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ABSTRACT. -Let a be a non-isolated point of a topological space S and X" = (X?,0 <t <
¢, PY) be a symmetric diffusion on Sy = S\ {a} such that P?(¢° < oo, Xgo_ =a)> 0,z € Sp. By
making use of Poisson point processes taking values in the spaces of excursions around a whose
characteristic measures are uniquely determined by X°, we construct a symmetric diffusion X
on S with no killing inside S which extends X° on Sy. We also prove that such a process X is
unique in law and its resolvent and Dirichlet form admit explicit expressions in terms of X°.
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1 Introduction

Let S be a locally compact separable metric space and a be a non-isolated point of S.
We put Sy = S\ {a}. The one point compactification of S is denoted by Sa. When S is
compact already, A is added as an isolated point. Let m be a positive Radon measure
on Sp with Supp[m| = Sy. m is extended to S by setting m({a}) = 0.

We assume that we are given an m-symmetric diffusion X° = (X?, P?) on Sy with
life time (¢° satisfying the following four conditions:

A1 P < o0, X% e {a}u{A}) =P < x0), VzeS.
We define the functions ¢(x), uq(x), a >0, of x € Sy by

o) = PA(C° < o0, X% =a), ua(z)=E2e ;X% _ =a).
A.2 o(z) >0, Va € S,

A.3 U € L'(So;m), Va > 0.
A4 u, €Gy(S),  GalGy(S)) € Cy(So),  a>0,

where G is the resolvent of X and Cy(Sp) is the space of all bounded continuous
functions on Sp.

By making use of excursion-valued Poisson point processes whose characteristic mea-
sures are uniquely determined by XV, or to be a little more precise, by piecing together
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those excursions which start from a and return to a and then possibly by adding the last
one that never returns to a, we shall construct in §4 of the present paper a process X on
S satisfying

(1) X is an m-symmetric diffusion process on S with no killing inside S,

(2) X is an extension of X: the process on Sy obtained from X by killing upon the
hitting time of a is identical in law with X?.

We call a process X on S satisfying (1),(2) a symmetric extension of X°.

We shall also prove in §5 that, under conditions A.1, A.2 for the given m-symmetric
diffusion X° on Sy, its symmetric extension is unique in law, satisfies condition A.3
automatically and admits the resolvent expressible as

(Ua, f)

Gof(z) = GEf(2) + ua(z) - Gaf(a), z € Sy, Gaf(a) = a(ta, @) + L(mo, ¥)

where (-,-) denotes the inner product in L?(Sp;m) and L(mg,) is the energy functional
in Meyer’s sense [21] of the X -excessive measure mg = ¢ - m and X°-excessive function
Pv=1-— .

Furthermore the associated Dirichlet form (£,F) on L?(S;m) will be seen in §5 to
have the following simple expression; if we donote by F. its extended Dirichlet space,
then

Fe={w=wup+cp:ug € Fye, cconstant}, F =F.N L*(S; m),

E(w,w) = E(uo, uo) + 625(907 ©), E(p,p) = L(mo, 1),
where (Fy ., £) is the extended Dirichlet space for the given diffusion X°.

In §6, we shall present four examples. Example 6.1 concerns the uniqueness of the
symmeric extension of the one dimensional absorbing Brownian motion.

Example 6.2 treats the case where Sy is a bounded open subset of R? (d > 1),
S = Sy U {a} is the one point compactification of Sy and X? is the absorbing Brownian
motion on Sp. In this case, p(x) = 1, x € Sy. The resulting Dirichlet form on L?(S;m)
(m is the Lebsegue measure on Sy extended to S by m({a}) = 0) is given by

F={w=ug+c:uy€ HLSy), ¢ constant},

Ew,w) = = [ Vol (2)dz,
2 Js,
which is easily seen to be regular, strongly local and irreducible recurrent. A more general
Dirichlet form of this type will be presented in §3.2. This type of Dirichlet form first
appeared in the paper [8] by the first author and it is recently utilized in a study of
the asymptotics of the spectral gap for one parameter family of energy forms([17]). Our
study is motivated by a wish to conceive a clearer picture of the sample path of the
diffusion on S associated with such a Dirichlet form.

Example 6.3 is essentially one-dimensional, where we shall see that the conditions
A.2 and A.3 are satisfied if and only if the boundary is regular in Feller’s sense. This
example is reminiscent of an example by N. Ikeda and S. Watanabe[14].

Example 6.4 is higher dimensional, where the Dirichlet form associated with the
constructed process X may not be regular.
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In order to identify right quantities to describe the excursion-valued Poisson point
processes to be constructed in §4, we shall study in §2 and §3 a strongly local regular
Dirichlet form on L?(S;m) for which the point {a} has a positive capacity. In particular,
we shall find that the Dirichlet form and the associated resolvent admit exactly the above
mentioned expressions. Furthermore, we shall see that the entrance law {y;} governing
the excursion law ought to be determined by

[°S)
mo = / ,U/tdtv
0

an equation investigated by E.B.Dynkin, R.K.Getoor, P.J.Fitzsimmons and others ([11]).

In a seminal work [15], K.It6 considered a standard process X on S for which a point
a is regular for itself. A Poisson point process Y taking value in the space of excursions
around a was then associated, and it was shown that the stopped process X" obtained
from X by the hitting time at a and the characteristic measure of Y together determine
the law of X uniquely. It was implicitly assumed in [15] that the point a is recurrent in
the sense that

p(x) = Pylog <o0)=1, z €S, o0,=1inf{t >0: X, =a}.

But, as was shown in P.A. Meyer [20], an absorbed Poisson point process can be still
associated with X when {a} is non-recurrent. See Remark 4.2 in this regard.

Since our present assumption on X° requires ¢ only to be positive, we must handle
not only returning excursions from the point a but also non-returning excursions. By
restricting ourselves to the case that both X and X are symmetric diffusions however, we
shall see that the characteristic measures on these different type of excursion spaces are
uniquely determined by X° so that, starting with X°, we can give an explicit construction
of X.

The Dirichlet form (£, F) on L?(S;m) associated with a symmetric extension X of
X% may not be regular but it is quasi-regular in the sense of [19]. Accordingly we can
make use of the quasi-homeomorphism in [3] to connect X with the regular Dirichlet
form studied in §2, yielding the uniqueness of X and the explicit expression of (&, F).

There are quite a few works [1], [24], [25], [26] dealing with generalizations of Itd’s one
[15]. See Remark 2.2 and Remark 4.1 in these regards. But construction and uniqueness
of a symmetric extension X of a symmetric X° as are formulated in the present paper
have never been considered.

2 Strongly local Dirichlet form with a point of positive
capacity

2.1 Description of the form and resolvent by absorbed process

Let S be a locally compact separable metric space and a be a non-isolated point of S.
We denote the complementary set S \ {a} by Sp. Let m be a positive Radon measure
on S with Supp[m| = S and with m({a}) = 0. The inner product in each of the spaces
L?(S;m), L?(Sp, m) will be designated by (-, -).

A Dirichlet form (&, F) on L?(S;m) is called regular if F N Cy(S) is & -dense in F
and uniformly dense in Cy(.5), where Cy(.S) denotes the space of continuous functions on
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S with compact support. It is called strongly local if €(u,v) vanishes whenever u,v € F,
Supp|u], Supp|v] are compact and v is constant on a negibourhood of Supp[u], where
Supp[u] denotes the topological support of the measure u - m. For the sake of a use in
§3.2, we make here a remark:

Remark 2.1. If a Dirichlet form (£,F) on L?(S;m) is regular and strongly local,
then the strong locality stated above holds without assuming that Supp|v] is compact.
Indeed, assuming the boundedness of v, take a function w € F N Cy(S) with w = 1 on
a neighbourhood of K = Supp[u] and put v; = v - w, vog = v — v1. Then E(u,v;) = 0.
Since vy belongs to the part Fg of (£,F) on the open set G = S\ K and (€, Fg) is a
regular Dirichlet form on L?(G;m) (cf.[9, Th.4.4.3]), we can find v, € F N Cy(G) which
are &-convergent to vg. Hence £(u,vy) = limy, 00 E(u, vy,) = 0 and E(u,v) = 0.

We consider a strongly local regular Dirichlet form (£, F) on L%*(S;m) and an asso-
ciated m-symmetric Hunt process X = (X, P;) on S. In view of [9, The.4.5.3], X can
then be taken to be a diffusion on Sa in the sense that all sample paths are continuous
functions from [0, 00) to Sa, where Sa is the one-point compactification of S when S is
non-compact and A is an extra point isolated from S when S is compact. In either case
A will be the cemetery of the sample paths. Furthermore, X can be taken to be of no
killing inside S in the sense that

Po( X =A,(<o0) =P ((<00), z€S,

where ((w) denotes the life time, namely, the hitting time of the cemetery A of the sample
path w. In particular, when S is compact, P,(¢ = oc0) =1 for all z € S.
We make the assumption that

B.1 Cap({a}) > 0.

Here Cap(A) for A C S is its l-capacity relative to (£,F). In what follows, the
quasi-continuity of functions on S will be understood with respect to this capacity. Each
function u € F admits its quasi-continuous version denoted by u. ‘q.e.’” will means
‘except for a set of zero capacity’.

The hitting probability and the a-order hitting probability of {a} are denoted by ¢
and u, respectively:

o(x) = Py(o < 00), ug(z) = Ey(e7%), z €S8, (2.1)
where ¢ is the hitting time of a by the process X defined by
o=inf{t >0: X; =a}. (2.2)

The assumption B.1 implies that u, is a non-trivial element of F and it is the a-potential
UqaVq of a positive measure v, concentrated on {a} (cf. [9, §2.2]):

Ea(ta,v) = 0(a)vy({a}) veF. (2.3)
Put
Fo=A{ue F:u(a) =0}. (2.4)

Then (€, Fp) is a regular strongly local Dirichlet form on L?(Sp;m), which is associated
with the part X? = (X7, P?) of X on the set Sy, namely, the diffusion process X°
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obtained from X by killing upon the hitting time o (cf. [9, §4.4]). X© is of no killing
inside Sy and, if we denote the life time of X° by ¢°, then ¢, u, admit the expressions

W(l‘) - P;S(CO < o0, Xgo_ = a)a ua(x) - E;(r)(e_aCO;XCO— = a)a x € So, (25)
in terms of the absorbed process X°. We further consider the functions

xT

W (2) = PY(¢° < 00, Xeom =A), @ (2) = P =0), z€ S, (2.6)

and put ¢ = 1 + @ g0 that ¢ =1 — ®.

Denote by p; and G, the transition function and the resolvent of X respectively. The
same notions for the absorbed process X° will be denoted by p? and G%. The functions
o, v @ on Sy are XO-excessive. In particular, /(2 is X-invariant in the sense that
1/)(2) = p?i/)@), t > 0. Because of the m-symmetry of X°, the measure

mo=p-m (2.7)

is an X'-excessive measure with mop? = pp - m.

Our first aim in this section is to show under the present setting that the form £ as
well as the resolvent G, are uniquely and explicitly determined by quantities depending
only on the absorbed process XV.

We prepare a lemma.

Lemma 2.1. For an X"-excessive function v on Sp,
L( )—1'm1< 9 ) =1i 1( 90, v)(< 00) (2.8)
mo,v) = lim —(mg — m v) =lim —(p — v Q). .
05 0 7 0 0P¢ ot Y= PP VS

is well defined as an increasing limit and it holds that

L(mg,v) = lim a(uq,v). (2.9)

a—0o0
If v is p-invariant, then for each t >0 and a > 0,
1 0
L(mo,v) = 7(p — %, v) = alua,0).
Proof. If we set e(t) = (¢ — pYp,v), then

e(t +s) = e(t) + (Pl — Pl v) = e(t) + (¢ — Pl pPv) < e(t) + e(s),

and hence e(t)/t is increasing as t decreases and constant if v is pY-invariant.. We also
see that

a(uasv) = alp — aGlp.0) = [ e (t/a) (o - o) e
0
increases to L(v) as a T oo. O

We note that L(mg,v) is nothing but the energy functional of the X -excessive mea-
sure mg and the X%-excessive function v in the sense of P.A. Meyer [21] when X° is
transient (cf.[4, §39], [11, p16]). In [4, §39], it is called the mass of v relative to my.
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Let F. (resp.Fp.) be the extended Dirichlet space of (F,&) (resp.(Fo,€)). Each
element v € F, admits its quasi continuous version denoted by @ again. In view of [9,
§4.6], it holds then that

Foe=Feo={ue Fe:u(a) =0},

0 € Fe, E(p,u) =0 Yue Fep, (2.10)
F=F.NL*S;m) Fo=FoeNL*(So,m). (2.11)
Furthermore any w € F, can be decomposed as
w=ug+c o, ug € Fe, c constant (2.12)
and

E(w,w) = &(ug,up) + 2E(p, ). (2.13)

Theorem 2.1. (i) It holds that

E(p,) = L(mo,)(= L(mo, V) + L(mo, $?)). (2.14)

(ii) uq is a non-trivial element of F N L' (Sp;m).
(iii) For any f € L*(S,m) and x € S,

(Uq, f)
a(ua, @) + L(

(Ua, f)

a(tq, @) + L(mo, ¥)
(2.15)

(iv) Let §, be a unit mass concentrated at {a}. Then it is of finite energy integral and its
a-potential Uyd, is related to uq by

=G f(x Ug (X a) =
Gof(x) = Gof(x) + - o(z),  Gaf(a)

—— 1

Uyd, = Ug,
Oé(’LLa, SO) + L(m07 sz))

(2.16)

(v) The point a is regular for itself and also an instantaneous state with respect to X :
P,(c=0, 7,=0) =1, 7, = inf{t > 0: X; € Sp}. (2.17)

Proof. We first give a proof of (ii). According to a general theorem ([9, Chap 4]), the
formula obtained by the strong Markov property

Gof(x) = Gof (@) + ua(2)Gaf(a) we S, feL*(S;m), (2.18)

represents the orthogonal decomposition of G, f € F into the space Fy and its orthogonal
complement H, = {c-u, : ¢ constant} in the Hilbert space (F.&,). We see that G, f(a) >
0 for some f € Cif (S), because otherwise F = F° from (2.18) contradicting to u, € F.
By (2.18),

(U, D)Gaf(a) < (Gaf,1) = (f,Gal) <

Next we prove (i) and (iii). For f € Cy(S5), the function w = G, f has two expressions:

é(f,l) < 0.

w :Gglf—i—cua =ug+cp, c=Gaf(a), wuy€ Fep.
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By [9, Cor.1.6.3, Th.2.1.7], We can find a sequence {g,,} of uniformly bounded functions
in F such that

lim g, = ¢ m—ae., lim &(g, — ¢, 9, — ) = 0.
n—oo n—oo
Letting n — oo in the equation

E(w, gn) + alw, gn) = (f,9n),
we get
c€(, ) + calua, ) = (f.9) — (aGaf, ).
Since the right hand side equals

(f, 0 = aGop) = (f,ua),

we arrive at

(uas f)
a(uon 30) + 5(90’ 90)
(2.19) holds for any bounded Borel f. In particular, we have for any a > 0,

(ua, 1)
a(ua, ) +E(p, )

Gaf(a) = , [ eColS). (2.19)

Ga].(a): < éa

and hence
E(p, ) = a(ua, ).

By letting o — oo, we get from Lemma 2.1

E(p, ) = L(mo, ).

In order to prove (2.14), notice that the assumption of the strong locality of £ implies
that the killing measure k in the Beurling-Deny representation of £ vanishes (cf. [9,
Th.4.5.3]). On account of [9, Lemma 4.5.2],

/f%lk:: lim a/ f(2)2(1 — aGul(z))m(dx), f € FnCy(S).
S S

a—00

From (2.18) and (2.19), we have

a(ug, 1)
a(ua, @) + E(p, ¢
(g, 1)
a(ua, @) + E(p,9)

E(p,p) — alua, ¥)

= 2l @) ¥ Elpr ) )

1—aGul(z) = 1-aG91(x)— )ua(x)

> u(z) — Ua (T

Take f € F N Cy(S) such that f(a) # 0. We have from (2.19) and the above inequality

o /S 21— aGal)dm > (£(p.9) — atie, ¥))(aGa f2)(a).
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By letting o — o0, we get

0> (E(w, ) — L(mo, ¥)) f(a)?,
proving the desired identity (2.14).
Proof of (iv). By (2.3),

(uOm f) = ga(uom Gaf) = Gaf(a)ya({a})v

which combined with (2.15) gives

Va = ((ta, ) + L(mo,1))da-

Proof of (v). The regularity P,(c = 0) = 1 of the point a for itself follows from A.1
and a general fact that, for any Borel set B, the set of irregular points x € B for B is
of zero capacity ([9, Chap. 4]). If P,(0 < 7, < 00) > 0, then P,(X,, € SoUA) =1
contradicting the sample continuity and absence of the killing inside S for X. If a were
a trap with respect to X, then G,f(a) = f(a)/a for any f € L?(S;m) contradicting
(2.15). Accordingly, a is an instantaneous state.

O

Remark 2.2. (i) The present assumptions can be relaxed as follows:
(a) The measure m on S is replaced by m = m + vJ, for a non-negative constant ~.
(b) (£,F) is assumed to be a (not necessarily strongly) local regular Dirichlet form on
L?(S;m), while its part (€, Fy) on Sp is assumed to be a strongly local Dirichlet form on
L2 (S(); m)

Then, in view of the above proof of Theorem 2.1, we readily see that (2.14) and (2.15)
remain true under the following modifications:

g(gp7 ()0) - L(m()aw) + 57

(ua, f) + 7/ (a)

Gaf (@) = Gaf (@) + (tia, ) + L(mo, ) + 0 +ar

o),

for a non-negative constant é.
Example 6.1 will indicate stochastic interpretations of the parameters v and .

(ii) The parameters v, ¢ have appeared in Rogers’ description [24] of the most general
extension of a general resolvent GO under a setting corresponding to (1) = 0. Another
parameter appearing in [24] is a family of measures n,,a > 0, on Sy, which is reduced
to uq - m under the present symmetry assumption.

(iii) In the setting (i) in the above, G, is conservative if and only if 1)) = 0 and § = 0,
and in this case the above expression is reduced to

(1 —aG31, f) +v/f(a)
a(l —aG9%1,1) + ay

Gaf(z) = Gof(z) + (1 - aGol(x)).

Such a formula was found by Y. Le Jan [18](see also [4, §78]) in a general setting to pro-
duce conservative resolvents out of a (not necessarily symmetric) submarkovian resolvent
and its dual preserving the duality.
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2.2 Description of the inverse local time

In §4, we shall construct a diffusion on S with resolvent (2.15) by means of Poisson point
processes of excursions, namely, by piecing together the excursions. In this subsection,
let us study more about the roles of the measure mg and the energy functional L(my, 1))
played in the present diffusion X on S.

Let L(t) be the positive continuous additive functional (admitting exceptional set)
associated with the smooth measure d, (cf.[9, §5.1]):

Usbo(z) = E, ( /O h eo‘tdL(t)) for q.e. x € S. (2.20)

In particular, (2.20) holds for z = a. L(t) is a local time at {a} in the sense that it
increases only when X; = a:

L(t) = /0 1,(X.)dL(s).

We consider the right continuous inverse S(t) = inf{s : L(s) >t} of L(t).

It is well known that the increasing process (S(t), P,) is a subordinator killed upon an
exponential holding time (cf.[2]). Theorem 2.1 enables us to identify the Lévy measure
of the subordinator and the killing rate. Indeed, according to [2, v (3.17)], (2.20) implies
the identity

Eq(e=W) = exp(—t/Uaba(a)),

which combined with (2.16) leads us to

E, (e*as@)) = e~tLm0¥) expl—ta(uq, @))- (2.21)

We need a lemma which will play a basic role in §4 again. A family {1}~ of
o-finite measures on Sy is called an X°-entrance law if thg = Vsyt, S, t > 0. Then
ve(f), f € BT (Sp), is measurable in ¢ and we may let

Ua(f) = /000 e~y (f)dt, a >0, f e BT (S).

Lemma 2.2. (i) There exists a unique X°-entrance law {p;} such that
o0
mo :/ y dt. (2.22)
0

(ii) /la(f) = (uomf)a a>0, f€ B+(SO)

Consequently,

t
[ nstos= [ PAC <t X =app@man), 150, fEBS).  (223)
0 So
(iii) 1t (Sp) < o0, t>0.
(iv) For any bounded X°-excessive function v on So, p(v) is right continuous in t > 0.
(v) For any X°-excessive function v on Sy, the energy functional L(mg,v) introduced in
Lemma 2.1 admits an expression

L(mg,v) = ltiﬁ)l e (v).
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When v is p)-invariant, it holds for any t > 0 that
Limo,v) = u(v).
(vi) L(mg,p) = 0.
Proof. (i) Since
plo(z) = Pt < ¢® < o0, X =a) |0, t— o0,

limgjo mopd(f) = (P, f) = 0 for f € L*(Sp, m), namely, my is purely excessive. Hence
the desired assertion follows from a well known representation theorem provided that X°
is transient ([11, Th. 5.25]). But the present situation can be reduced to this case by
observing that

Slz{xESO:(p($)>0}

is a non-trivial X’-invariant set q.e. and the restriction of X° to Sj is transient (cf. [9,

§4.6]).
(ii) For f € Cy (Sp), we have

/t ()t = / e )t = / 19 f)ds = (0,9 F).

and ;
plf) = —Seabh),  aet

Hence
~ > —atd 0
fa(f) = — | e a(so,ptf)dt
0

= [—e_at(so,p?f)}go—a/oooe_“t(%p?f)dt
= (o, f) — (e, Gof) = (p — aGl, [) = (ua, f)-

(iii) By (ii) and Theorem 2.1 (ii), fio(1) = (¢qa, 1) < oo, from which the desired finiteness
follows.

(iv) On account of (iii), we have 1 s(v) = pe(plv) — pe(v), s | 0.

(v) Since (u,v) is increasing as ¢ | 0 (independent of ¢+ when v is p?-invariant), the
assertions follow from

t
(mgy — mopg,w = / (s, v)ds.
0

(vi) Since S(t) is the right continuous inverse of an increasing continuous process L(t),
P,(S(t) > 0) =1 and consequently we have

L(mg, ¢) = lim a(uq,p) = 00

a—0o0
by letting v — oo in (2.21). O

We see by the above lemma that 1,(¢) is decreasing and right continuous in ¢ > 0
and so we can define a measure © on (0,00) by

O((5,1]) = ps(9) — puly), 0<s<t. (2.24)

10
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It then holds that

6((87t]) = ,us(SD _p?—s@) = <M57P-(O' <t-— ‘9)>’

and we get by letting t — oo,
O((s,00)) = ps(e)- (2.25)
We note that

for each 6 > 0 by virtue of Lemma 2.2 (iii).

Lemma 2.3. It holds that
a(ta, p) = / (1—e") O(du).
0

Proof. we have from Lemma 2.2 (ii) and (2.25)

altarp) = afalp)=a [ 0t oo
— /OOO /Osozeatdt@(ds):/ooo(l—eO‘S)@(ds).
O

On account of the formula (2.21), Lemma 2.3 and by noting that li?& a(uq, ) =0,
(0%

we can get the next theorem from [2, Theorem 3.21].

Theorem 2.2. Define a measure © on (0,00) by (2.24). On a certain probablity space
(Q,B, P), construct a subordinator {Y;}1>0 with Lévy measure © and zero drift and a
random variable Z, independent of {Y;}, with

P(Z >t) = e Lmow)t ¢ >,

If we let
Y(t) t< Z,

S*(t)—{ ~ iy

then the process ({S*(t) }+>o0, P) is equivalent in law to ({S(t)}i>0, Pa)-

3 Strongly local Dirichlet form with a recurrent point

Let S and m be as in §2. In this section, we consider a special case of the Dirichlet form
of §2 for which the point a is recurrent.

3.1 Description of associated Poisson point process and entrance law

Let (£,F) be a strongly local regular Dirichlet form on L?(S;m) and X = (X, P;) be
an associated diffusion on S. In place of the assumption B.1 of §2, let us assume that
B2y(z)>0 m—ae z€Sy

B.31€ F.and £(1,1) =0.
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In the next subsection, we shall construct a typical example of a Dirichlet form (&, F)
satisfying these conditions by a method of the one point compactification.

The assumption B.2 implies that u; > 0, m-a.e. and Cap({a}) = &i(ui,u1) >
(u1,u1) > 0, namely, the assumption B.1 of §1 (cf. [9, Lemma 4.2.1]). Further, the
Dirichlet form (€, F) becomes irreducible because, from (2.15), we have for any Borel
sets B, By C S of positive m-measures

(IE'7 GaIF) Z (Ua, IE)(UOH IF)/OZ(UO“ 90) > 0.
Since (&, F) is recurrent by B.3, we have actually the property
o(z) =1, qe x €8, (3.1)

stronger than the assumption B.2 in view of [9, Th.4.6.6].
Thus the point a is not only regular for itself, instantaneous, but also recurrent. (2.15)
is now reduced to

(Ua, f)
(g, 1)

(ua, [)

Gof(z) = Gof(x) + Al 1)’

ua(x), z €S, Gofla)= (3.2)

The positive continuous additive functional L(¢) of X associated with the unit mass d,
has the property that L(co) = oo and its right continuous inverse S(t) is a subordinator

satisfying
& 1
E, —eS8gs ) = ——— :
([ o) = 33

on account of (2.16) and (2.20).
Therefore we can follow directly the argument of [15, §6 case 2(b)] to conclude that

Dy, = {s:S(s)—S(s—) > 0}, (3.4)
ps(t) = XS(s—)+t7 ENS Dp, 0<t< S(S) - S(S—), (35)

defines, under the law P,, a W,-valued Poisson point process p, where W, is the space
of continous excursions in Sy from a to a:

Wy = {w :]0,{(w)) — Sp, continuous, 0 < ((w) < o0, w(0) = a,w((—) =a}. (3.6)

Let n be the characteristic measure of the Poisson point process p. Then n is a o-
finite measure on the space W, and {w(t¢),n} is Markovian with respect to the transition
function p? of X°. The entrance law {v;} associated with the characteristic measure n is
defined by

v(B) =n{w: ((w) >t, w(t) e B}, BeB(S), t>0. (3.7)

Recall that we have already considered an X -entrance law {1} specified by (2.22) which
is now reduced to

m :/ e dt. (3.8)
0

The description (2.23) of {u;} now reads

/0 pa(f)ds = [ PC < 0 f(@m{do). >0, € B(S0). (3.9)
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Theorem 3.1. vy = py, t > 0.

Proof. By virtue of Lemma 2.2, it suffices to show that

Va(f) = (ua, ), f € By(So)- (3.10)

We make use of the next general formula

E, Za(s,ps,w) =FE, </ o a(s,w,w)n(dw)ds) (3.11)

s<t
holding for any non-negative predictable function a(s,w,w) on [0,00) x W, x Q, Q being
a filtered sample space on which the diffusion process X is defined (cf. [14, p62].)
Since m({a}) is assumed to be zero, /00 I,(Xy)dt = 0, P,-almost surely. By (3.4)
and (3.5), we have for f € By(95), "

s - ([ e=nssn) - (5 =)

s>0
¢(ps)
= E, <Z e~ 5(s) / e ot f(ps(t))dt> :
s>0 0

We let ()
T(w) = /0 e~ £ (w(t))dt

a(s,w,w) = ['(w) - e=*=9) is then predictable and we get by (3.11)

Gaf(a) = <Ze o s)

s>0

_ / I'(w)n(dw) - /OooEa (725 as.

a

Since
| Ttwn(dw) = su(s),
(3.2) and (3.3) lead us to the desired identity (3.10). O

By Theorem 3.1 and [15, Th. 6.3], the finite dimensional distribution of {W,,n} can
be described as follows:

. fi(w(ty)) fo(w(t2)) - fu(w(ta))n(dw) = e, frog, o, f2- PRt Fr-1Ph, 1, fus

(3.12)
for any 0 < t; <to < -+ <tp_1,tn, f1,f2, "+, fn € Bp(Sp). Here we use the convention
that w € W satisfies w(t) = A,Vt > ((w), and any function f on Sy is extended to SpUA
by setting f(A) = 0.

In §4, we shall start with an m-symmetric diffusion X° on Sy and an expression like
the above with p; being specified by (2.22). See §4 for the abbrevaited notation appearing
on the right hand side of (3.12).
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Actually Theorem 3.1 can be extended to a general case where condition B.3 of the
recurrence is not assumed as we shall see in Remark 4.2 at the end of §4.

We note that the excursion law around a regular point of a general Markov process
can be also formulated in terms of Maisonneuve’s exit system[5]. Some property of the
integral in t of the associated entrance law was investigated by R.K. Getoor [10].

3.2 Construction of form by one-point compactification

In this subsection, we start with a Dirichlet form with underlying space Sy and extend it
by the one-point compactification to a Dirichlet form with underlying space S = Sy U a
satisfying B.2 and B.3 (and consequently B.1).

Let Sy be a locally compact separable metric space and m be a bounded positive
measure on Sy with Supp[m] = Sy. We consider a regular strongly local Dirichlet form
(€, Fo) on L?(Sy;m) satisfying the Poincaré inequailty:

(u,u) < A-E(u,u) u e Foy JA > 0. (3.13)

Denote by S = Sp U a the one-point compactification of Sy and by L?(S;m)(=
L?(Sp;m)) the space of square integrable functions on S with respect to Ig, - m. Let
us introduce a space (€, F) by

F = Fo+ constant functions on S, (3.14)
5(11)1,’[1)2) = g(fl,fg), w, = f1 + 1, wo = f2 + Co, fz € Fo, ¢; constant. (315)

Theorem 3.2. (i) (€, F) is a regular strongly local Dirichlet form on L*(S;m) possessing
as its core the space
C =Cy+ constant functions on Sy,

where Cy = Fy N Cp(So).
(ii) (€, F) and the associated diffusion on S satisfy B.2, B.3.

Proof. (i) Suppose f € Fp is a constant. By the regularity of (£,F), there exist f,, €
Fo N Cy(Sy) which are & -convergent to f. We have then E(f, f) = lim, o0 E(f, frn) =0
on account of the strong locality of (£, Fy) and Remark 2.1 stated in the beginning of
§2.1. (3.13) then implies f = 0 and the definition (3.14) and (3.15) makes sense.

If w, = fn + ¢, € F is an &-Cauchy sequencel then f, is £ -convergent to some
f € Fo by (3.13) and hence w, is &;-convergent to f + ¢ for some constant c.

Clearly C is dense both in F and C(S), namely, (£, F) is regular.

Suppose, for w; = f; + ¢; € C, that w; is constant on a neighbourhood of Supp(ws).
When c2 = 0, E(wi,wy) = 0 by the strong locality of (£, Fy). When co # 0, the set
U = S\ Supp(ws) is either empty or a non-empty relatively compact open subset of Sp.
In the former case, f;j = 0 and £(wy,wz) = 0. In the latter case, fo = —co on U, while
Supp(f1) C U and E(wy,wa) = E(f1, f2) = 0 again. Hence (£, F) is strongly local on
account of [9, Th.3.1.2].

The Markov property

weF=v=0Vw)AleF, Ewv,v) <Ew,w)

is evident, because, for w = f+c, w € Fy, c constant, we have v = [(—c)V f]A(1—c¢) + c.
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(ii) B.2 follows from the Poincaré inequality (3.13). Denote by X and X° = (X?, PY, ¢9)
the diffusions associated with (€, F) and (€, Fo) respectively. Then XV is the part of X
on Sy and hence

o(x) = P2(¢° < 00), x € S,

Denote by GV the 0-order resolvent operator of X°. Since m(Sy) < oo, (3.13) implies
that G°1 € Fy and
EY9(¢" =G%(z) <0 qe.

proving (3.1). It is obvious from (3.14),(3.15) that 1 € F and £(1,1) = 0. O

(€, Fo) is not necessarily irreducible on Sp, but (£,F) defined by (3.14),(3.15) is
irreducible recurrent on S in view of the observation made in the preceding subsection.
See Example 6.2.

4 Construction of a symmetric extension via excursion val-
ued Poisson point processes

In this section, we start with an m-symmetric diffusion X° on Sy and construct first
an excursion law with which Poisson point processes of two different kinds of excusions
around the point a are associated. We then construct an m-symmetric diffusion X on
S = Sp U a by piecing together those excursions. The resolvent of the resulting diffusion
X turns out to be identical with (2.15).

4.1 An excursion law and its basic properties

Let S be a locally compact separable metric space and a be a non-isolated point of S.
We put Sy = S\ {a}. The one point compactification of S is denoted by Sa. When S is
compact already, A is added as an isolated point. Let m be a positive Radon measure
on Sp with Supp[m| = Sy. m is extended to S by setting m({a}) = 0.

We assume that we are given an m-symmetric diffusion X° = (X?, P?) on Sy with
life time ¢° satisfying the following:

A1 P <oo, X% €{a}u{A}) =P < 0), VzeS.

We define the functions ¢, uq, ™, ¢, ¢ by (2.5) and (2.6), namely, for z € Sy,
plw) = PAC° < 00, X =a), ua(z) = E(e s Xpo_ = a),

q)[) =1 o= ¢(1) _|_¢(2)7 ¢(1)(x) — Pg(co < o0, X<O, — A), Q,Z)(Q)(LL’) _ PO(CO _ OO)

T

Let us assume that
A.2 o(z) >0, Vo € S,
and
A.3 uq € L' (Sp;m), Ya > 0.

Denote by p?, G2 the transition function and the resolvent of X respectively. Our last
assumption concerns the regularity:
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A4 ua€Gy(So),  Ga(Cu(So)) € Cy(So),  a>0,

where Cy(Sp) is the space of all bounded continuous functions on Sy.

The measure m could be infinite on a compact neighbourhood of a in .S, but it is finite
on each level set of u, due to the condition A.3. We also note here the next relation
which will be utilized in the sequel:

U (z) = o(x) — aGlp(z) <1 —aGl1(x), z € Sp.
Define mg by
mo=@-m,

which is an X-excessive measure with mop) = pdy - m. In view of Lemma 2.2, there
exists a unique X%-entrance law {y;} related to the measure mg by (2.22), namely,

o
mo :/ e dt.
0

ﬂa(f) = (uaaf)a VS B+(SO) (4'1)

On account of the assumption (A.3), we then have that

and it satisfies that

1
we(So) < o0, t >0, / 1 (Sp)dt < oo. (4.2)
0

We now introduce the spaces W/, W of excursions by
W' = {w: 3¢ (w) € (0,00], w is a continuous function from (0, {(w)) to Sy},

W ={we W’ :if ((w) < oo, then Jw({(w)—) € {a} U {A}}. (4.3)

¢(w) will be called the terminal time of the excursion w.
We are concerned with a measure n on the space W specified in terms of the entrance
law {y;} and the transition function pY by

/W fw(ty)) fo(w(t2)) - fa(w(ta))n(dw) = pe, frog, o, f2 P, 4,y Fa-1Ph, 1, fus

(4.4)
forany 0 <t <to <---<tn, f1,f2," -, fn € Bp(Sp). Here, we use the convention that
w € W satisfies w(t) = A,Vt > ((w), and any function f on Sy is extended to Sy U A
by setting f(A) = 0. Further, on the right hand side of (4.4), we employ an abbreviated
notation for the repeated operations

Mty [flp(t)g—tl {f2 cee p?n,l—tn,g (fn—lp?n —tn_1 fn)}]

Proposition 4.1. There exists a unique measure n on the space W satisfiying (4.4).
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Proof. Let n be the Kuznetsov measure on W’ uniquely associated with the transition
semigroup {p?} and the entrance rule {n,} defined by

Ny =0 foru<O0, n,=p, foru>0

as is constructed in [5, Chap XIX, 9] for a right semigroup. Because of the present choice
of the entrance rule, it holds that @ = 0 where « is the birth time which is random in
general(cf. [11, p54].)

On account of the assumption A.1 for the diffusion X° on Sy, the same method of
the construction of the Kuznetsov measure as in [5, Chap.XIX, 9] works in proving that
n is supported by the space W and satisfies (4.4). [l

We call n the excursion law associated with the entrance law {x;}. We split the space
W of excursions into two parts:

W ={weW:((w)<oo, w((—)=al, W™ =W\WT. (4.5)
Note that W~ = W, UW; with
Wi = {w e W: ((w) < o0, w(¢—) = A}, Wy = {w e W : ((w) = oo}
For w € W7, we define @ € W by
w(t) = w(¢ —1t), 0<t<(. (4.6)

The next lemma says that the restriction of the excursion law to W™ is invariant
under time reversion. This is a present variant of the time reversal arguments that have
been formulated in general contexts ([23], [12], [6], [7]).

Lemma 4.1. For any t;, > 0 and fi € By(So), (1 <k <n),

n {H frlw(ts + - +t)); W*} = pi, frog, fo - DL, fam1PL, frtp, (4.7)
k=1

n {H Sr(w(ty +- - +tk))§W+} =n {H Sr(@(ty - +tk))§W+} : (4.8)
k=1 k=1

Proof. (4.7) readily follows from (4.4) and the Markov property of n. As for (4.8) we
observe that, for aq,---,a, > 0,

/ / e_o‘ltl_"'_a"t”n{H Fr(w(ty +---+tk));W+}dt1---dtn (4.9)
0 0 k=1

equals
n{F(w);¢ < oo, w((—) =a}
with

n

F(w) - / B /0'<t1<~--<tn<c H {e_ak(tk_tk_l)fk(w(tk))} dtl o dtn, (tO - 0)

k=1
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Hence, for (4.8), it suffices to prove
n{P(w);¢ < 00, w(¢—) = a} = n{P(@);¢ < 00, w(¢—) =a}.  (410)
Performing the change of variables
C—tp=sk 1<k<n,
in the expression of F'(w) and by noting that
tk=C— 8k, tpg—tp1=81—5 1<k<n, so=¢,

O<t1 < <t <(<=0<s, < - <581 <,

we obtain
F(w) = // H {e_ak(sk—l_sk)fk(w(sk))}dsl...dsn
0<sn<-<s1<C 1
= / e / Dsyos, (w)dsy -+ - dsp,
0<sp < -<51<00
with

Topsn(w) =[] {efa’“(skflfs’“)fk(w(sk))} cem ) £ (w(s1)) L(g,¢) (51)-

k=2
On the other hand, we get from (4.4) and the Markov property of n that
n{ls 5505, (w); ¢ < 00, w((—)=a}
—n {fn(w(sn))efan(sn—rs?m) -
Fal(w(s2))e™ =) fr (w(s1 ) uay (w(s1)): 51 < € |
— e_an(Snfl_sn)_anfl(5n72_5n71)_"'_042(51_32) .
0 0 0 0
,Ufsnfnpsn,l—snfnflpsn,g—sn,l fTL*l e p52—53f2p51—52flua1 .

Therefore,
n {F(w)7 C < OO, w(c_) = a’} = /O danSnfnngfn—ngzn_l e f3Gglgf2Gnglual

In view of (2.7), the symmetry of G, (4.7) and (4.9), we arrive at

n {F(b);¢ < oo,w(¢—) = a} = (mo, fuGo, fa-1Go,_, -+ [3Go, f2Gay fitia,)
= (fa, GO, fna1Go, | -+ [3Go, [2Gay fria,) = (J1Go, f2Go f3 -+ Gay frps tay)

= / e M 1y, [1GY, [2Go, f3+ - Go fapdty = n{F(w);{ < oo, w((—) = a}
0

the desired identity (4.10). O

Next we put
Wy={weW: ltiﬁ)lw(t) =a}. (4.11)
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Lemma 4.2. n{W\W,} =0.
Proof. The preceding lemma implies that
n{WH\W,) = 0 {00 w(04) = af)
= n{W'n@0+) =a)} =n{W" N (w((-)=a)}=0.
We then have for each ¢ > 0
n {p(w(t)); (¢ > )N (w(04+) = a)*} = n {(WF\Wa) N (¢ > 1)} =0,

which combined with the assumption A.2 leads us to

n{(W\Wa)n (¢ >} =0,
It then suffices to let ¢ | 0. [l
Lemma 4.3. For any neighbourhood U of a in S, we let

Tye = inf{t > 0 : w(t) € U}, we W.

It holds then that
n{mye < (} < o0.

Proof. We may assume that the closure U in S is compact. Let f(z) = p(x) —uq(x), x €
So. Then

f(z)=E2 {1 C e 00 o 00, Xeo_ = a} >0, VzelS.

Since uq(z) —u1(z) T f(z), o | 0, the assumption A.3 implies that f is lower semicon-
tinuous on Sy and hence

= inf
c= inf f(z)

is positive. We then have, for each § > 0 and = € 90U,
PY(6 < ¢° < 00, Xeo_ = a) > EV {1 —e "6 < (" <00, Xpo_ = a}
> c—Eg{l—e*CO;CO <0, Xeo_ :a} >c—(1—e70).

Choose 6 > 0 so small that
r=c—(1-e°)

is positive. For such 0,
P25 < (¢ < 00, Xeo_ =a) >, Vo € oU. (4.12)

We shall use the notation 7y not only for w € W but also for the sample path of the
Markov process X". Using the preceding lemma, (4.12) and (4.2), we are led to

n{me < (} =limn{e <1y <} = lim/ pre(dz) P {pe < (°}
€l0 el0 Ju
< 1im€w/ pre(dz) E° {flp)%w (6 < ¢ <00, Xe0_ =a);Tye < 40}
U s

< r7lim [ pe(de)P(6 < ¢ < 00, Xeo_ =a) < P im [ pe(dz)P2(s < ¢%)

el0 So €l0 So
= ! 1€iﬁ)1u6+5(50) <7 us(Sp) < o0.
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O
The next lemma states a relation of the excursion law n to energy functionals L(mg, v)
introduced in Lemma 2.1.

Lemma 4.4. ‘
(i) n(W+) = L(mo, ), n(W~) = L(mo, ¥), néW?) = L(m(]quz)(l))’ i=1,2.

(2

(i) n(W;) < o0, n(Wy) = () = ajia(¥?) = a(ug, ) < 00, > 0,0 > 0.

Proof. (i) Since n(¢ > t; W) = (i, ), the first identity follows from Lemma 2.2 (v) by
letting ¢ | 0. The proof of the other indentities is the same.

(ii) Take a neighbourhood U of a in S with compact U. We have then by the preceding
lemma

n(W; ) =n(¢ <oo,w((—) =A) <n{mye < (} < 0.

Since 1) is pY-invariant, the second assetion follows from (i), Lemma 2.1, Lemma 2.2
and assumption A.3. O

In particular, n(W~) = n(W; ) + n(W, ) is finite. We shall see that n(WW ) = cc.

4.2 Poisson point processes on W, and a new process X

By Lemma 4.2, the excursion law n is concentrated on the space W, defined by (4.11).
Accordingly, we consider the spaces

Wi ={weW" limw(t) = ah, Wy ={w e W™ :limuw(t) = a},

so that W, = W, + W, . In the sequel however, we shall employ slightly modified but
equivalent definitions of those spaces by extending each w from an Sp-valued excursion
to S-valued continuous one as follows:

W, = {w:3((w) € (0,00], w is a continuous function from [0, {(w)) to S,w(0) = a.
w(t) € Sp, t € (0,((w)), w(((w)—) € {a} U{A}if ((w) < o0}, (4.13)

Any w € W, for which {(w) < oo, w({(w)—) = a will be regarded to be a continuous
function from [0, ((w)] to S by setting w(¢(w)) = a. We further let

Wit = {w:3¢(w) € (0,00), w is a continuous function from [0, ¢(w)] to S,
w(t) € So, t € (0,¢(w)), w(0) = w(((w)) = a}, (4.14)
W, =W, \ W, (4.15)

The excursion law n will be considered to be a measure on W, defined by (4.13) and
we denote by n™, n~, the restrictions of n to W;, W, defined by (4.14) and (4.15)
respectively.

Let {ps,s > 0} be a Poisson point process on W, with characteristic measure n
defined on an appropriate probability space (€2, P). We then let

+ _ ps 1f ps € W(;rv
Ps _{ 0 otherwise, (4.16)
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~ [ ps if ps e W,
Ps _{ 0 otherwise, (4.17)

where 0 is an extra point disjoint of W,. Then {pf,s > 0}, {p;,s > 0} are mutually
independent Poisson point processes on W, W, with characteristic measures n*, n~
respectively. Furthermore

Ps=P; + P;. (4.18)

By means of the terminal time {(p;") of the excursion p;’, we let

=> (p)), s>0. (4.19)

r<s
We put J(0) =

Lemma 4.5. (i) J(s) < o a.s. for s > 0.
(ii) {J(s)}s>0 is a subordinator with

E {e_a‘](s)} = exp{—a(uq,p)s}. (4.20)

Proof. (i) We write J(s) as J(s) =1 + II with
I= >, @) = > <p)
r<s,((p)<1 r<s((pif)>1

Since n™ (¢ > 1) < p1(Sp) < oo by (4.2), r in the sum IT is finite a.s. and hence IT < oo
a.s. On the other hand,

E(I) = sn*(GC<1)<sn(CA1)

1 1 1
= sn’ {/0 I(O’C)(t)dt} = 8/0 nt (¢ > t)dt < 8/0 e (So)dt,

which is finite by (4.2). Hence I < oo a.s.
(ii) Clearly {J(s)}s>0 is increasing and of stationary independent increment. Since

el 1 =% {efam) _ o= } Ze*a“ ){ —ag(pf) _ }

r<s
we have s
E {670“](5)} —1= —c/o E {670&1(7‘)} dr,
with
¢ = —e ) =n(l—-e ;¢ <oo,w(() =a)
= n{a/oge it ¢ < oo, w(¢) = a}

o0

n(t < ¢ < oo,w(¢) = a)dt

Il
Q

= o p)dt = ajia(p) = auq, ) < oo.

<
o
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0

In virtue of Lemma 4.3 and Lemma 4.5, we may assume that the next three properties
hold for any w € € by subtracting a P-negligible set from {2 if necessary:

J(s) < o0 Vs > 0, (4.21)
lim J(s) = oo, (4.22)

and, for any finite interval I C (0,00) and any neighbourhood U of a in S,

{sel:me(pf) <((pf)} is a finite set. (4.23)

Let T be the time of occurrence of the first excursion of the point process {p;,s > 0},
namely,

T = min{s > 0: p; # 0}. (4.24)

Since n(W,;") = L(mg,v) < oo by Lemma 4.4, we can see that 7" and p;. are independent
and

P(T > t) = e Emow)t, the distribution of p3. = L(mo, ) 'n". (4.25)
We are now in a position to produce a new process X = {X;};>0 out of the point

processes of excursions p.
(i) For 0 <t < J(T—), we determine s by

J(s=) <t < J(s), (4.26)
S Ht-J(s-) i J(s) = J(s=) >0
Tt —J(s— it J(s) —J(s—) >0,

Xt = { . if J(s) — J(s—) = 0. (4.27)

(ii) For J(T—) <t < (u=J(T—) + ((pr), we let
X, = pr(t - J(T-)). (4.28)
In this way, the S-valued continuous path
Xt, 0<t <o,

is defined and
XCw—:A if {, < 0.

Continuity of the path is a consequaence of (4.23).
For this process {X;,0 <t < (,, P}, let us put

Gufla) = E (/ch eatf(Xt)dt> . a>0, feB(S). (4.29)
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Proposition 4.2. [t holds that

(o, f)
a(ua, @) + L(mo, )

Gof(a) = (4.30)

Proof. We use the notation

We have then

Cw J(T—)-}—C(pT)
/ O (X)dt = Z / —at f(X,)dt + / =0 F(X,)dt
0 J(T-)
- Z em /- )foz (py) + e_aJ(T_)fa(piF)a

s<T

and consequently

Gof(a) = E(Z 6 (pF) + a““fa(p;))

s<T

= F ( / ) eaﬂaws) 0 (fa) + B (7T Limo, )"0 (fa)
0
D) n(f)

afia(e) + L(mo,¥) — ajla(p) + L(mo, ¢)
_ n(f) )
Oé/la(gO) + L(m07 ¢) a/ja(gp) + L(m()v ¢)
It then suffices to substitute (4.1) in the last expression. O

4.3 Continuity of resolvent along X
Lemma 4.6. For o >0 and f € B(S), define Gof(a) by the right hand side of (4.30)

and extend it to a function on S by setting
Gof(z) = GO f(x) + Gafla)ua(z),  x € Sp. (4.31)
Then {Gq a0 is an m-symmetric (sub) Markovian resolvent on S.

Proof. By making use of the resolvent equation for GO, the m-symmetry of GY and the
equation

Uo (7) — ug(x) + (@ — B)Goup(z) =0, «,B>0, v € Sp,
we can easily check the resolvent equation

Gaof(x) — Gﬁf(x) + (o — 5)GaGﬁf(x) =0, z€S.

The m-symmetry of G,

/ Gof (@)g(x)m(dz) = / £(2)Gag()mi(dz)
S S
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holding for any non-negative Borel functions f,g is clear. Moreover we get by Lemma
2.1 that

O‘(UOUSO +11Z))
Oé(uou@) +L(m07¢)
< 1 —wua(x) Fug(z) =1, x € S,

aGol(z) = aG1(x) + ug(z)

and similarly, aGy1(a) < 1. O

Let {UQ be a decreasing sequence of open neighbourhoods of the point a in S such
that U, D Up41 and N2 Uy, = {a}. Let

A=Ayp={r € So:ua(x) <p}fora>0 0<p<l
We then set
o, =inf{t > 0: X? € U, N Sp}, Ja:JLrgoan, T, = inf{t > 0: X} € U, N A},
with the convention that inf () = co.

Lemma 4.7. For any >0, p € (0,1) and x € Sy,

lim P2 {7, < 04 < 00} = 0. (4.32)

n—o0
Proof. Since
{oq < 00} = {¢° < o0, Xgo_ =a}
and o, = ¢° on the set {0, < 0o}, we have for x € Sy and m < n
ua(z) = EY{e %1, <o,}+E){e 7, > 0,}
EY {e7Tu, (X(T)n) i Tn < 0} + E? {e=*%; 7, > 04}
DEO (i1, < 3} + B {7, > 0,)

pE(x) {e_a(Tn/\Ja);Tm < Ua} + E;(r) {e_aaa;Tn > Ua} :

IA

IN

By letting first n — oo and then m — oo, we obtain

uo(z) < p lim EY {e*O‘U“;Tm < Ua} + TL11—>I20 EY {e*O‘U“;Tn > Ua}

m—0o0

= Eg {e_o‘aa} —(1=p) lim Eg {e_o‘”“;Tn < O'a}
n—oo
= ua(z)—(1—p) nanolo EY{e 1, < 04},

which implies
lim Eg {e_aU“;Tn < O'a} =0

n—oo

and so (4.32) must hold. O

Lemma 4.8. Let a > 0.
(i) For any x € Sy,

tl%m uo(XP) =1 Pl-as. on {0, < 0o} (4.33)

(ii) n(A) = 0 where

A= {w e W, :3a >0, ltiTr?ua(w(t)) # 1}.
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Proof. If 0, < oo and if li_mtTUaua(X?) < p, then for any small € > 0 there exists
t € (04 — €,04) such that u,(X?) < p, and so 7, < o, for all n. Therefore by the
preceding lemma

P {limy;,, ua(X{) < p, 04 < 00} =0.

Since u, is decreasing in a and p can be taken arbitrarily close to 1, we obtain (4.33).
(ii) follows from (i) as
n(A) = lilrg n(An{e<(})
€
= lim [ p(dz)P?(lim ua(X?) # 1) = 0.
€l0 So tloa
O

We extend u, to a function on S by setting uy(a) = 1. By Lemma 4.8 (ii) combined
with Lemma 4.1 and a similar reasoning as in the proof of Lemma 4.2, we may assume,
subtracting a suitable n-negligible set from W, (resp. W, ), that uj(w(t)) is continuous
int € [0,(] (resp. t €[0,().)

Lemma 4.9. Let 0 < p <1 and set

W, = {w e W, 012%}2{1 —up(w(t))} > p} .

Then nt(W,) < oo.

Proof. The proof is similar to that of Lemma 4.3. For any = such that 1 —u;(z) = p and
for 6 = —log(1 — §) > 0, we have

Plog>6) > EY{1—e 70, >6}
EX{1—e%} —E){1-e 0, <6}
1—u(@)—(1—e¥)=p—(1—e) = g.

V

Therefore if we set
A={zx e Sy:1—ui(z) <p}, 7=inf{t>0:w(t) € Sp\ A},
then

nt(W,) =nt(r <¢) =limnT(e < 7 < ¢% =lim [ pc(de)P2(r < ¢
€l0 €l0 J4

< ﬁelo/Aue(d:p)Eg { <%) P)O(g(aa >0);7 < CO}
< mao [ pldo)P2os > 5)
P So
< 2 [l P20 > 0)+ ~ [ nldn) P < u = o0)
= %131%1 pregs(1) + %lgg;uew(”»
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which is finite in view of (4.2) and Lemma 4.4. O
For a > 0, f € B(S), we defined the resolvent G f by

Gaf(x) = Ggf(.%) + Gaf(a)ua(x)v xr €S0
with Gof(a) of Proposition 4.2. We now extend G f(z) to S by setting

G%f(a)=0

In the last subsection, we have constructed a process { X; }+c[o,c,,) out of the Poisson point
processes p*, p~ on W, W, defined on a probability space (2, P).

Proposition 4.3. Let u = Gof with f € Cy(S). Then u(Xy) is continuous in t €
[0,{w), P-a.s.

Proof. As was remarked immediately after the proof of Lemma 4.8, w1 is continuous along
any sample point functions of p* = {p,s > 0} and p~ = {p;,s > 0}. Moreover, by
Lemma 4.9, we can subtract a suitable P-negligible set from 2 so that, in addition to the
properties (4.21),(4.22) and (4.23), p™ satisfies the following property for every sample
point w € Q: for any finite interval I C (0,00) and for any p € (0,1),

{sel: max (1—wu(pl(t)))>p}isa finite set. (4.34)
0<t<((pd)

Then it is not hard to see that not only X; but also u;(X;) are continuous in ¢ € [0, ).
From the inequality G{1(z) < 1 —uy(z), = € S, we see that

Mﬂ%@zOﬁ%:w

—to

Hence G(l)f(Xt) has the same property as the above for f € Cy(S). Since G(l)f(Xt) is
clearly continuous on {t € [0,(,) : X; # a} by the assumption A.4, it is continuous
on [0,(,). We have thus proved the continuity of G f(X;). The continuity of G, f(X})
follows from the resolvent equation proved in Lemma 4.6. O
4.4 Markov property of X

Let us define p;f(x) for t > 0,2 € S, f € B(S), as follows:

pef(a) = E(f(Xe);¢w > 1), (4.35)
pef(x) = pf(x) + EX {ps_o, fla);0, < t}, x € Sp. (4.36)
Evidently
/ e~ pifdt = Gof, a>0. (4.37)
0
Lemma 4.10. p;s = pps, t, s >0.

Proof. Take any f € Cy(S). By (4.36) and the resolvent equation in Lemma 4.6, we have
for any z € S

/OOO e {/OOO e—ﬁspt+sf(x)ds} dt = /OOO e {pe(Gpf)(x)} dt, (4.38)
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because the left hand side equals

—(Gpf(z) — Gaf(x)) = GaGpf().
We first consider the case where z = a. Then the functions inside {-} of the both hand

sides of (4.38) are continuous in ¢ > 0 in virtue of the continuity of X and Proposition
4.3. Hence we have for any ¢t > 0

| P pt@ds = nGaf)a) = [ P mpu)@pis
Since both pi1sf(a), pi(psf)(a) are right continuous in s > 0, we get

pt—i—sf(a) - pt(psf)(a)a t>0, s>0. (4'39)

We next consdier the case where z € Sy. Using (4.37), we obtain

prysf(x) = p?+5f(x) + E;(r) {Ptrs—o.fla);oa <t + s}
= p?+5f(93) + E;(r) {ptfaa (psf)(a); Oa < t}
+ E%pris o, fla) it <o, <t+s}.

On the other hand,

pe(psf) (@) = P} (ps f) (@) + EY {pt—0, (Dsf)(a);04 < t}.

Hence it suffices to prove that
PRy of (@) + EX {ptis—o, f(a)it < 0a < t+ s} = p)(psf)(@). (4.40)

Put
g(z) = Eg {Ps—o.fla);on < s},
then, we are led from pf(z) = p2f(x) + g(z) to
P (psf) () = pesf(2) + plg(@),
and consequently, (4.40) is reduced to
EQ (Prs—o, f(a);t < 0a S t+ 5} = EQ(g(X]); (" > ). (4.41)

With the notation ; to denote the usual shift, the left hand side of (4.41) equals

E;(r) {pt—l-s—aaf(a); CO >t,04 >1,0400; < 3}
= E;(r) {ps—oaoﬁtf(a)§ CO >t,0q00; < 5}
= B B {po-o, fla)ioa < 5}:¢° > 1]
which coincides with the right hand side of (4.41) as was to be proved. O

Lemma 4.11. Suppose g € B(S) and lil%lpeg(:v) = g(x), x € S. Then, for any f €

Cb(S), t >0,
lim pe(fpeg)(z) = f(2)peg(@), @ € 8. (4.42)
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Proof. Fix z € S. Clearly, for any neighbourhood U of z,
lim p, I =1,
i pely ()

and hence
el fegl(@) = pel flupegl(x) + ofe).
For any § > 0, take a neighbourhood U of x such that

Ify) = f(x)| <6, yeU.

Then

[pe(fpeg)(x) — f(2)pe(prg) ()]
< pe(If = f(@)llpegl) (2)
< pe(If = f(@)Hulpegl) (=) + o(€) < d]|glle + o(e).

On the other hand, we have from the preceding lemma that
liw f (2)pe(prg) () = lim f(2)pe(peg)(z) = f(@)prg(2).

Consequently L
limejo|pe(fpeg) () — f(2)pig(x)| < 6l|g]oo,

which means (4.42) because 6 > 0 can be taken arbitrarily small. O

Proposition 4.4. (i) For aj,- - ,ay > 0,

n

By [ [ T (™0 X0) ) dir o dt b = Gy G - G )

0<ty <+ <tn<Cw k=1
(4.43)

where we set tg = 0 by convention.

(ii). X ={X;,0 <t < {,, P} is a Markov process on S with transition function p; and

initial distribution concentrated at {a}.

Proof. We shall employ the following notations:

n

F(X;t;Oél,fl,“‘ 7an7fn) = // H {eiak(tkitkil)fk(xtk)}dtl"'dtna

t<t) <--<tn<lw k=1
and, for w € W,
n
F(w7ta alvflv"' 7an7fn) = // {eiak(tkitkil)fk(w(tk))}dtl"'dtn-
t<ty <oty <C(w) K=

(). The left hand side of (4.43) will be denoted by G(a1, f1,- - , @, fn), namely,

E{F(X;O;Oélvfla"' 7an7fn)} = G(Oél,fl,"' 7an7fn)- (444)
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For 0 < s < T, we denote by I(s) the expression

/ e—altl fl (th) / / e %% (tg—tp— 1)fk(th)) dty - - - dtn dty.
J(s—)<t1<J(s)

t1<to<- <tn<<w

Then

F(Xaovalafh 7an7fn) - Z I(S)+F(X,J(T—),Oél,f1, 7an7fn)-

0<s<T

Further, if we put for 1 <m <n

) = [ H{—am ) iy (X) } s

J(s—)<t1<- <tm<J(s) -

/ / H e eltemten fe(th)}dth - dty,

J(8) <1 <o <tn <C =M

then .
= Z In(s)
m=1

Moreover, each I,,,(s) can be written as

)<t < <tm <J(8) k=1

n

Gm(s) = / / e—0m+1(tmi1=J(s)) H {e—ae(te—te_ﬂfz(Xte)} dtyg1 -+~ dty.
8) <tm41<<tn<lw b=m+2
Therefore
F(X;0;500, 1, amy fu) = Y Z Fp, $)+ F(X; J(T=);a1, f1, ;s f).
0<s<T m=1
(4.45)
Next, let us put (with the convention that ay,+1 = 0)
F(w;a17f17 e 7amafm§am+1)
/ / _ak(tk_tk—l)fk(w(tk))} e om+1(C(wW)=tm) gy ... dtm, (4.46)
0<ty <+ <tm<C(w
so that
Fn(s) = e /O F(plian, 1, s fini Gimga). (4.47)
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We furthrmore put Y; = X (544 so that

Gon(s) = / / ﬁ [emoetertid () Y by -y, (4.48)

O<tm 1< <tn <Co—J (5) = HL

where we set t,,, = 0.

For p = {p,t > 0}, we may use the following notations:
G(p;am+17fm+17”' 7an7fn)
= / o / H {C_M(te—te_l)fz(th)} Aty - dty, (4.49)

0<tim 1< <tn<Cp (=MT1

(with the convention that ¢,, = 0), and

0sp = {pPs+t,t > 0}. (4.50)

Osp then has the same distribution as p and independent of {p;,0 < t < s}. Since Y} is
constructed from Osp in the same way as X; is from p, (4.48) can be rewritten as

Gm(s) = G(0sP; i1, 1,7+ 5 am, f), (4.51)
which is identical in law to
G(P; amt1; fma1, 7+ 5 Qs fn)
for each fixed s > 0. Further
F(X3J(T=)on, fi, o, fo) = €T F(priOon, froo o, f). - (452)
Combining (4.45),(4.47),(4.51) and (4.52), we arrive at

F(Xaovalafh ,Oén,fn)

n
= Z Z €_a1J(S_)F(p:;alafla'“ aamafm§am+1)

0<s<T m=1
G(gspa Am4-1, fm-l—la s, O, fn) + eialj(Ti)F(p;; 07 ar, f17 s, On, fn)(453)

Here we compute the expectations of the random variables appearing in the last
formula.

nt {F(wjon, fi,  Qmy i ms1)} = fiay (AGo, for GO fm1GO g,y )-
(4.54)
When m = n, the last factor u,,,,, in the above expression is understood to be ug = ¢.
In fact, the left hand side equals

n / / e~k (tk—tr—1 fk( (%))) e*am+1(C(w)*tm)dt1 oo db; W;r

0<ty <ot <C(w) *

- [ ‘“k(tk‘tk-l>fk<w<tk>>)uamﬂwm»;c>tm},

0<t1 <+ <tm<oo

30



KSTS/RR-04/001
January 13, 2004

which can be seen to coincide with the right hand side of (4.54) by (4.4).
We further have for any constant time s > 0,

E{G(98p§am+lafm+la' o 7an7fn)} = G<am+1afm+17' o 704n7fn)- (455)

On the other hand, we have in view of §4.2

E{F(p;;o;ﬁl,fl,"' 7an7fn} =1L mOaw)ilni {F(U);O;Oél,fl,"' 7an7fn)}
= L(mo, ) fia, (hGoy fa - Go, fa1G, futh),

4 —a1J(s) 1
E {/0 e ds} = o1 (o1 2) T Lo, )’ (4.56)
—arJ(T)\ _ L(mo, )
#{e b= ) L Lo (457)

We can now get from (4.53) that

G al?fl?"' 7an7fn) :E{F(X,O,al,fl, ,Oén,fn)}

n

T
= E E{/ 6alJ(s)dS}n+{F(w;041,f1,"',Oém;OémH)}
0

m=1

XG(am+17fm+17"' ,Oén,fn) +E{6_Q1J(T_)}E{F(p_;o;ahflu”' ,Oén,fn)}

n—1

1
uoqa(p) + L(m()vw)

I
M

a1(f1G32f2"' Qn— 1fm 1Gamfmuam+1)

1
al(uoq ) 80) + L(m07 w)

L(m07w)_1/ja1(fnggf2'“ Qp— 1f7’b 1Ganfn'¢)

XG(am+17fm+la"' 7an7fn)+ ﬂal(fngQf2"' Qi 1fn lG fn(/))

L(m07'¢)
al(uoq 5 90) + L(m()? w)
1

_ p 0 ¢ ... 0 0
= Sl 7 L D) 2 NG te G fnoa G i)

'G(am+17 fm-l—la s, On, fn)

In the above and in what follows, we use the convention that

Uorm 1 = G<05m+17fm+17 T 7an7fn) =1

for m = n. This combined with (4.1) and (4.30) eventually leads us to

Glar, fi,-yams fo) = D Gay(iGo oG fm-1GY fmtta,y1)(@)
m=1
: G(am+1ufm+17"' 7anafn)- (458)
Based on this formula, we shall prove the desired identity (4.43), namely,

G(alaflu T ,Oén,fn) - GalflGang o Ganfn(a) (459)
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by induction in n.
(1). When n =1, (4.59) is just (4.30).
(2). Suppose (4.59) holds up to n — 1. Then

G(am+17fm+17 e ,Oén,fn) = (Gam+1fM+1 o 'Ganfn)(a%

and (4.58) can be written as

G(Oél,fl,”’ 7an7fn) = Gal(fngzng'“ QU — 1fm 1Gamfmu0£m+1)(a)
( am+1fm+1”’Ganfn)(a)- (460)

Let us rewrite the right hand side of (4.59) by applying the formula (4.31) to the operation
Go, in getting

Il
—

Q

(GalflGazfQ”’Ganfn)(a) = (GalfnggﬁGasfS'”Ganfn)(a)
+ (Galflua2)(a)(Ga2f2"'Ganfn)(a)'

Apply the same procedure to the operation G,, to see that the right hand side of (4.59)
equals

(Gar [1GY, [2G0, f3Gay f1+ - - Ga, ) (@)
(Gm fngg f2ua3)(a)(Ga3 f3 T Gan fn)(a)

+
+  (Gay f1ua,)(a)(Gay f2 - Gay, fr)(a).

Repeating the same procedures, we finally find that the right hand side of (4.59) coincides
with the right hand side of (4.60) as was to be proved.

(ii). For t; > 0,--- ,t, > 0, let

n
F(ty, -ty {H (Xt 1tty) Cw>t1+"'+tn},

G(t1, - tn) = (o1 [rpes f2 -+ pr, fo) (@)
(4.43) is then equivalent to

oo oo
/ .. / -t mantn pgy oLt Ydty - - - dy,
0 0

o0 o0
/ M / €_a1t1_m_antnG(t17 e ,tn)dtl te dtn (461)
0 0
Clearly F(ty,--- ,t,) is right continuous. Further, by virtue of Lemma 4.11, we can easily
see that G(t1,--- ,t,) is separately right continuous. Consequently, (4.61) implies

F(tlu"' 7tn) :G(tl, 7tn)

the desired Markov property of X. O
We add a lemma saying that the point a is regular for itself with respect to (X;, P).
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Lemma 4.12. (i) P(n, =0) =1, where 7, = inf{t > 0: X; = a}.

(ii) n™(W,) = oo.

Proof. (i). In view of the proof of Proposition 4.3, lilr(r)1 u1(X¢) = 1. Hence, if we put
t

Na,e = inf{t > € : Xy = a}, then owing to the Markov property

E(e7™) = 161%1 E(e M)

= lilrgE(e_eul(Xe);(w >e€)=1.
€
(ii). By the construction of Xy, the point a is evidently instantaneous in the sense that

P(r,=0) =1, where 7, = inf{t > 0: X; € Sp}.

Hence (i) holds if and only if the domain D+ of the Poisson point process p™ accumulates
at 0 P-a.s., which is also equivalent to (ii) (cf. [15, §4]). O

4.5 A symmetric extension X of X°

In §4.1, we have started with an m-symmetric diffusion
XO={XP, 0<t<(® P, xSy}

on Sy, where PY, z € Sy, are probability measures on a certain sample space, say Q0.
In §4.2, we have constructed a continuous process

X ={X;, 0<t<(, P}

on S by piecing together the excursions, where P is a probability measure on another
sample space ) to define the excursion valued Poisson point processes.

For convenience, we assume that Q° contains an extra point w® with PY({w®}) =
0, x € Sy, and we set P(g = §ua, w* representing a path taking value a at any time.

We now let

Q=0%Q, P,=P’xP zc8. (4.62)

For & = (w°,w) € Q, let us define X; = X,() as follows:

(1) When w® € Q°\ {w?},

o XY 0<t< W) <oy(w’) <oo
Xi(w) = { Xty (w0) (W) 0o (W) <t < 0q(W?) + (u, if 04(w?) < 00, (4.63)
(2) When w® = w?, )
Xi(@) = Xe(w) 0<1t <. (4.64)
The life time ¢ of X; is defined by
> ¢ if 04(w’) = oo,
¢= { oa (W) + ¢, if 04(w?) < o00. (4.65)
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Lemma 4.13. X = {Xt, 0<t<(Pze S} is a Markov process on S with transition
function {p;} defined by (4.35) and (4.36).

Proof. This is an easy consequence of the Markov property of (X7, P?) and the Markov
property of (X, P) proved in Propisition 4.4. To see this, we put, for any 0 < 51 < s9 <

s < Sp, f17f27"' 7fn€B(S)7
Iy = By (f1(K0) S (Koo Du(Xo) - Fal(Koy)isn1 < 0a < )
for 1 < k <n with sg =0, and

J = Eac(fl(Xs1) T fn(Xsn);Sn < Ua)-

Using the definition of X, Proposition 4.4, the Markov property of X° and (4.36)
successively, we are led to

I, = Eg (fl(XSI) . fkfl(ng,l)E(fk(Xsk—Ga) o fo(Xsp—04)) 5 8k—1 < 04 < Sk)
— B (f1(X21) o Feet (X2 VPsr—ow (fibsgr—sifai1 - Psn—sn s fn) ()i 851 < 04 < 8k>
= E° {fl(Xgl) o frea(XE )
By (Psi-sur—oa(FePsipr—sifht1 Pon—sn 1 Fn)i 0a < sk = s5-1) 3851 < 00 < sk}
= E° (fl(Xgl)Wfkfl(ng,l)
(Psi—s_1 _pgk—sk_l)(fkpskJrl*Skfk-i—l - 'psnfsn_lfn)(ng_l)?Sk—l <00 S Sk) ’
By the Markov property of X 0, we thus get

Ik = Pgl fl o 'pgk_l—sk,_gfk_lpskfskflfkpsk+175kfk+1 o 'psnfsn_lfn(x)
0 0 0
- p51 fl o 'psk_l—sk_gfkflpsk—sk_lfkp8k+1—8kfk+l o 'psn—snflfn(x)-

Clearly we also have

J =By ([(X8) [n(XS,)isn < 0a) = PSi 1 15, F

Hence we arrive at

Em(fl(X51)f2(X52) to fn(Xsn)) = Z Ik +J= p81f1p527s1 f2 o 'psnfsn_lfn(x)’
k=1

the desired Markov property of X. O

We now state main theorems of the present paper. In this section, we have started
with an m-symmetric diffusion X O on Sy satisfying conditions A.1,A.2,A.3,A.4 and
constructed a Markov process X on S. The resolvent {G, }o>0 of the Markov process X
is defined by

[e.e]
Gof(x) = B, ( / eatfoft)dt) eB(S) (4.66)

0
The resolvent of X was denoted by G2.
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Theorem 4.1. The process X enjoys the following properties:
(1) X is an m-symmetric diffusion process on S. It admits no killing inside S and is a
Hunt process on S in the sense that

Xew) (@) = A if {(@) < 0.

(2) X is identical in law with the process obtained from X by killing upon the hitting
time o, of the point a.

Further the resolvent of X admits the next expression for f € B(S):

_ 0 T un (o (uou f) T
Gaf(2) = GAf(a) + ualo) S e 50 (4.67)
Gof(a) = —ar]) (4.68)

a(ua, ) + L(mo, )’

where L(mg, 1)) is the energy functional of the X°-excessive measure mg = o -m and the
XO-excessive function ¢ =1 — .

Proof of Theorem, 4.1. By Lemma 4.6, (4.37) and Lemma 4.13, we see that X is a Markov
process on S with the m-symmetric resolvent (4.67),(4.68).
On account of A.1, we may assume that

X2 (w) is continuous in t € [0,¢%(w?)) and XCO(MO),(wO) =aUA
for every w® € QY. We have already chosen 2 in a way that
X¢(w) is continuous in t € [0,(,) and Xp(w) = a.

Hence the path X.(©) defined by (4.63),(4.64),(4,65) is continuous on [0, ¢).

Consider a function u = G, f on S for f € Cy(S). By the assumptions A.2,A.3 and
the expression (4.67),(4.68), u(X?(w?)) is then continuous in ¢ € [0,0,) for any w® € Q°.
By the proof of Proposition 4.3, u(X;(w)) is continuous in ¢t € [0,(,) for any w € Q.
Hence u(X;(@)) is right continuous in t € [0,{(©)) for any & € Q. (In view of (4.33), we
even know that u(X;) is continuous in t € [0,¢) Py-a.s. for any € S). Therefore we
can conclude that X is a strong Markov process with continuous sample paths, namely,
a diffusion process on S (cf.[2]). Clearly X is of no killing inside S and a Hunt process
on S. The property (2) is also evident from the construction of X. O

Remark 4.1. A prime reason for us to impose a regularity condition A.4 on the given
process X on S is in that it implies an important property in Lemma 4.3 of the excursion
law n of (4.4), which is essential in deriving the continuity near the point a of the process
X constructed in §4.2.

Civen a standard process X on S for which the point a is recurrent, K.Ité [15]
assoicated with X a Poisson point process p of excursions in the manner of §3.1 and gave
a list of necessary conditions for the charactersitic measure n of p should obey. Conversely
T.S. Salisbury [25], [26] constructed a right process on S for which a is recurrent by means
of X° and an excusion law n satisfying It6’s conditions being strengthened by adding the
property as in Lemma 4.3 and some others.
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Remark 4.2. By invoking the work of P.A. Meyer[20] on the absorbed Poisson point
process and by adopting a similar argument to §4.2, we can show that Theorem 3.1 of
§3.1 remains true without assuming condition B.3 on the recurrence of the point {a}.

In this general case, the right continuous inverse S(s) of the local time L(t) at {a}
of the given process X on S is defined for s > L(oc0) as S(L(c0)) = oo, and we see from
Lemma 2.3 and by letting o | 0 in (2.21) that L(co) has an exponetial distribution with
mean L(mg, )~

Let

D, = {s:S(s)—S(s—) >0},
ps(t) = XS(s—)+t7 S € Dp, 0<t< S(S) — S(S—).

Then Dy C (0, L(00)], L(o0) € Dp and {ps,s > 0} is a point process with values in the
space W, defined by (4.13) instead of (3.6). Moreover, if we define the spaces W, W,
by (4.14), (4.15) respectively, then

ps € W, for s € Dp N (0, L(c0)), PrL(x) €W, -

By Theorem 5 of Meyer[20], {ps, s > 0} is an absorbed Poission point process. More
precisely, on a certain probability space (€, P), there is a Poisson point process {ps,s > 0}
on W, with domain Dz and with the following properties.

(a) Let ¢ = inf{s > 0: ps € W, } and consider the stopped point process {p,s > 0}:

Ps = Ps forSEDf):Df)ﬂ(O,é:].

Then the point process {ps,s > 0} and {ps,s > 0} are equivalent in law.
(b) Let n be the characteristic measure of {ps,s > 0}. Then {w(t),n} is Markovian with
respect to the transition funtion p? of XY. Let {14} be the entrance law associated with
n. Then v is a finite measure for each ¢ > 0 and fooo e~'vdt has a total mass not greater
than 1.

We now prove that Theorem 3.1 remains valid for this {14} and for the entrance law
{1} specified by the equation (2.22).

Take a bounded Borel function f on S and define fa(w), w € Wy, a >0, as in the
proof of Proposition 4.2. We have, almost surely with respect to P,,

¢ o0
—at - 7041‘, —at
/Oe fode = /S F(X, dt+/S(L(OO))e F(X)dt

s<L(00)

= 3 e SE fy(py) + e SEIIf (),

s<L(o0)

which is equivalent in law to

ZG*O‘S fa(BF) + 75 fu(By). (4.69)

where {p;, s > 0} is a Poisson point process defined by p} = ps for s € Dy+ = DN {s:
Ps € Wi} and S(s) = > r<sC(PF). The characteristic measure of {pJ,s > 0} is the
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restriction nt of n on W . In the same way as in the proof of Lemma 4.5, we can prove
that

B(em5®)) = exp(—aia(p)), Do = / eyt
0

Now the value G, f(a) equals the expectation of the random variable (4.69) with respect
to P, which can be evaluated by taking into account of the following facts.

(i) The three objects {p:,s > 0}, ¢ and p; are independent.

(ii) ¢ has an exponential distribution with mean L(mq, ).

(iii) The law of Dy is L(mg, ) 'n~ where n~ is the restriction of n on W, .

Indeed, exactly the same computation as in the proof of Propostion 4.2 leads us to
a(f)
aba(p) + L(mo, ¥)’

which combined with (2.15) and Lemma 2.2 (ii) yields

Va(f) fia(f)

ava(p) + L(mo,¥)  aja(p) + L(mo, 1)

Therefore for each o > 0 there is a constant ¢, such that 7, = c,fio. Inserting this into
the above equation, we easily obtain ¢, = 1 and so v; = g, t > 0.

Gof(a) = (4.70)

5 Uniqueness of the symmetric extension and expression
of its Dirichlet form

In the preceding section, we have started with an m-symmetric diffusion X on Sj satisfy-
ing conditions A.1,A.2,A.3,A.4, and constructed a process XonS satisfying properties
(1),(2) stated in Theorem 4.1. Let us call a process on S satisfying conditions (1),(2)
a symmetric extension of XV. In this section, we are concerned with the uniqueness of a
symmetric extension of X" and explicit expression of its Dirichlet form on L?(S;m). We
aim at proving the following:

Theorem 5.1. Assume that an m-symmetric diffusion X° on Sy satisfies conditions
A.1,A.2. Let X be a symmetric extension of X° and (€,F) be the Dirichlet form on
L2(S;m) of X.

(i) X admits the resolvent identical with (4.67),(4.68).

(ii) (€, F) admits the expression

Fe={w=wup+cp:uy € Foe, cconstant}, F =F.N L*(S;m), (5.1)

E(w,w) = E(UO,UO) +C25(90’90)’ 5(90730) = L(mo,i/)), (5'2)

where (Fo.e, ) is the extended Dirichlet space of X° and L(mq, ) is the energy functional
of mg = ¢ -m and v with respect to X°.

(iii) X satisfies (A.3) automatically: u, € L*(S;m), a > 0.

(iv) Py(og =0, 7, =0) =1

where 04, = inf{t >0: Xy =a}, 7,=1inf{t >0:X; € Sp}.

(v) (&€,F) is irreducible.
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Corollary 5.1. Under the conditions A.1,A.2 for an m-symmetric diffusion X° on S,
the symmetric extension of X° is unique in law.

Corollary 5.1 follows from Theorem 5.1 (i). We prepare a lemma before the proof of
Theorem 5.1.

Assume that X = (X¢, P;) is an m-symmetric Hunt process on S and (€, F) is the
associated Dirichlet form on L?(S;m). No regularity for the Dirichlet form (&, F) is
assumed in advance.

In accordance with [19], we set for a closed set F' C S,

Fr={ueF:u=0 m-ae onS\F},

and call an increasing family {F,,} of closed subsets of S an £-nest if the space Uy~ Fr,
is £1-dense in F. A set N is called &-exceptional if N C N5, Fy; for some E-nest {F), }.
On the other hand, we call a set N C S an X-exceptional set if there exists a Borel set
B; D B with

Pm(UBl < OO) = 0.
A nearly Borel set N C S is called X-properly exceptional if m(N) = 0 and S\ N is
X-invariant in the sense that

Py (X, € Sa\Nor X;_ € SA\N3t>0)=1, Vze S\ N.

Lemma 5.1. (i) The following properties of a set N C S are equivalent each other:
a. N is E-exceptional.
B. N is X -exceptional.
~v. N 1is contained in an X -properly exceptional Borel set.

(ii) If {Fy} is an E-nest, then

P, ( lim og p, > g) —1 qe., (5.3)
n—oo

?

where q.e. means ‘except on a set N C S satisfying one of the properties in (i)
(iii) (€, F) is a quasi-regular Dirichlet form on L?(S;m) in the sense of [19, §IV 3].

Proof. (i). The equivalences o <  and < ~ were proved in [19, Th.5.29] and in [9,
Th.4.1.1] respectively.

(ii). Put o = lim og\p,. On account of [19, Th.2.11, Th.5.4], we have for a strictly
n—oo

positive bounded m-integrable function f on S,

¢

E, (/ e_sf(Xs)ds) =0 m—ae xe€s.
oAC

Since the function of x on the left hand side of the above equation is X-excessive, it is

finely continuous on S and hence the above equation holds g.e. by [9, Lemma 4.1.5].

(iii) Since (£,F) is associated with a Hunt process X, it must be quasi-regular by
virtue of [19, Th.5.1]. O

Proof of Theorem 5.1. Since X is not only a diffusion process but also a Hunt process on
S, the Dirichlet form (€, F) of X is quasi-regular by the above lemma.
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Consequently we can invoke [3, Th.3.7] to find a regular Dirichlet space (S", m', ', E’)
related to the quasi-regular Dirichlet space (S,m,F,€) by a quasi-homeomorphism g:
there exist an E-nest {F,} on S and an &-nest {F),} on S’ such that ¢ is a one to
one mapping from S; = U2, F, onto S] = US> F) and its restriction on each F), is
homeomorphic to F). Further, m' is the image measure of m by ¢ and the space (F',&’)
is also the image of (F,€) by ¢. Thus, if we put (®u)(z') = u(q¢~1(2')), 2/ € S, then

/ (®u)dm' = / udm, Yu > 0; F' = &(F), & (®u, dv) = E(u,v), u,v € F. (5.4)
4 S

We note that S\ Sy (resp. S’ \ S}) is E—(resp. &'—)exceptional and, when N’ = ¢(N),
N is E-exceptional if and only if N’ is &-exceptional (cf.[3, Cor.3.6].)

For a Borel set B C S, we denote by Ba the subset B U A of Sa with induced
topology. The above g can then be extended to a homeomorphism between (F,,)a and
(E))ar for each n, where A’ denotes the point at infnity of S’ (which is added as an
isolated point when S’ is compact).

We now apply Lemma 5.1 to the above £-nest {F,} in finding an X-properly excep-
tional Borel set N C S containing S\ St such that (5.3) holds for any x € S\ N. qis
then a one to one mapping between S\ N and S’ \ N’, where

= (5"\ S)) Ug(SNN).

In view of condition A.2 for X°, condition (2) for X and the above observation, the
one point set {a} is not X-exceptional and consequently it is not £-exceptional by virtue
of Lemma 5.1. Therefore a must be located in S\ N and furthermore

{a'} is not & — exceptional, (5.5)

where o’ = g(a) € "\ N.
The restriction of X to S\ N is a diffusion with no killing inside S\ N and we denote
it again by

X = (Q,]—'t,f(t,é, Px) .
Let us transfer X to a process
~ (0.7 X8, P)
on S'\ N’ by the mapping ¢:
Xjw) = aX)(), (W) =(w), we t=0,
PL(A) =P, 1,(A) z€S8\N', A€ Fu.

We may extend the state space of X’ to S’ by making each point of N’ trap. It is then
easy to see that X' is a diffusion process on S’ with no killing inside S’ in the sense that

P (é’ <o, X, = A) = P/({' < o0). (5.6)

Further X’ is associated with the Dirichlet form (£, F’) which is regular. Since X' is
a diffusion without killing inside S’, (£, F') must be strongly local (cf.[9, Th.4.5.3]).
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By (5.5) and Lemma 5.1, we see that the one point set {a’} is not X’-exceptional and
consequently it has a positive capacity with respect to (&', F') in virtue of [9, Th.4.2.1].

Therefore (£, F') and X’ fit the setting of §2 and they satisfy all the properties stated
in Theorem 2.1 of §2. In particular, we have the next expressions of the resolvent and
(&', F') of X" in terms of the part X0 of X’ on S = 5"\ {a’} : if we denote the transition
function and the resolvent of X’ (resp. X’0) by p}, G, (resp. p;’o, GY), then

, n o (ulaag)m/
I = @ e + Ly, ) "
(¢, ¢) = L'(mg, "), )

where ¢’ (resp. ul,) is the hitting (resp. a-order hitting) probability of {a’} of the process
XY =1-¢ and

1
L'(mg,¢') = 1t11%1 ;(so — 0% ) (5.9)

Notice that the part (£, F3) of (£', F') on S} is associated with X" which can be sent
from X° on Sy by the mapping ¢ in the same way as above on account of the property
(2) of X. Hence we have for z € $"\ N’

B(Gaf)(@) = Go(@f)(2), D(GLS)(x) = GL(@f)(x), (W] [)(x) = pi”(@f)(2),
(p)(z) = ¢(2), P(ua)(z) = uy(x). (5.10)
(5.4),(5.7),(5.8),(5.9) and (5.10) now imply L'(m{,v") = L(mqg,) and furthermore

(ua, f)
a(ua, ) + L(mo,¢)’

E(p,p) = L(mo,v), Gaf(a)= (5.11)

We have obtained the expression (4.68) of the resolvent Gy, of X. It then satifies (4.67)
for all x € Sy because of the property (2) of X. We can also readily get the assertions
(ii) and (iii) of Theorem 5.1 using (5.4) and (5.10). As for (iv), we have obviously

N

Pa(o-a = 0, Ta = O) = ]3(;/(0-(1’ — 077-(1/ — O)’

and the right hand side equals 1 by virtue of Theorem 2.1. From the expression (4.67)
of the resolvent of X, we have

(Ia,Golp) >0 for any A, B € B(S) with m(A) >0, m(B) > 0.

This property is equivalent to the irreducibility of the Dirichlet form (&, F) proving
(v). O

Remark 5.1. For the symmetric extension X of X° constructed in §4, not only the
expression (4.67),(4.68) of its resolvent but also the property (iv) in Theorem 5.1 have
been directly proved in Lemma 4.12.
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6 Examples

Example 6.1. Let X be the Brownian motion on R, X? be the absorbed Brownian
motion on R\ {0} and m be the Lebesgue measure dr on R. Then X is the unique m-
symmetric extension of X (in the sense that X satisfies conditions (1),(2) of Theorem
4.1) in accordance with Corollary 5.1.

Let L(t) be the local time of X at 0 and Z be an independent exponential random
variable with mean §~!. The process Xs obtained from X killed upon the first time that
L(t) > Z is a diffusion process extending X° but not a symmetric extension of X in the
present sense because it violates the above condition (1).

For v > 0, let X7 be the process on R obtained from X by a time change with respect
to the inverse of its additive functional t 4+ yL(¢). X7 is then a diffusion on R with a
canonical scale 2dr and the speed measure m(dz) = dz + vdo(dr). X" extends X but
violates our assumption that m({0}) = 0.

The resolvents and Dirichlet forms of X5, X” have been exhibited in Remark 2.2.

Example 6.2. Let D be a bounded open set in R%, (d > 1), and L?(D) be the L?-space
based on the Lebesgue measure on D. Denote by H}(D) the closure of C¢(D) in the
Sobolev space

HY(D) = {uec L*D): % € L*(D), 1<i<n}

and put
D(u,v) = / Vu - Vo(z)dz, wu,ve H}(D).
D

Then (3D, H}(D)) is a strongly local Dirichlet form on L?*(D) satisfying the Poincaré
inequality (3.13). The associated symmetric diffusion X% = (X?,0 <t < (%, P%) on D is
the absorbing Brownian motion.

Let D* = DU{a} be the one point compactification of D. Regarding D as a subspace
of D*, we have then

p(z) = PY(° <00, X =a)=1, ¢(z)=1-¢(x)=0,YzeD, (6.1

U () = Eg(e—aCO;XOO_ = a) is continuous in x € D, (a > 0). (6.2)

Obviously u, € L'(D). Hence conditions A.1,A.2,A.3,A.4 are satisfied by X9 and we
can construct a diffusion X on D* as in §4. By virtue of Theorem 4.1, the resolvent of
X is expressed as

(ord) o Gopla)— et

a(ug, 1)’ (g, 1)’

Gaf(z) = Gof (@) + ua()

and in particular, X is conservative.

L?(D*) denotes the L%-space based on the 0-extension of the Lebesgue measure on D
to D*. By virtue of Theorem 4.1 and Theorem 5.1, X is symmetric with respect to this
measure and its Dirichlet form (€, F) on L?(D*) is describable as

F = H}(D) + constant functions on D*, (6.3)
1
E(wr,we) = ED(fl,fg), w; = fi +¢, fi € H&(D), ¢; constant, 1 =1,2. (6.4)

41



KSTS/RR-04/001
January 13, 2004

On account of Theorem 3.2 and a related observation in §3.1, this is a regular, strongly
local and irreducible recurrent Dirichlet form. This Dirichlet form first appeared in [8].

The entrance law {p }+~0 governing the charactersitic measure of the excursion valued
Poisson point process attached to X is given by

i (B)dt = / P e dt)dz, B e B(D) (6.5)
B

in view of (3.9). Let D = U;D; be the decomposition of the open set D into connected

components. The above identity tells us that the sample path of X entering from the point

a is distributed among {D;} proportionally to their volumes and enters in D; according

to the restriction of u; to D;. As was observed in §3.1, X is irreducible recurrent.
According to (2.24), the Lévy measure of the inverse local time of X at the point a

is given by —du(D).

Example 6.3. We consider a finite number of disjoint rays ¢;,i = 1,---, N, on R?
merging at a point a € R2. Each ray ¢; is homeomorphic to the open half line (0, c0) and
the point a is the boundary of each ray at 0-side. We put

N
So=>» 4, S=S+a
i=1

S is endowed with the induced topology as a subset of R2.

Let m be a positive Radon measure on Sy with Supp[m| = Sp. m is extended to S
by setting m({a}) = 0. The restriction of m to ¢; is denoted by m,;. For any function
g on Sy, its restriction to ¢; will be denoted by g;. We consider a diffusion process
X0 = {X?,¢% P%} on Sy such that its restriction X% to each open half line ¢; ~ (0,00)
is the absorbing diffusion governed by the speed measure m; and a canonical scale, say
S;5.

We notice that X© satisfies A.2,A.3 if and only if 0 is a regular boundary in Feller’s
sense for each diffusion X% on ¢;, 1 < i < N. Indeed,A.2 holds if and only if 0 is exit
(in the terminology used by [16]). If 0 is additionally non-entrance, then m;((0,1)) = oo
and A.3 is not satisfied. If 0 is regular, then m;((0,1)) < oo and u, ; is m; integrable on
(0,1), while u, ; is always m;-integrable on [1,00) (cf.[16, p 130].)

Thus we assume that 0 is regular for every X% so that A.1,A.2,A.3 are satisfied by
X0, A.4 is also clearly satisfied. m is finite on any compact neighbourhood of a.

Therefore, a diffusion X on S can be constructed as in §4 and it is a unique m-
symmetric extension of X° with no killing inside S according to Theorem 5.1. The
resolvent of X has the expression

a) = Zi(ua,ivfi)mi
Gaf( ) OZZi(ua:i’@i)mi + Zz L(%’ - mz,?/)z) .

The Dirichlet form (€, F) of X on L?(S;m) is regular, strongly local, irreducible and can
be described as follows:

Fe=A{w=wup+cp:uy € Foe, ¢ constant},

5(w,w) = S(UO,’U,O) + 025(907@)7
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£p.0) = D Llgi-mivti),

where

Foe = {u : u; is absolutely continuous with respect to s;,

o/ dus 2
/ < uz) ds; < 00, u;(0) =0, u;(c0) =0, whenever oo is regular, 1 <i < n},
0

dSi
5(UU)Z/OO du: 2d8' u e F
3 - : 0 dSi 7 0,e-

Related Dirichlet forms and diffusions first appeared in [13].
The entrance law from a is describable as

(it =3Py, (e ar, X¢L_ = 0). (6.6)

We have a freedom of choice of the entrance law (6.6) in the following sense. Choose
any positive numbers {p1,--- ,px} and observe that the absorbed diffusion X° on Sy is
unchanged if we replace m;,s;, 1 < < N, by

A N 1 .
m; =p;-mg, 8 =p; -8, 1<i<N,

respectively. Let m be the measure on S whose restriction to ¢; equals m; for each
i=1,2,---,N, with m({a}) = 0. Then we can consider the /-symmetric extension X
of X° whose entrance law /i from a is given by (6.6) but with the replacement of m; by
mi for 1 S 7 S N.

Example 6.4. Let G, Gy be open sets of RY, (d > 1), such that
G C Go, G is compact.

We let Sy = Go \ G1. We consider the space S = Sp U {a} equipped with the topology
where a set U containing a is defined to be an open set if

U\ {a} = {open subset of G containing G1} \ Gi.

Let X° be the absorbing Brownian motion on Sy. Then conditions A.1,A.2,A.3,A.4 are
satisfied by X°. A.3 can be verified by a comparison with the Brownian motion on R

Let m be the Lebesgue measure on Sy extended to S by m({a}) = 0. Let X be the
m-symmetric diffusion on S as is constructed in §4. Then, by Theorem 5.1, its Dirichlet
form (€, F) on L?(S;m) is expressed as

F=F.NL*S;m), Fo={w=wup+cp:ugc H&}e(So), ¢ constant },

E(w,w) = %D(uo,uo) + c2L(<p -m, 1),

where Hj (So) denotes the extended Dirichlet space of Hg(Sp).

(€,F) is a quasi-regular Dirichlet form on L?(S;m) but may not be regular. It is a
regular Dirichlet space if each point of 3G is a regular boundary point of Sy with respect
to the Dirichlet problem for (o — $A) on Sp.
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