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Abstract

We study some properties of principal and mediant convergents for a class
of semi-regular continued fractions, in particular, a-continued fractions, 0 <
a < 1. We claim that all a-principal convergents are the regular convergents
if % < a < 1, on the other hand, this is not true in general for 0 < a < % We
also show that for every z, the set of a-principal and a-mediant convergents
of = are identical with that of the regular principal and the regular mediant
convergents of z.

1 Regular continued fraction

For an irrational number z € (0,1), if a non-zero rational number £, (p,¢) = 1,

satisfies |z — § < 5%—5, then it is the nth regular principal convergent {"f for some
n > 1. Here the nth regular principal convergents are defined by

p_1=p_a(x)=1, po=po(z)=0
g1 =q-1(x) =0, qo=gqo(x)=1

and

Pn =DPn(T) = Gn - Pna1 + Pn—2 for n>1.
n = Qn(z) =Qpn  Gn-1 +qn-2

with the regular continued fraction expansion of z :

1] 1] 1]
T= e
l(ll l(l2 |a3
It is well-known that
po_ L L g n> 1.
A |an

If z € [k,k + 1) for an integer k, we define its nth regular principal convergent by
pule=k) | p — %x—”kz. On the other hand, for some z € (0,1), there

gn (x—k)
exists 5 with (p,q) = 1 and ':c - sl < Elg, which is not the nth regular principal
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convergent for any n > 0. However, we can find such a fraction 5 in the set

Eazfad %—i—:—”%l‘ : n > 1}. This leads us the notion of the regular mediant

convergents of level n, ==t which is defined by

L N

Unt =1t Pn + Pn—
{n’t P T Pa-i for 1<t<apt1, n>0.

Un,t = t gn+qna

The regular principal and the regular mediant convergents are obtained by the
following maps T and F of [0,1], which are called the Gauss map and the Farey
map, respectively, see [2] :

L1 if ze(0,1]
T(z) =< " =] (1.1)
0 if z=0
and
= if z€[0,1)

F(z)

L= if zel},1],

where [y] = nif y € [n,n + 1). We get the coefficients of the regular continued
fraction expansion of z € [0,1] by

n = an(2) = [(T"(z)7"], n21

We refer to Sh.Ito [3] about the relation between F' and the regular mediant con-
vergents.

2 a-continued fractions and the a-mediant conver-
gents

We generalize the notion of the mediant convergents to the a-continued fraction
expansions introduced by H.Nakada [5]. The notion of a-continued fraction ex-
pansions is a generalization of the regular continued fraction expansion and the
expansions are induced by the following map T, of I, = [ —1, @] for % <a<l:
Li_ri ifxel 0
Ta(fl,‘)‘—' |::‘ Hzl]a e"‘\{}

0 if =0,

where [y]o =n if y € [n— 14 a, n+ a). We note that this definition coincides
with (1.1) if @ = 1. For n > 1, we put

Ean = Ea,n(x) = SgIlT:-l(Il'),

! ] (or =oo if TP !(z) = 0).

T2 (2)

Can = Ca,n(z) = [

Then we have the a-continued fraction expansion of z € I, by

Eay | | Ea | L Eas |

Tz =

= +:0, Can 21
lca,l |ca,2

| Ca,3
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We define the nth a-principal convergents ;’—:f—, n > 1, by

{pa,—l = 1a Pa,0 = 0 and {pa,n = Ca,n " Payn—1 + Eayn *Pa,n-2

qQa,—1 = 0, Qa0 = 1 dan = Can *Qan—1 t+ Ean * Ja,n-2-

We note that the {gq,.} is strictly increasing, see [5]. Also we define the a-mediant
convergents of level n > 0, {722 : 1 <t < Can41}, by

for 1<t<cant1- (2.1)

Ua,nt = - Dan + €a,n+1 * Pa,n—-1
Vant =1t qan+E€antl dan-1

Next, we define a map which induces the sequence of the a-principal and the a-
mediant convergents for each a, % <a<l1l WeputJ, =[a-1, é] and define the
map G, of J, by

if z€fa—1,0):=J4,

if z€[0,35):=Ja2

=
+Ia
8

o

Gq(z) =

- =
[
8 8

if z€ (g 2]:=Jas

® I

We note that G; = F. In this sense, G, is a generalization of the Farey map
and is called the a-Farey map. In order to get the a-principal and the a-mediant
convergents of z € J, by the iterations of G, it is convenient to use the following

matrices :
_ (-1 0 _ (1 0 _ (0 1
(3 =) =)

az+b wu ) U a b\ [(zz
——— = — with =
cx+d v v c d z

for any real numbers z and z # 0, we denote

Since

ar+b

Alz) = cx+d

and A(—o00) = A(c0) = for A= (a Z) .

Hence, we write
V) ifzeda
Gu(z) = V;l(a:) ifx€dae
U (z) ifrx€Tags.
We put
Vo if (Ga)" Hz) €Tan
Mu(z) = qVy if (Ga)" () € Jaz2
U if (Ga)" (z) € JTay-
Then, we get a sequence of matrices

Ml(:v), M2(Il:), e
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from the iterations of G, for each z € J,. Here, all matrices M,,’s are of determi-
nants 1. We put

ko(z) :=0 and kn(z) := min{k > k,—1(z) : (Go)* () € Ju3}, n > 1.

Then we have the following theorem, which connects the map G to the a-mediant
convergents explicitly.

Theorem 1. For x € 1,, we have

(1) If L =kn(z), n 21,

QD:,'n—I Qa,n

M@ Maa) -+~ Mife) = (Tt Pem) (2.2)
(1) If l = kn(z) +t, 1 <t <capnt1, n >0,

M1 (.'IZ)MQ(,’E) cee Ml (2:) = (ua,n,t pa,n) (23)

Ua,n,t qa,n
The following is a direct consequence of Theorem 1.
Corollary 1. We have

Pam=l  4f I =ka(z), n>1

Ga,n-1
(Mi(z)Ma(z) - Mi(z))(00) =4 l=kn(z) +1,
el A <t<cant1, n>0.

Remark. In [3], the regular mediant convergents are obtained as

(My(2) Ma(z) - - - Mi—1(2))(1)-

3 The relation of a-convergents and regular con-
vergents

In this section, we describe a relation between the a-convergents and the regular
convergents. Here we divide into two cases for a, 0 < a < % and % < a< 1. First
we have the following theorem in the case of % <a<l

Theorem 2 (in the case of % < a<1). Forz €1, we suppose

€a,1 | + 50;,2'

— + €a,3 I 4 .-
|Ca,1 Ica,2

]Ca,S

z

is the a-continued fraction expansion of x. Then we have the following for any

% <a<l:
(1) {&’ﬂ,nZI}C {gﬂl,m21}
o,n dm
(I If &= gf:‘f for anyn > 1, thenm = n+l,(z) for somen > 1, €4 nt1(z) = —1,
and
Ua,n—1,can—1 _ p_m _ Uam,1
Va,n—1,ca,n—1 dm Va,n,1 ’
where

ln(z) :=#{l <k <n:eqp(z) =-1}
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(I11) {@, n> 1} u {M 1<t <Camyr, n > 0}

a,n 'va,n,t

={&,nZI}U{M:1§t<an+1,n_>_0}
an Un,t

We can expand the above theorem to S-algorithm. We give the definition of
S-algorithm by C. Kraaikamp [4]. At first, the following is called singularization :

1+ —
0n+1+'

| singularization

1

. — )

n ) b
(a 1 ) (an+1+l)+‘

which follows from

0 1\(0o 1\fo 1Y)_/0 1 0 -1
1 Qpn—1 1 1 1 An+1 - 1 an_1+1 1 an+1+1 :

Next we define a map T on [0, 1] x [—o00, —1] by
— 1 1 1 1
rew=(5-[z] 5 [)

Then we see

T"(z, —00)
= (Tnm, - Gn )
dn-1
1 + 1
= -1 a
1 ) n a1+
Ong + ——— o
Gnt2 t +dr

Let S is subset of [$,1) x [0,1]. Then S is called a singularization area if m(8S) = 0
and SNTS = @, where m is 2-dimensional Lebesgue measure.

Definition 1 (S-algorithm).
Let S is a singularization area. Then an algorithm that induces continued fraction

ezpansions is said to be S-algorithm if T™(x,—oc0) € S induces the singularization
at nth coefficients :

OOCLEHEC -
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}  singularization

0 1 0 1 0 1 0 -1
1 a1/ ""\1 ap_ 1 ap+1/\1 ap2+1/)""

Remark 1 (C. Kraaikamp). For % <a<1,T, is S-algorithm.
We have a generalization of Theorem 2 to S-algorithms.

Theorem 3. Suppose

53,3’

] Cs,3

_ el car]

= +
l Cs,1 I Cs,2

“+ .-

is the S-ezpansion. Then we have the following :
Ps,n m
(1) {m,nZI}C{;’:,mZI}
(I)If B= 3 f;:—:: for anyn > 1, thenm = n+l,(z) for somen > 1, €5 ny1(x) = —1,
and

us,n—l,c_,,n—l _ Pm _ us,n,l

b
VUs,;n—1,c5,n—1 dm Vs,n,1

where

ln(z) =4{1 <k <m:ezp(z) = -1}

(I11) {’ifﬁ, n> 1} U {M (1<t <Copp1, 1 > 0}

s,n Us,n,t

={&,nZI}U{E"i:ISt<an+1,nZO}

an Un,t

For0<a< %, we see that T, is not S-algorithm. However we have the following
theorem :

Theorem 4 (in the case of 0 < @ < 1). For any 0 < a < 1, we have the follow-
ing :

(I) There ezists € [ — 1,a] for which

Pa,n Pm
Pon 4 Im
Qa,n dm

{’i‘?ﬁ,n21}¢{”—’",m21}
da,n Qm

(II) There ezists z € [a — 1,a] such that % appears 3-times in the sequence of

a-mediant convergents. (If a is small, Z—: appears 4-times, 5-times, ... )

dn>1 s.t m2>1

b b

that is,

QQ,'n va,’n,t

:{&,nZI}U{M:1§t<an+1,nZO}
qn Un,t

(III) {p“-—’", n> 1} u{fﬂﬁi (1<t <Cami1, n > 0}
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To prove Theorem 4, we use the following.

Lemma 1 (semi-singularization).

EDEIED-C ) DC
EDEIED-C 26 D70

4 Some remarks

We recall the notion of semi-regular continued fractions by [4].

Definition 2 (semi-regular continued fractions). For a real number z,

$=b0+——‘—62—,

where by is an integer, b; (i > 1) is a positive integer and £; = +1 (i>1). Above
the continued fraction is called semi-regular

if €nt1+bp > 1 and e,41 + by, > 2 infinitely often
(in the case of the infinite continued fraction)

if enp1 +bp > 1

(in the case of the finite continued fraction,).

Definition 3 (semi-regular). An algorithm that induces continued fraction ez-
pansions is said to be semi-regular if induced continued fractions are always semi-
regular.

We note the following, see [4].
Remark 2. Every S-algorithm is semi-regular.
Remark 3. If 0<a < %, then Ty, is not S-algorithm, but it is semi-reqular.
Remark 4. Ty is not semi-reqular

We have seen that the set of the a-principal and the a-mediant convergents
coincides with the set of the regular’s. K. Dajani and C. Kraaikamp [1] showed that
Lehner fractions induce the set of the regular principal and the regular mediant
convergents. They also showed that this set includes all principal convergents arising
from S-expansions. In this sense, they called this set “the mother of all semi-regular
continued fractions”. Our claim is that we can construct the “mother” from any
a-continued fractions, 0 < & < 1, by producing the a-mediant convergents.
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