
resolvent of X̃ has the expression

Gαf(a) =
∑

i(uα,i, fi)mi

α
∑

i(uα,i, ϕi)mi +
∑

i L(ϕi ·mi, ψi)
.

The Dirichlet form (E ,F) of X̃ on L2(S;m) is regular, strongly local, irreducible and can
be described as follows:

Fe = {w = u0 + cϕ : u0 ∈ F0,e, c constant},

E(w,w) = E(u0, u0) + c2E(ϕ,ϕ),
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E(ϕ,ϕ) =
∑
i

L(ϕi ·mi, ψi),

where

F0,e = {u : ui is absolutely continuous with respect to si,∫ ∞

0

(
dui
dsi

)2

dsi <∞, ui(0) = 0, ui(∞) = 0, whenever ∞ is regular, 1 ≤ i ≤ n},

E(u, u) =
∑
i

∫ ∞

0

(
dui
dsi

)2

dsi u ∈ F0,e.

Related Dirichlet forms and diffusions first appeared in [13].
The entrance law from a is describable as

µt(f)dt =
∑
i

P 0,i
fi·mi

(
ζ0,i ∈ dt, X0,i

ζ0,i− = 0
)
. (6.6)

We have a freedom of choice of the entrance law (6.6) in the following sense. Choose
any positive numbers {p1, · · · , pN} and observe that the absorbed diffusion X0 on S0 is
unchanged if we replace mi, si, 1 ≤ i ≤ N, by

m̂i = pi ·mi, ŝi = p−1
i · si, 1 ≤ i ≤ N,

respectively. Let m̂ be the measure on S whose restriction to �i equals m̂i for each
i = 1, 2, · · · , N, with m̂({a}) = 0. Then we can consider the m̂-symmetric extension X̂
of X0 whose entrance law µ̂ from a is given by (6.6) but with the replacement of mi by
m̂i for 1 ≤ i ≤ N.

Example 6.4. Let G1, G2 be open sets of Rd, (d ≥ 1), such that

G1 ⊂ G2, G1 is compact.

We let S0 = G2 \ G1. We consider the space S = S0 ∪ {a} equipped with the topology
where a set U containing a is defined to be an open set if

U \ {a} =
{
open subset of G2 containing G1

} \ G1.

Let X0 be the absorbing Brownian motion on S0. Then conditions A.1,A.2,A.3,A.4 are
satisfied by X0. A.3 can be verified by a comparison with the Brownian motion on Rd.

Let m be the Lebesgue measure on S0 extended to S by m({a}) = 0. Let X̃ be the
m-symmetric diffusion on S as is constructed in §4. Then, by Theorem 5.1, its Dirichlet
form (E ,F) on L2(S;m) is expressed as

F = Fe ∩ L2(S;m), Fe = {w = u0 + cϕ : u0 ∈ H1
0,e(S0), c constant},

E(w,w) =
1
2
D(u0, u0) + c2L(ϕ ·m,ψ),

where H1
0,e(S0) denotes the extended Dirichlet space of H1

0 (S0).
(E ,F) is a quasi-regular Dirichlet form on L2(S;m) but may not be regular. It is a

regular Dirichlet space if each point of ∂G1 is a regular boundary point of S0 with respect
to the Dirichlet problem for (α− 1

2∆) on S0.

43

KSTS/RR-04/001
January 13, 2004



References

[1] R.M. Blumenthal, Excusions of Markov processes, Birkhaäuser, Boston, 1992
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