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1 Introduction

T(k) = {(‘c‘ z) € SL(2,Z) : (‘C‘ g)

for a fixed integer k > 2. We put
[(k) =T(k)\ SL(2,Z).

Let

1 0
:t(0 1) mod k}

In 1982, R. Moeckel [4] proved the following result by using the ergodicity of
geodesic flows over the modular surfaces :

1\}-1—!;1100_]%71:{1 <n<N: (ngg) ==+ <g> mod k} = I?%cﬂ (a.e. x)

for any 0 < r, s < k with (r, s, k) = 1, where p,(z) and ¢, (z) are the numerator
and the denominator of the nth convergent of a real number z. Later in 1988,
H. Jager and P. Liardet [3] got an analogous result :

. i . Pn(z) T = _k
1\;1_1)1100 Nﬂ{l <n<N: (qn(z)> (s) mod k} = (a.e. )
for any 0 < r, s < k with (r,s,k) = 1, where I'.(k) = I'.(k) \ GL(2, Z) with

T, (k) = {(‘c‘ 3) € SL(2,Z) : (‘c‘ 3) = ((1) (1’) mod k}.

To prove their result, they made use of the group extension of the continued
fraction transformation. A similar discussion for (gn—1(z), gn(z)), instead of
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(pn (), gn(z)),was done by P. Szusz [6] in 1962. Recently M. Fuchs [2] followed
P. Szusz’s idea and discussed an analogue of such results, mostly convergence in
distribution, for the case of non-archimedean continued fractions. Our aim of
this paper is to show similar results but almost everywhere convergence, in other
words the strong law of large numbers, for non-archimedean continued fractions
by the ergodicity of the group extension following H. Jager and P. Liardet’s.
First we prove the ergodicity of the group extension of the non-archimedean
continued fraction transformation with some applications and then show its
continued fraction mixing property. The latter result leads to further metric
properties of non-archimedean continued fractions.

We start with some defintions and notations. Let F, be a finite field with ¢
elements and define the following :
Fo[X] = {fan X"+ a1 X" '+ a1 X +a0:a; €F,0<1<n,ne Z}
: the ring of polynomials with Fg-coefficients,

F,(X) = {g . P,Q€F,[X], Q # o}

: the fraction field of Fy[X],

F,(X™) ={an X" + an_1 X ly...iq;€F,i<n,n€L}
: the field of formal Laurent power series with F,-coefficients.

In this paper, we assume that ¢ > 2. When ¢ = 2, we see that SL(2, Fy[X]) =
SL+(2, Fy[X]), in §2 for the definition, and get the same result with a simple
modification. We denote by 0 and 1 the additive and the multiplicative units
of F,, respectively. We may regard F,[X], F¢(X), and Fo((X —1)) as the set
of integers, of rational numbers, and of real numbers, respectively. We note
the natural inclusions F;, C Fy[X] C Fg(X) C Fo((X7')). For an element
f €F,((X™1)), we define

dog f = n if f=ap,X"+ap,1 X" 1+ with a, #0,
8= oo if f=0

and
|l = g%/
Note that |a| = 1 for any a € F, with a # 0 and |0] = 0. We also define
[f] = an X"+ A1 X" 14+ a1 X +ao
for

f=a X" +an X" ' +---, n>0
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and put
]L:{f:a,_lX_l+a_2X‘2+"‘1aiE]Fq,i.<_-1}7

where L corresponds to the unit interval I = [0, 1) for the case of real numbers.
Since L is a compact abelian group with the addition and the metric d( f,g) =
|f — gl, there exists a unique normalized Haar measure m. If we identify L with
[1° Fy, we can identify m with the product probability measure [17° ér, where
dr, denotes the measure on FF, that consists of the equal point mass % for each
ael,.

In §2, we define the continued fraction transformation 7' on L and give
some fundamental facts on continued fraction expansions derived from T'. We
denote by —QB':: the n-th principal convergent of the continued fraction expansion
of f € L. Then in §3, we prove the following. We fix R € Fo[X] and denote
by C(R) the number of pairs (U, V) such that 0 < deg U, deg V < deg R and
(U, V,R) =1. ‘

Theorem 3.
For any P,Q € F,[X] with (P,Q,R) = 1 and deg P, deg Q < deg R, and any
integer | > 0, we have

Nli_ﬂnm%ﬂ{l <n<N: (g:) = (g) mod R, |T™(f)| < %} = m (m-a.c.).

As mentioned before, we use the group extension of the continued fraction
transformation of L to get Theorem 3. We prove the ergodicity of this extension
at the first half of §3. It is easy to see that the above group extension is not
mixing, but its 2-fold power can be mixing if we restrict it to a proper subset.
In §4, we discuss a strong mixing property of this 2-fold power and show some
applications. Indeed, we prove the continued fraction mixing property with
exponential decay rate and then have the following :

Theorem 3’ For any P,Q € Fy[X] with (P,Q,R) = 1 and deg P, deg Q < deg
R, and any ! > 0, we have

1 (P _ (P N 1
Nﬁ{lgngN. (Qn) = (Q) mod R, |T (f)|<—(?}

= ﬁm + O(N1/2(10g N)3/2+E) (m_a.e')
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2 Continued fractions for L
We define the continued fraction transformation 7" on L by the following
. {% - [}] if f(#0)eL
0 if f=0.
We put
Ap=An() = (TN (=0 if T*7H(f)=0) forn>1

and get the expansion

1
f= — 1 = [0;A1,A2,...].

A+

A2+'

As usual, we define P, = P,,(f) and Qn = Qn(f) by
Pn _ Pn—2 Pn—l 1
(Qn) B (Qn-—2 Qn—l) (An> for n 2 1
(¢ )G )
Q-1 Q) \0 1)°

P,
= = [Oa A1$A27"-7An])

n

with

Then we have

which we call the n-th convergent of f. The following hold (see [1]):

. P, 1
|f-=|= =———
® lf Q| T@AIQnri]
P 1 P P
i) If | f — =| < ——= with deg Q > 1, then — = —™ for some n > 1.
@ 16|~ | < g itk deg @2 1, then 5 = 3

For any A € F,[X], we see that the restriction of T to (4) = {f € L :
A1 (f) = A} is one-to-one, and

and that its Radon-Nikodym derivative %ﬂ is g?4°84 (m-a.e.). From these
properties, it is possible to show that m is an invariant probability measure for
T, that is,

m(T~'M) = m(M) for any Borel subsets M C L,
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and {4, : n > 1} is independent and identically distributed sequence as random
variables defined on (L, B,m), where B denotes the set of Borel subsets of L.
For any By, By, ..., B; € F [X], we define

(B1,Bz,...,Bi) ={f € L: Ai(f) = By, A2(f) = Bz, ..., Al(f) = Bi}.

Then we have the following by induction.
() T|(B,,Bs....,B;) is one-to-one and onto L,
(ii)

~~~~~ Bi) :q2(E£=xdeg(Bs)) (a.e.). (1)

Since T'f = } — A, is the linear fractional transformation associated to
0 1\7'_ (-4 1
1 4 - 1 0
(Pn—l Pn>_<Pn—2 Pn—l)(o 1 > (2)
Qn—l Qn - Qn-—2 Qn-—-l 1 An ’

it is natural to deal with 2 x 2 matrices of F,[X]-entries for the arithmetic
discussion of the convergents {gf :n > 0}. Let

and

SLy(2, F,[X]) = { (g g) . A, B, C, D € F,[X], AD - BC = :1:1}

and

SL(2, F,[X]) = {(é g) . 4, B, C, D € F,[X], AD — BC = 1} .

For a fixed R € F,[X] with deg R > 1, we define

G(R) = {(é g) € SL(2, F,[X]) : (é g) = (é g’) mod R}.

We see that G(R) is a normal subgroup of SL (2, F,[X]) and also of SL(2, F,[X]).
Then 11, ' € G(R) if and only if y; = v, mod R for any v1, vz € SL+(2, Fo[X])
(or SL(2, F4[X])). Moreover if v; = 7, mod R and dety; = 1 imply dety, =1
for 71, 72 € SL4+(2, F [X]). We denote by G(R) and G (R) the factor group
G(R)\SL+(2, F,[X]) and G(R)\SL(2, Fy[X]), respectively. Since SL(2, F,[X])
is a subgroup of SL. (2, F,[X]), G+(R) can be regarded as a subset of G(R).
We put

G_(R) = G(R) - G.(R).
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Thus we see ¥ € G+(R) or ¥ € G_(R) if and only if its representative is of

determinant 1 or —1, respectively. We write by (é g) an element of G(R)
. A B). .

for which ( c D) is a representative.

Lemma 1. There exists a positive integer k > 1 such that the following (i) and

(%) hold : B
(i) For any ¥ € G (R) there exists a sequence By, By, ..., Bap € F,[X], deg
B; > 1, such that
0 1\/0 1 0 1) _.
(1 BI>(1 32)"‘(1 ng>*’7' (3)

(i) For any % € G_(R) there exists a sequence By, Ba, ..., Bok, Bary1 €
Fy[X], deg B; > 1, such that

0 1\/(0 1\ [0 1 0o 1 \_. @

1 B 1 B, 1 Bu 1 Bogyr )T

Proof. We only show that there exists k¥ > 1 such that (i) holds since (ii)
follows from (i) immediately. We choose a representative of ¥ € G4+(R) as

(é, g) € SL(2, F,[X]) with degC < degD. Then by the Euclidean algorithm

we can find a sequence Wy, Wy, ..., W, € F,[X] such that

for some a € F, and 2; € Fy[X]. Suppose that the first case occurs. Then s is
even and

at z\ (a 1\ (a7 1\[(-a 1\ [fa'zz+at-1 1\ /1 1\/-1 1) _(1 0
0 a 1 0 1 0 1 0 1 0/\1 0 1 0/ 7\0 1/°
Thus we see that
A B\ (0 1\ /0 1 0 1 0 1)\ /0 1 0 1
¢ D) \1 1J\1 -1)\1 —-atlzg—al+1/\1 a/\1 —a1')\1 -a
0 1 0 1 (0 1
1 -—-Ws 1 _Ws—l 1 "Wl
_ (0 1 0 1 0 1 0 1
“\1 R+1)\1 R-1)\1 R-a'z1-a'+1)\1 R+a
0
1

)0 L) ) k)€ ) e
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This implies (3). A similar calculation also holds for the second case with odd

s. Since
A B\ _ (A B\[0 1\/0 1
(C D):<C’ D><1 R)(l R) mod B, 121

and |G 4 (R)| < oo, we can choose the same length 2k for any ¥ € G+ (R). O

For our purpose, we also need the following lemma :

Lemma 2. For anyU, V € F,[X] with (U, V, R) = 1, there exist A,B,C,D,B',D' €
Fy[X] such that

A B\ _ A B\ _ A\ _ (U
det (C D) =1, det (C’ D’) ——1,and<0) = (V) mod R.

Proof. It is easy to see that there exist A,C € Fy[X] such that

(/Cl) = (g> mod R, and (4, C) = 1.

We can assume that degA < degC. Then by the Euclidean algorithm, there
exist Z1,Z2 € Fy[X] such that

AZI +CZ2 = 04750 € ]Fq[X]

This shows

A —U.~IZQ _ A a“lZg _
det (C a7 ) =1and det (C —alz ) = -1

O
Remark 1. Because of (3), (4) and the above proof of Lemma 2, we can find
P, P11\ _(A B P, P,1\ _[(A B
(Qn Qn+1) - (C D) mod R (07' (Qn Qn+1 —\C D mod R)
Lemma 3. For any U, V € F,[X] with (U, V, R) = 1, we have
A B\ [A)_ (U
(C D), (C) - (V) modR} (5)
A B\ (A\_ (U
=(C D)’ (C>E<V) modR} (6)

]

ﬁ{’7€é+(3) et

2

=4 {’)’ € G_(R) :

:qdeg R‘
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Proof. From Lemma 2, there exists (é g) such that AD — BC =1

and A = (U mod R. Then from Lemma 1, there exists a sequence

C v
Ay, Ag,..., A, € Fy[X], deg A; > 1, such that

A BY_ (0 1)\(0 1 0 1 4R

¢ o)™\t a)\1 4) 1 4,) ™
which implies

A .

6:[0§A17A2;~-~,An] with A = P,,C = Q.

For any E, E' € F [X] with E # E' mod R, we see that

0 1 0 1 0 1 _ Py, EPy,+ Po,_1
1 A 1 A,)\1 E) \Q2n EQon+Qan

0 1) (0 1 0 1\ _ (P2 E'Py+ Py
1 Al 1 An 1 E') ™~ Q2n EIQ?n + Q2n—1
are not equivalent mod R. Hence we have (5) (or (6)) is greater than or equal to
g?°8 £ On the other hand, if A B # A B mod Rwith (4) = (Y
' " \C D ¢ D c)~\V

!
A) = (g) mod R, A’'D'— B'C' =1 (or

and

mod R, AD — BC =1 (or —1) and (C’

—1), then
-1 -1
P. Pui A B Py Pup A B
(Qn Qn+1) <c D)i(Qn Qn+1) (c' p) mod &,

where we define (S::Il) = (g::ll g:) ((1) 113) with a fixed E € F,[X],

degE > 1. Moreover we see

P\ /A B\ _(1 E
(o &) (6 5)=(5 ) moar

-1
Pn Pai A B\ _ (1 B

(Qn Qn+1> (C' D'J=\0 1 mod R

for some E1, Es € Fy[X], E1 # E; mod R. This concludes that (5) (or (6)) is

less than or equal to gde8 £, O

o

3
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Remark. From the above lemma, we have

|G+(R)| = |G-(R)| = ¢*¢ * - C(R), (7
where we recall that C(R) is the number of pairs (U, V') such that 0 < deg U, deg V <
deg R and (U, V, R) = 1.
3 Group extension

We fix R € F,[X] and consider L x G(R) with mg = m x 0é(r)» Where dg (g,
denotes the probability measure that consists of the equal point mass on G(R).
We define a map Tiz(= Tg(g)) of L x G (R) onto itself, which we call a group

extension of T, by
To(f,7) = (T(f), (3 i)) .

It is clear that mg is an invariant probability measure for Tiz. The following
lemma is essential for applications of Ti5.

w((9)=(ro (5 &)

Proof. This follows from (2). O

Lemma 4.

Next theorem is also essential.
Theorem 1. (T, mg) is ergodic.
Proof. Since (T, m) is ergodic, it is easy to see that
{feL:(f,7) € E for somey € G(R)} =L (m-ae.),

for any Tg-invariant set E of positive (mg-) measure. This implies that there
exist measurable sets

E\,E,,...,E, CLx G(R)
such that

T;'E;=E; for 1<i<t
mg(BEi;) >0 for 1<i<t
Ul E; =L x G(R) (mg-ae.).
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We note that 1 < t < |G(R)|, that is, the number of ergodic components of T}
is at most |G(R)|. Thus there exists a measurable set Eg such that

.TélEo = Eo,
mé(Eo) >0

()

Then by the density theorem, we have the following : For {g;}52; “\ 0, there
exist {n;}32, /* 00, B1,Ba,--- € Fy[X], and 7 € G(R) such that

me ((Bl,B2,...,Bm) x {((1) ?)}NE(,)

o (18305 <13 1)

>1—¢g foranyl>1

and

. (0 1 0 1 (0 1

"=\1 B 1 B, 1 B,
Since

T"‘(Bl,Bz,...,Bnl)zL
and
T3 Eo = Eo,

we have

(Lx{)NEy =L x {3} (mg-ae.).

For any 7' € G(R), from (3) and (4) there exists a sequence B}, Bj,..., B, €
Fy[X] such that

0 1\(0 1\ (0 1Y\_.u-
1 B, J\1 B, 1 B, )7 7

Eo D T(Lx {7}) DL x {7} (mg-ae),

Hence
which implies

Eo =L xG(R) (mgae.).

Thus we get the assertion of the theorem. g

10
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Remark 2. We should note that
Ts(L x G+(R)) =L x Gx(R),

which means Tg is not mizing. Actually L x G4+ (R) is an invariant set of Ts.
In next section, we show that the restriction T, G? to this set has a strong mizing
property.

As a consequence of Theorem 1, we have the following.

Theorem 2. For any 7 € G(R) and any integer | > 0, we have

——

Pn—l Pﬂ —_ = n l —_ 1
Qn—l Qn) =7 IT (f)l < q‘} - 2.qdegR+l C(R)

1
i — < :
N yHisns N (

for m-almost every f € L.
Proof. For a fixed ¥ € G4 (R), we put

Da={(f,?)=f€114, |f|<;11—,}‘

Then from (7), we have

1 1
2.4 R.-C(R) ¢"

From the individual ergodic theorem and the ergodicity of 75, we have

mg(Ds) =

, — 1 1
1\}1_I>noo NZ_ 1p, (TE(f,7) = =3 %R C(R) ¢ (mg-a.e.).

0 1

if m(M) = 0, the assertion of the theorem follows from Lemma 4.

Since for any measurable set M C L, mg (M X { (1 O) }) = 0 if and only

Remark 3. As the special case | =0, we have

1 P, P, X 1
— < < N: = - —_— -a.e.
Nm {1 == (Qn_l Qn) 7} s er o (M)

From Theorem 2, we have the following.

Theorem 3. For any P,Q € F,[X] with (P,Q,R) = 1 and degP, degQ <
degR, and any l > 0, we have

hm —ﬁ{l <n<N: P, P mod R, |T™(f)] < _17} = _IL_ (m-a.e.)
Qn Q ¢’ ¢ -C(R)

for almost every f € L.

11
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Proof. To use Lemma 3 and (7), we consider (g"“1> instead of (5") Then
n—1 n

we have the assertion of this theorem directly from Theorem 2.

Remark 4. As before, | =0, we see

Nu_gnoo%u{mngzvz (S’;) = (g) modR} - C—(IR—) (m-a.c.)

Now we discuss the strong ergodic property, called exactness, of Té on L x
é+(R), where the invariant probability measure mea, is the normalized measure

of mg restricted to I x G4 (R) with an ergodic transformation 7' defined on a
probability space (2, B,m) is said to be exact if its tail o-field is trivial, which
means NS, 7~ "B only consists of sets of measure 0 and 1.

Theorem 4. T2l ., (r) 15 ezact.

Proof. To prove the exactness it is enough to show that
: 2n —

for any A C L x G4 (R) of positive measure. From (1) and the density theorem,
it is sufficient to show that

T2 (By, By, ..., BuiA)) =L x G4 (R).
for any By, Bs,...,Ba € Fg[X] and 7 € G+ (R), where
(B1,Bs,...,Bi;;%) ={(f,7) : f € (B1,Bs,...,Bi)},
for By, Bs,...,B; € F,[X] and 7 € G(R). Let

—

. (0 1 0 1) (0 1
=11 B 1 B, 1 By )

T¥((By,Ba, ..., Ba; 7)) = L x {¥%0}-

Then

For any % € G4(R), from (3) we choose By, Bj, ..., B}, € F[X] so that

0 1 \(0 1Y\ (0 1\ _, .11
1 By J\1 B 1 By, )T T M

Then we have

TZ* (B, By, - - -, Byr; ¥70)) = L x {1}

12
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Thus
T2*¥ (B, By, ..., B, B, Bj, .., ByiA)) = L x {1}
for any 4; € G4 (R). So we have

Tc%;(lﬂ)((Bl,Bz, .- Ba; 7)) =L x G4(R)

4 Continued fraction mixing property

In this section, we consider the continued fraction mixing property for the
stochastic process arising from Tg. We consider L x G4 (R) with mg (= 2mg)
as a probability space and the stochastic process {X, : n > 1} is defined by

Xn(f, ) = (A2n-1(f), A2n(f), Y2n-1) for (f,7) €L x G+ (R)
with

0% if n=1

Yon—1 = 0 1\(0 1 0 1
5 if n>2
7(1 A1> (1 Az) (1 A2n_2> tonz

Here the stochastic process {X,} is said to be 1-mixing if

mas (ANB)—ms (A)-ms (B
$(n)=sup  sup mg, (AN B) - mg, (A) - mg, (B)
i>1 Aew{,sen?;’in mea, (A) “mg, (3)
m(;+ (A);»éo,m@+ (B)#0

=0 (n— )

where F} and F$° are the smallest o-algebras for which {X; : k£ < j < 1}
and {X; : j > k} are measurable, respectively. Moreover {X,} is said to be
continued fraction mixing if {X,} is ¥-mixing and (1) < co. We start with
proving the continued fraction mixing property for {Xp,}.

Theorem 5. The stochastic process {X, : n > 1} defined in the above is con-
tinued fraction mizing with exponential decay.

Proof. First we show that there exists a constant p, 0 < p < 1, such that for
any BI,BQ, .. .,le,Cl, 02, .. .,Cm € ]Fq[X] and 1, ’~)’2 € G+(R),

me, ((By, B, . .. » Bai; 71) N T@_Z(Hn)(Cl,Cz, ey Cmi; ¥2))
= mé+((B1,Bz, .. 7B2l;;yl>) : mG-+((CI:CQ7 .- 7Cm):y2>)(1 + 0(p2n)) (8)

13
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holds. This means that {X,} is ¢-mixing. It is easy to see that
5. ((B1,Ba, ..., Bo; ) N TS 2N(C, Oy ..., O 7
mG+(< 1,025+ 21)71)0 Gy ( 1,225+, ma72))

= Y mg,((Bi,Bs,...,Bu, B}, B}y, By, C1, Cay o, Coni ),
(B1,By,..,By,,)
9)

where (Bj, B, ..., Bj,) runs over all 2n-polynomials such that

(0 1\(/0 1) (0 1\f0 1\/0 1) (0 1)_.
"1 B /1 B, 1 By)\1 B/J\1 B} 1 By, =™

By the independence of A;(-), the right hand side of (9) is equal to

mg, ((B1,By,...,Bui1)) D, m((B},Bj,..., Ba,)) -m((C1,C, ..., Crn)).

(B},Bj,....B},)
(10)

Now we use the following proposition.
Proposition 1. There exists a constant p, 0 < p < 1 such that for any 7, 72 €
G+(R)

1
_S_ B},B,,...,B}.))) = —s——— n
| A ) m(( 12 ’B2n>) qdegR'C(R) (1+0(p ))a
(B1,Bj,...,B;,.)

where (B, B, ..., B}.) runs all 2n polynomials such that

0 1\(0 1\ (0 1)\_.
m\1 B;J\1 B 1 By) ="
Proof. For any 7, 72 € G4 (R), we put
P =, m((Bi,By))
(B1,B3)

where (Bj, B}) runs all pairs of polynomials such that

. (0 1 0 1 o
m\1 B J\1 By )T™
. . 2k
Then we have a stochastic matrix P = (ps,5,). By (3) we see P2* = (p(ﬁlﬁ)'z)
is a positive matrix (i.e. all components pflzl';l are positive). Moreover, since

m X ‘5c':+( Ry 1s the ergodic invariant probability measure for T (and so Tg), it
is easy to see that the stochastic vector

1 1 1
v~ (r o Fmom - om)

14
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is the left invariant vector of P, i.e. pP = p. By the Frobenius-Perron theorem,
we see that there exists p, 0 < p < 1, such that

1 2
Pinin = 3. G(R) (I+0(p™)).
By the definition of pj;, 5,, we have the assertion of the proposition. O

(Proof of Theorem 5 — continued)
_ . (0 1 0 1 0 1 . ~ .
We choose 7; = 7, (1 Bl) (1 B2) (1 Bm) and 7j; = 5. Since

mé+((C'1,C’2,...,Cm)) -m((Cl,Cz,...,Cm»,

1
T =R CR)

we see (8) from (9), (10) and Proposition 1. Thus we have the ¢-mixing property
with exponential decay for {X,}. Next, we show (1) < oco. It is enough to
estimate the following.

mé+((Bl7B21 e ’B2l;:?l) nTC%l(Cla C2a e 7Cm;’71>)

(0 1 01”.013‘é~
"\1 B/\1 B, 1 B 725

then the above measure is equal to 0, since it is empty. On the other hand, if
- (0 1)\/0 1Y\ (0 1 s
"1 BJ)\1 B 1 Byl) =™

mG-+((Bl, Bz, ey Bgl : ’71>)m((01, Cg, caey Cm>)
=mg, ((B1, Ba, ..., B : 71))mg, ((C1,Ca, ... ,C : 7)) - ¢*8 BC(R). (11)

If

then we have

This shows (1) < co. Consequently, we have the assertion of this theorem. [J

Remark 5. By the same way, we have

mg, ((B1, Bz, ., Bu; 1) N T "™ 7HCL, Oy, ., O 7))
=mg, ((B1, Ba,..., Ba;H1)) -mg_((C1,Co, ..., Crm; 32)) (1 + 0(p*"))

for v € é+ and 4, € G_, where mg s the normalized measure of the restric-
tion of mg to L x G_(R).
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Now we put 41 = ((1) (1)> and sum up all ms((By,Ba,...,B;;71)) for a
fixed I (I =1 is enough). Then we have the following :

Proposition 2. For any 7 € G(R) and | > 0, we have

—~—

m ({felL:Tg (f, (é 2)) = (T"f, %) and |T"f| < %})

1 1
= R Gl &7(1 +0(p"))

holds for any

even n and 7y € G4 (R)
odd n and7 € G_(R)

—_——

U P
Take all (V 0

Corollary 1. For anyl > 0, we have

m({feL:IT"(f)l <% and (g:) = (g) mod R}) - ﬁ--ql—l(l-ko(p")).

Moreover if we fix By, Ba, ..., B; € Fy[X], then we have the following.

) such that UQ — PV = %1 and have the following :

Corollary 2. For anyl > 0, we have

1
m ({f €L:Ai(f) =B,...,4(f) =B, |T"™(f)| < 5 and (P"“) = <P> mod R})
q Qn+t Q
= = e (L o(e™)
T CR) Py O
If we choose 41 = (P Q) and sum up all possible (U, V)’s. then we see

that the same assertions hold with (Qn—1, @») = (P, Q) mod R (see M. Fuchs
(2))-

For any n > 1, we choose I,, > 0 and

An € é+ if n is even
Fn € G_ ifnisodd.

We define
D, = {f €L: Ty (f, (}) (1’)) = (T"f,%) and |T" ] < q,i}
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Since {An(-)} is an i.i.d sequence, we see that for any 0 < n < m and l,, I, >0,

m({felL:|T”fl<£:}m{feL:|Tmf|<;1—l1:})

cn({rermne D) om({renema< D). o

Now by the above theorem we get the following

Theorem 6. If 377, - = 0o, then
H{1<n<N: feDp} = AN)+OAN)?(log A(N))>2*¢)  (m—a.e),

where A(N) = Zgﬂ m(Dy,)

We note that > oo, qjl; = oo if and only if 3 oo, m(Dy) = oc.
Proof. We divide positive integers into even and odd integers. Obviously
either 307 | —— or 307, ;,Z}'—H— is co. Suppose that > oo ; ;llz_n = oco. By the
continued fraction mixing property of {X,} it follows that

m(Dn N D) = m(Dy) -m(Dy,) - (1 +o(s™ ™))

for any even integers n < n/, which implies that the quantitative Borel-Cantelli
lemma (see W.Philipp [5]) holds for {D,, : even n}. The same holds for odd
numbers if Y ?2—,1‘—;1—. Thus we get the assertion of the theorem. ]

In particular if we take I, = I, n > 1, we have Theorem 2 and 3 with an
estimate of the remainder term.

Theorem 2’ For any 7 € G(R) and any integer | > 0, we have

1 . Pnjl\/Pn —_ X n i
N—u{lgngN. (Qn—l Qn> =4, |T (f)l<q,}
1
= 2. q@9R+l . C(R)

+ O(NY2%(log N)3/2%¢)  (m-a.e.)

Theorem 3’ For any P,Q € Fy[X] with (P,Q,R) =1 and deg P,degQ < deg
R, and any integer l > 0, we have

r{rensws(§) = (§) men i)

= ZI_I_.%(?) + O(Nl/z(log N)3/2+s) (m-a.e.)
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For any subsequence of positive integers n; < ng < --- <n; <Njpy < -+,
we chpose non-negative integers l1,lo, ... ,l;, .-, and 4; € G4 if n; is even and
7; € G_ if n; is odd, respectively. We put

D] = {felL T (f, ((1) ?)) = (T™ f,%) and [T™ f]| < j—}

Then we have the following by the same proof in the above.
Corollary 3. If Y oo, (—1%; = 00, then

N
H{1<i< N : feD,} = m(D,) + O N) (log AN)*?*) (m—ae),

=1

where A'(N) = Efil m(D7,.).
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