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Abstract

We study topological aspects of matrix models and noncommutative cohomo-
logical field theories (N.C.CohFT). N.C.CohFT have symmetry under the arbitrary
infinitesimal noncommutative parameter θ deformation. This fact implies that
N.C.CohFT possess a less sensitive topological property than K-theory, but the
classification of manifolds by N.C.CohFT has a possibility to give a new view point
of global characterization of noncommutative manifolds. To investigate properties
of N.C.CohFT, we construct some models whose fixed point loci are given by sets of
projection operators. Particularly, the partition function on the Moyal plane is cal-
culated by using a matrix model. The moduli space of the matrix model is a union
of Grassman manifolds. The partition function of the matrix model is calculated
using the Euler number of the Grassman manifold. Identifying the N.C.CohFT with
the matrix model, we get the partition function of the N.C.CohFT. To check the
independence of the noncommutative parameters, we also study the moduli space
in the large θ limit and the finite θ, for the Moyal plane case. If the partition
function of N.C.CohFT is topological in the sense of the noncommutative geometry,
then it should have some relation with K-theory. Therefore we investigate certain
models of CohFT and N.C.CohFT from the point of view of K-theory. These ob-
servations give us an analogy between CohFT and N.C.CohFT in connection with
K-theory. Furthermore, we verify it for the Moyal plane and noncommutative torus
cases that our partition functions are invariant under the those deformations which
do not change the K-theory. Finally, we discuss the noncommutative cohomological
Yang-Mills theory.

http://jp.arXiv.org/abs/hep-th/0312120


1 Introduction

Recent developments in string theory make for a fruitful framework and motivation to
study noncommutative field theories for physicists. From the viewpoint of physics, much
progress has made by noncommutative geometry. On the other hand, from a point of view
of noncommutative space geometry and topology investigated by physical technologies,
there are some succeeding cases, for example Kontsevich’s deformation quantization is
given by some kind of topological string theory [1, 2]. As another example, some kinds
of charges that are topological in commutative space are investigated and their results
imply the charges have some kind of topological nature [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Topology and geometry of “commutative” space is studied by many methods. One of
the important ways to investigate them is using quantum (or classical) field theories and
string theories. For example, Donaldson theory, Seiberg-Witten theory, Gromov-Witten
theory and so on are constructed by cohomological field theories(CohFT). Therefore,
it is natural to ask “ Can Noncommutative Cohomological field theories (N.C.CohFT)
be used for the investigation of noncommutative geometry or topology?” Here we call
CohFT naively extended to noncommutative space cases N.C.CohFT. One of the aims of
this article is to give the circumstantial evidence for a positive answer to the question.

Noncommutative space is often defined by using an algebraic formulation, for example
by using C∗ algebras. So its topological discussions are usually done through algebraic
K-theory. For example, the rank of K0 identifies each noncommutative torus T 2

θ that is
characterized by the noncommutative parameter θ. In this sense, even if θ − θ′ is arbi-
trary small, T 2

θ is distinguished from T 2
θ′ without Morita equivalent cases. Meanwhile,

some topological charges in commutative space seem to remain “topological” on the non-
commutative space, and some do not depend on θ. (“Topological” is used in a slight
different sense than the usual topological and its definition is given below.) For exam-
ple, the Euler number of a noncommutative torus is independent of the noncommutative
parameter θ and it is defined as topological invariant by the difference of K0 and K1.
As another example, it is possible to define the instanton number (the integral of the
first Pontrjagin class) as an integer for Moyal space [3, 4], and this fact implies that the
instanton number has some kind of “topological” nature even if the base manifold is non-
commutative space. (Here, we call Moyal space noncommutative Euclidian space whose
commutation relations of the coordinates are given by [xµ, xν ] = iθµν , where θµν is an
anti-symmetric constant matrix.) The instanton number does not depend on θ, at least for
Moyal space. Also, partition functions of CohFT are one of the such “topological” invari-
ants [13]. These observations show that “topological” charge defined by noncommutative
field theory has a tendency of independence from θ. Therefore it is natural to expect the
existence of a topological class less sensitive than K-theory but nontrivial. Here, we define
an “insensitive topological invariant” as follows: if noncommutative manifolds A and B
give the same K-group, then the topological invariant defined on both A and B take the
same value, but the inverse of this statement is not always true. In short, if K-theory do
not distinguish A from B, then the “insensitive topological invariant” does not classify
them. To express thess insensitive topology classes we use “topological” in the above
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sentences. Some may think that such an insensitive topology is not useful for geometrical
classification. Possibly “topological” might not be suitable for the instanton number or
the partition function of the N.C.CohFT, because there is some circumstantial evidence
but it is not proved. But even if they are not “topological”, they have indisputable value
from the field theoretical point of view, since it is possible to classify the manifolds by
global characters whose equivalent relations are defined by field theories. In this sense,
this classification is similar to the mirror of Calabi-Yau manifolds or duality in a physical
sense and so on. Therefore, one of the aims of this article is investigating the partition
functions of some models of the N.C.CohFT as examples of such “topological” invariants.

As mentioned above, N.C.CohFT have the property of θ-shift invariance and the proof
of θ-shift invariance is based on smoothness for θ [13, 14]. In some cases, at the commu-
tative point (θ = 0) theories have singularities, as we know about U(1) instantons and so
on. So, we have to note that there are difficulties to connect a noncommutative theory to
a commutative theory and the smoothness of θ for the proof should be checked whenever
we consider new models. Meanwhile, there is interesting phenomena caused by θ-shift.
For examples, when we consider Moyal spaces, derivative terms in the action functional
become irrelevant in the large θ limit. Then the theory is determined by the potential of
the action and the calculation of the partition function becomes easy. If we can compare
the moduli space topology in the large θ limit with the one for finite θ, the θ invariance
of the partition function may be checked. We verify this for one model in this article.

Here, we comment on the relation between [13] and this article. As an example
of N.C.CohFT, one scalar field theory was investigated and its partition function was
calculated in [13]. This model is essentially equivalent to the model that is studied in
this article. We found that the partition function was given as the “Euler number” of a
moduli space by using the method of the fundamental theorem of Morse theory extended
to the operator space. This fact implies that the partition function is still the sum of the
Euler numbers even if the base manifold is Noncommutative space. But it is not enough
to verify the equivalence of above “Euler number” and usual Euler number defined for
commutative manifolds, because we do not know the connection between the usual Euler
number and the extension of the fundamental theorem of Morse theory to the operator
formalism, in the sense of local geometry. The calculation in [13] is done by choosing
some representation of Hilbert space caused from noncommutativity, and choosing the
representation can be understood as gauge fixing. The computation of [13] lacks the view
point of the local differential geometry of moduli space. Meanwhile, when the moduli
spaces are defined as spread commutative manifolds, their Euler number is given by the
Chern-Weil theorem, then it is expected that the partition function is obtained by the
Chern-Weil theorem. In other words, we will find that the fundamental theorem of Morse
theory extended to the operator formulation connects to the usual local geometry or the
usual Euler number on commutative space. It is worth verifying this statement. In this
article, we do it for an example.

We remark that the operator representation of N.C.field theories can be interpreted
as an infinite dimensional matrix model. The partition function of N.C.CohFT is deter-
mined by the geometry of the moduli space of the matrix model. In particular, when the
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noncommutative space is a Moyal space, the matrix model does not include the kinetic
terms like the IKKT matrix model in the θ → ∞ limit, because terms with differential
operator in the lagrangian like kinetic terms become infinitesimal. Then, we can calcu-
late the partition functions from only potential terms for the Moyal space in the large θ
limit by using the matrix models. This relation between N.C.CohFT and matrix models
is also important to the matrix models, because this relation allow us to investigate the
topology of their moduli spaces by the N.C.CohFT. Additionally, this correspondence is
not for particular cases. Actually the connection between noncommutative cohomological
Yang-Mills theory and the IKKT matrix model is discussed in this article. One of the
aims of this article is the observation of these relations between the matrix models and
N.C.CohFT.

This is the plan of the article: In the next section N.C.CohFT is reviewed. We
see that the partition function of the N.C.CohFT is independent from the deformation
parameter of ∗ product. In section 3, we introduce a finite size Hermitian matrix model
(finite matrix model) as a 0 dimensional cohomological field theory and we calculate its
partition function. This partition function is determined by only topological information.
In section 4, we construct some models of noncommutative cohomological field theory
whose moduli spaces are defined by projection operators. Projection operators play an
important role in the topology of noncommutative space because K0 is made by the
Grothendieck construction of equivalent classes of projection operators. The partition
function of one of the models is given by the sum of the Euler numbers of moduli space of
the projectors spaces. In particular, using the result of finite matrix model in section 3,
the partition function of the noncommutative cohomological scalar field theory on Moyal
plane is obtained in section 4. Independence from noncommutative parameters is also
discussed. The model that contains the derivative terms are investigated for the finite
noncommutative parameter case and the large limit case. We see that the topology of the
moduli space of both cases are equivalent. In section 5, one model mirrored by N.C.CohFT
in section 4 is constructed on COMMUTATIVE space and this model gives the model in
section 4 by large N dimensional reduction. We see the connection between the model
and the homotopy classification of vector bundles or topological K-theory. Furthermore,
from the view point of K0 we see our partition function of N.C.CohFT is “topological” for
the Moyal plane and noncommutative torus cases. In section 6, correspondence between
matrix models and N.C.CohFT is investigated for the case of N.C.cohomological Yang-
Mills theories. In the last section, we summarize this article.

2 Brief Review of N.C.CohFT

In this section, we give a brief review of cohomological field theory (CohFT) and the
nature of its noncommutative version. The CohFT is formulated in several ways [15] [16]
but we use only Mathai-Quillen formalism in this article.
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2.1 Review of Mathai-Quillen Formalism

Atiyah and Jeffrey give a very elegant approach to CohFT [17]. The Atiyah and Jeffrey
approach is an infinite dimensional generalization of Mathai-Quillen formalism that is
Gaussian shaped Thom forms [18]. We recall some well known facts here. Details can be
found in several lecture notes [19], [20] and [21].

For simplicity we only consider the finite dimensional case in this subsection. Let
X be an orientable compact finite dimensional manifold. For a local coordinate x and
Grassmann odd variable ψ corresponding to dx, we introduce BRS operator δ̂:

δ̂xµ = ψµ, δ̂ψµ = 0. (1)

Let us consider a vector bundle V with 2n dimensional fiber and Grassman-odd variables
χa and Grassmann-even variables Ha, a = 1, · · ·2n. For these variables, we define BRS
operator δ̂ transformations:

δ̂χa = Ha, δ̂Ha = 0. (2)

Note that δ̂ is a nilpotent operator. Using some section s and connection A of the vector
bundle, the action of the CohFT is defined by BRS-exact form:

S = δ̂

{

1

2
χa(2is

a + Aabµ ψ
µχb +Ha)

}

=
1

2
|sa|2 − 1

2
χaΩ

ab
µνψ

µψνχb − i∇µs
a(ψ)µχa. (3)

To get the second equality, we integrate out the auxiliary field Ha. The partition function
is defined by

Z =

∫

DxDψDχDH exp (−S) . (4)

In the commutative space, Mathai-Quillen formalism tells us that the partition function
is a sum of Euler numbers of the vector bundle on the space M = {s−1

a (0)} with sign.
We can see this fact as follows. We expand the bosonic part |sa|2 around the zero section
sa = 0 as

|sa|2 = (∇µs
axµ)2 + · · · . (5)

In general, CohFT is invariant under rescaling the BRS-exact terms, then the exact
expectation value is given by Gaussian integral. Gaussian integral of the bosonic parts
give

1/
√

det|∇µsa|2. (6)
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Note that if connected submanifolds Mk defined by

⋃

k

Mk := {x|s = 0}, (7)

Mi ∩Mj = ∅ for i 6= j

have finite dimension, the Gaussian integral is done over X\{x|s = 0}. The fermionic
non-zero mode ψ, χ integral is

det(∇µs
a) (8)

from the fermionic action ∇µs
a(ψ)µχa. From (6) and (8), sign ǫk = ± is given. Here

remaining zero modes of ψ are tangent to Mk and the zero modes of χ are understood
as a section of the vector bundle overMk. Let ψ0 and χ0 be these zero-modes and Vk be
the vector bundle over Mk, then the remaining integral over Mk is expressed as

∫

Mk

Dψ0Dχ0e
− 1

2
χa0Ωab

µνψ
µ
0
ψν

0
χb0 = χ(Vk). (9)

Here Ωµν is curvature. After using Chern-Weil therem the right hand side is given by the
Euler number of the vector bundle Vk. Finally we obtain the partition function

Z =
∑

k

ǫkχ(Vk). (10)

The Cohomological field theories are naive extensions of this Mathai-Quillen formal-
ism to the infinitesimal dimensional cases. The transition to the N.C.CohFT is trivially
achieved by going over to operator valued objects everywhere or by replacing product by
∗ product everywhere.

2.2 Some Aspects of N.C.CohFT

In this subsection we review some aspects of N.C.CohFT that are investigated in [13, 14].

In this article, we use both ∗ product formulation and operator formulation [22]. We
define ∗ product of noncommutative deformation by using the Poisson bracket { , }θ as
follows

φ1 ∗ φ2 = φ1φ2 +
1

2
{φ1, φ2}θ + (higher order of θ), (11)

where φi (i=1,2) are sections of vector bundles whose base manifold is a Poisson manifold.
Note that the Poisson brackets are defined on Poisson manifolds. The ∗ product is fre-
quently expressed by ~ expansion and this ~ is distinguished from symplectic form used
for definition of the Poisson bracket. But we make no distinction between ~ and the sym-
plectic form and hereinafter they are collectively called noncommutative parameters θ,
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for simplicity. The index θ of { , }θ means the set of noncommutative parameters. For ex-
ample, we will use Moyal product for R

2n and T 2 when we perform concreate calculations
in section 4. In these cases, the following Poisson brackets are used,

{φ1, φ2}θ =
i

2
θµν(∂µφ1∂νφ2 − ∂µφ2∂νφ1), (12)

where the noncommutative parameter θµν is a constant anti-symmetric matrix. Then the
∗ product, called the “Moyal product” [23], for R

2 or T 2 is given by

φ1 ∗ φ2(x) = e
i
2
θµν∂µ∂

′
νφ1(x)φ2(x

′)|x=x′. (13)

In the following, ∗ is used for both general Poisson manifolds and R
2 or T 2. So, when we

consider R
2 or T 2, we write “Moyal product” , “Moyal plane” and so on to distinguish

from the general ∗ product.

Let us consider the CohFT on some Poisson manifolds deformed by the ∗ product.
Take the lagrangian and the partition function as in the previous subsection but with
infinite dimensions. Naively, replacing x, χ and so on by some fields φi(x), χa(x) and so
on gives the infinite dimensional extension of the Mathai-Quillen formalism. Since the
action functional is defined by an BRS-exact functional like δ̂V , its partition function is
invariant under any infinitesimal transformation δ′ which commutes (or anti-commutes)
with the BRS transformation:

δ̂δ′ = ±δ′δ̂,

δ′ Zθ =

∫

DφDψDχDH δ′
(

−
∫

dxDδ̂V

)

exp (−Sθ)

= ±
∫

DφDψDχDH δ̂

(

−
∫

dxDδ′V

)

exp (−Sθ) = 0. (14)

Let δθ be the infinitesimal deformation operator of the noncommutative parameter θ which
operates as

δθ θ
µν = δθµν , (15)

where δθµν are some infinitesimal anti-symmetric two form elements. To express the
dependence on θ, we use ∗θ as the ∗ product defined by (11) with noncommutative
parameter θ in the following discussion. For ∗θ, the δθ operation is represented as

δθ ∗θ = ∗θ+δθ −∗θ. (16)

Then we see that δ̂ commute with δθ as follows,

δ̂δθ(φ1∗θφ2) = δ̂(φ1∗θ+δθφ2 − φ1∗θφ2)

= (ψ1∗θ+δθφ2 + (−1)Pφ1φ1∗θ+δθψ2)− (ψ1∗θφ2 + (−1)Pφ1φ1∗θψ2)

= δθ(ψ1∗θφ2 + (−1)Pφ1φ1∗θψ2)

= δθδ̂(φ1∗θφ2), (17)
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where ψi = δ̂φi and Pφi
is the parity of φi. This fact shows that the partition function of

the N.C.CohFT is invariant under the θ deformation.

If we restrict the models to Moyal spaces, more concrete interesting properties appears
from θ shifting. To clarify the character, we introduce the rescaling operator δs that
satisfies

x′
µ

= xµ − δsxµ, (18)

δsx
µ = (

1

2
δθµν(θ−1)νρ)x

ρ (19)

and

(1− δs)[xµ, xν ] = [x′
µ
, x′

ν
] = i(θµν − δθµν). (20)

The transformation matrix is given as

Jµρ ≡ δµρ +
1

2
δθµν(θ−1)νρ, (21)

and the integral measure is expressed as

dxD = detJdx′
D
,

∂

∂xµ
= (J−1)µν

∂

∂x′ν ,
, (22)

where detJ is the Jacobian.
Using these new variables the Moyal product is rewritten as

(1− δs)(∗θ) = δs(exp(
i

2

←−
∂ µ(θ − δθ)µν

−→
∂ ν)) = ∗θ−δθ. (23)

These processes are simply changing variables, so the theory is not changed. An action
is written before and after this variable change as follows.

Sθ =

∫

dxDL(∗θ, ∂µ)
=

∫

detJdx′
DL(∗θ−δθ, (J−1)µν

∂

∂x′ν
), (24)

where L(∗θ, ∂µ) is an explicit description to emphasise that the products of fields are the
Moyal product and the lagrangian contains derivative terms.

As the next step, we shift the noncommutative parameter θ as follows

θ→ θ′ = θ + δθ. (25)

This deformation changes theories in general. However, the partition function of the
N.C.CohFT do not change under this shift as we have seen. After changing of variables
(18) and deforming θ (25), the action is expressed as follows.

Sθ′ =

∫

detJdx′
DL(∗θ, (J−1)µν

∂

∂x′ν
). (26)
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Here L(∗θ, (J−1)µν ∂
∂x′ν

) is a lagrangian in which the multiplication of fields are defined by
∗θ and all differential operators ∂

∂xµ in the original lagrangian are replaced by (J−1)µν ∂
∂x′ν

without derivations in ∗θ. This action (26) shows that the θ deformation is equivarent to
rescaling of x by δs, but the Moyal product ∗θ is fixed. Note that θ → ∞ limit is given
by omitting kinetic terms in the action, because the limit θµν →∞ means detJ→∞ in
Eq.(26) (see also [24] and [25]). Using this property, we investigate both the large θ limit
case and finite θ case for some N.C.CohFT model on the Moyal plane in section 4.

3 Finite Matrix model with Connections

In this subsection, we study a matrix model and its partition function. Several finite or
infinite size Hermitian matrix models are important in physics, even a 1-matrix model
(see for example [26], [27] and [28]). The model considered here is different from them,
but the methods of the analysis done here is applicable to them when we study the ge-
ometry of the moduli spaces of them. The matrix model of this section is regarded as
operator representation of the N.C. cohomological Scalar model of section 4 with taking
the cut off of the Hilbert space. From this fact, the calculations of this section make it
possible to determine the partition function of the N.C.CohFT on the Moyal plane in sec-
tion 4. (This model is given by 0-dimensional reduction of the model in the section 5, too.)

Let M be set of all N ×N Hermitian matrices, then it is a N2 dim Euclidian manifold
R
N2

. Let V be rank N2 (trivial) vector bundle over M . Let s : M → V denote some
given section of a trivial bundle. We adopt the Killing form as a positive-definite inner
product.

We construct the finite matrix model as the 0 dimensional CohFT. We take some
orthonormal basis of N × N Hermitian matrices as a canonical coordinate of M , and
write φ = (φab) ∈ M . The other fields (matrices) are introduced by the way of general
CohFT. Hab is a bosonic auxiliary field that is a N × N Hermitian matrix. Fermionic
matrices are ψab and χab, that is the BRS partner of φ and H , and these are N × N
Hermitian matrices, too. Their BRS transformation is given as

δ̂φ = ψ, δ̂ψ = 0, δ̂χ = H, δ̂H = 0. (27)

Let ∇ be a connection Γ(V )→ Γ(T ∗M ⊗ V ) = V , where Γ(V ) is a set of all sections.
Let A kl

ji;mn(φ) be a component of connection 1-form in the vector bundle V . Let eij be a
component of local frame field of V . Using eij , the relation between A and ∇ is written
as ∇ijekl =

∑

A mn
ij;kl emn. In the following, we take the section of the trivial bundle as

s(φ) = φ(1− φ). Then the CohFT action is given by

S =
∑

i,j

δ̂{χij(2[φ(1− φ)]ji + i
∑

m,n,k,l

χmnA kl
ji,mn(φ)ψkl − iHij)}. (28)

After Gaussian integral of Hij, the bosonic part of the action becomes

Tr(φ(1− φ))2, (29)
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and the fermionic part of the action is

LF = Triχ
{

2(ψ(1− φ)− φψ)−
∑

ijklmn

ψijψklF (ij, kl; ab,mn)χmn

}

. (30)

Here F (ij, kl; ab,mn) is the curvature defined by

F (ij, kl; ab,mn) ≡ δ

δφij
A mn
kl;ab −

δ

δφkl
A mn
ij;ab + i

∑

(c,d)

[A cd
ij;abA

mn
kl;cd − A cd

kl;abA
mn

ij;cd ] (31)

The fixed points of this action are determined by

(φ(1− φ)) = 0. (32)

Non-zero solutions of φ are Projection operators P defined by P 2 = P . We denote by Pk
the projector that restricts rank N vector space to dimension k vector space. The set of
all Pk is connected and

Mk,N ≡ {Pk} = Gk(N), (33)

where Gk(N) is a Grassman manifold ( U(N)
U(k)U(N−k)

) whose dimension is 2k(N − k).

Let us investigate the Mk from a local geometric aspect. At first, we prove the non-
degeneracy of s in the normal directions to Mk. The definition of non-degeneracy is as
follows. Locally one can pick coordinate eij ( number of combination (i, j) isN2−2k(N−k)
) in the directions normal toMk and a trivialization of V such that

sab =
∑

i,j

fabij e
ij , for (i, j), (a, b) ∈ N (34)

sab = 0 , for (a, b) ∈ T. (35)

Here N and T are sets of indices (i, j) and numbers of their elements are N2− 2k(N − k)
and 2k(N − k). Let us prove this non-degeneracy of Mk. After appropriate coordinate
choice, we can take a rank k solution Pk ∈Mk as

Pk =

(

1k 0
0 0

)

, (36)

where P is a N × N matrix valued projection operator and 1k is the k × k unit matrix.
The (co)tangent vectors at this point are determined by variation of φ equation around
this solution;

δφ(1− Pk)− Pkδφ = 0. (37)

Its solutions are given by

δφij = 0, δφmn = 0, δφin = δφ̄ni, for i, j ∈ {1, 2, · · · , k} , m, n ∈ {k + 1, · · · , N}. (38)
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Here φ̄ is complex conjugate of φ. We can chose 2(N − k)k dim orthonormal basis of
N ×N matrices δφ:

(φ
(in)
R ) =

(

O (δin)
(δni) O

)

, (φ
(in)
I ) =

(

O i(δin)
−i(δni) O

)

(39)

where i ∈ {1, 2, · · · , k} and n ∈ {k + 1, · · · , N}. Let us not confuse “i” of
√
−1 and

index in this article. On the other side, basis of normal direction enormal is possible to be
chosen as Lie algebra of U(k)× U(N − k) whose non-zero elements lie only in the block
diagonal part i.e. (enormal)in = 0 for i ∈ {1, 2, · · · , k} and n ∈ {k + 1, · · · , N}. (Note

that Trφ
(in)
I enormal = Trφ

(in)
R enormal = 0 shows that the direction of enormal is normal to

δφ.) A non-degenerate basis of the Lie algebra may be chosen. For example, we can chose
non-degenerate N2 − 2k(N − k) dim basis enormal as,

(e
(ij)
normal) =























(

Uk
i,j O

O O

)

, for i and j ∈ {1, · · · , k}

(

O O

O UN−k
i,j

)

, i and j ∈ {k + 1, · · · , N}
(40)

where {UN−k
i,j;a,b} is a orthonormal basis of u(k) and {UN−k

i,j;a,b} is one of u(N − k). We found
the local coordinate enormal in the directions normal to Mk such that (34) holds. This
shows non-degeneracy. This discussion for non-degeneracy is parallel to the one in [29].

Let us investigate the mass matrix of fermions near the Mk and the fermionic zero-
modes. The χ equation and the ψ equation are

ψ(1− P )− Pψ = 0, and χ(1− P )− Pχ = 0, (41)

where we neglect nonlinear terms. Note that fabij in (34) is the mass matrix of χ and
ψ near Mk. Using the χ equation, we see massless components of ψ are those that are
tangent to Mk. There are massless components of χab that are regarded as the above
trivialization i.e. (a, b) ∈ T. Furthermore we can understand from the ψ equation that
the χ zero-modes are sections of the (co)tangent bundle ofMk,N .

Now we evaluate the integral for Z. The mass components integral gives overall factor
(−1)k

2

= (−1)k ( see [13] ). Recall that the moduli space {φ|s = 0} =
⋃

k{Pk} and
{Pk} = Gk(N). The Poincare polynomial of the Grassman manifold is given as

Pt(Gk(N)) =
(1− t2) · · · (1− t2N)

(1− t2) · · · (1− t2(N−k))(1− t2) · · · (1− t2k) .

(See for example [30].) Using these results and (10), the partition function is written as

Z =
N

∑

k=0

(−1)kP−1(Gk(N)). (42)

10



When we take t = ±1, the Poincare polynomial become number of combinations,

P±1(Gk(N)) =
N !

k!(N − k)! ≡
(

N

k

)

. (43)

The proof of (43) is given as follows.

P±1(Gk(N)) =
(1− t2) · · · (1− t2N )

(1− t2) · · · (1− t2(N−k))(1− t2) · · · (1− t2k)

∣

∣

∣

∣

t=1

=
(1− t2(N−k+1)) · · · (1− t2N )

(1− t2) · · · (1− t2k)

∣

∣

∣

∣

t=1

. (44)

After replacing t2 by a positive real number x,

P±1(Gk(N)) =
(1− x(N−k+1)) · · · (1− xN )

(1− x) · · · (1− xk)

∣

∣

∣

∣

x=1

=
{(1− x)(1 + x+ · · ·+ xN−k)} · · · {(1− x)(1 + x+ · · ·+ xN−1)}
{(1− x)}{(1− x)(1 + x)} · · · {(1− x)(1 + x+ · · ·+ xk−1)}

∣

∣

∣

∣

x=1

=
(N − k + 1)(N − k + 2) · · ·N

1 · 2 · · · k =

(

N

k

)

. (45)

This is what we want. From (42), (43) and the binomial theorem, the final result is then

Z =
N

∑

k=0

(−1)k1N−kP−1(Gk(N)) = (1− 1)N = 0. (46)

The calculation of the finite matrix model in this section will be used directly in the
noncommutative cohomological scalar model in the next section.

4 N.C.Cohomological Scalar model

In this section, we study some N.C.cohomological scalar models and evaluate their par-
tition functions for Moyal space by using the matrix model partition function in the
previous section. We also check the θ-shift invariance of Z.

4.1 N.C cohomological scalar model

Let M be a 2n dimensional Poisson manifold with Riemannian metric. Let φ and H be
real scalar fields on M and, ψ and χ be BRS partner fermionic scalar fields of φ and H .
In other words, (φ,H, ψ, χ) are elements of Ω0(M) with ghost number (0, 0, 1,−1) and
parity (even, even, odd, odd).

We introduce a nilpotent operator δ̂, i.e.

δ̂2 = 0, (47)
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as a BRS operator whose transformation is given by

δ̂φ = ψ, δ̂χ = H, δ̂ψ = δ̂H = 0. (48)

We consider the deformation quantization defined by some ∗ product. (∗ product exist
on arbitrary Poisson manifolds [1].)

We consider two actions :

S1 =

∫

M

dxD
√
gL (49)

S2 = S1 + Stop, (50)

where the lagrangian L is given by

L = δ̂

(

1

2
χ ∗

(

2(φ ∗ (1− φ)) +
2i

g

∫

d2nzd2nyψ(z)A(z; x, y)χ(y)− iH
))

. (51)

Here, g is a coupling constant, x, y, z ∈ M , and A(z; x, y) is some functional of φ that
should be defined as a connection on the trivial bundle over the set of all φ. A(z; x, y)
is an anti-symmetric matrix with respect to x and y, and the multiplication between
A(z; x, y), ψ(z) and χ(y) is not ∗ multiplication because trace operation (integral) over z
and y was done. (But we can also express their products by ∗ product in the integral.)
It looks like some strange non-local interaction, but it is possible to regard this as an
integral kernel. Deformation quantization itself is introduced by an integral kernel in
many cases, so such non-local interaction is not so strange in noncommutative field theory.
The precise definition of A(z; x, y) depends on M and deformation by ∗, so we formally
introduce the connection, here. When we consider the R

2 case in the following subsection,
it will be verified that A(z; x, y) is a connection and particularly it becomes a nontrivial
connection on a submanifold of {φ}. Especially in conjunction with the matrix model
in previous section, after using the Weyl correspondence, we can regard A(z; x, y) as the
usual connection of the (co)tangent vector bundle over some Grassman manifold that
appears as a moduli space of φ.
The topological action in S2 is

Stop = g′τ2n(F , · · · ,F), (52)

where g′ is coupling constant and F is defined by

Fij = [φ∂iφ, φ∂jφ]. (53)

This action is not topological itself but in our case the φ is replaced by projection op-
erators. In such case, we can regard Stop as Connes’s Chern character. Connes’s Chern
character homomorphism is;

ch2n : K0(A)→ HC2n(A)

ch2n(p) =
∞

∑

n=0

τ2n(f, · · · , f) (54)

12



where fij = [p∂ip, p∂jp]. It is worth emphasizing that Stop is not invariant under changing
the noncommutative parameter θ in general because it is not a BRS exact action. Indeed
ch2n(p) depends on θ apparently for noncommutative torus example. Therefore S2 is not
suitable if we are interested in only constructing the θ-shift invariant theory. But there is
another motivation to construct the N.C.CohFT, that is to construct some “topological”
invariant. In the commutative case, we often add a topological action to the BRS exact
one, and the topological terms play important roles. In analogy with commutative CohFT,
it seems useful to consider the both S1 and S2 case.

The Lagrangian L without the Stop part is divided into a bosonic part LB and fermionic
part LF :

L = LB + LF , (55)

LB = |φ ∗ (1− φ)|2 , (56)

LF = iχ ∗
{

2(ψ ∗ (1− φ)− φ ∗ ψ)− i

2g

∫

dnzdnwdnyψ(z)ψ(w)F (z, w; x, y)χ(y)
}

.

Here F (z, w; x, y) is defined by

δA(z; x, y)

δφ(w)
− δA(w; x, y)

δφ(z)
+
i

g

∫

dnu
(

A(z; x, u)A(w; u, y)− A(w; x, u)A(z; u, y)
)

, (57)

and it corresponds to the curvature.

From the general argument of the Mathai-Quillen formalism and a parallel analysis of
the previous section, the partition function of this theory is given by the sum of the Euler
numbers of the solution space of φ. From Eq.(56), fixed point loci of φ are given by the
set of all projection operators P , i.e. P ∗ P = P , and they are called GMS soliton [24].
We denote by Mk the set of projections distinguished by index k. An example of the
index k is given by rank of projections when we can define the rank by a discrete number.
If there is ghost number anomaly, the partition function vanishes in general. But in our
case there is no ghost number anomaly as we saw in section 3, then we get some nontrivial
partition functions for S1 and S2:

Z1 =
∑

k

ǫkχ(Mk), (58)

Z2 =
∑

k

ǫkχ(Mk)e
g′τ2n(k) (59)

where χ(Mk) is the Euler number ofMk and ǫk gives a sign ±.
When we consider the noncommutative theory from the topological view point, the

most important operators are projectors and unitary operators because they define K0

and K1. This partition function is a sum of integer valued Euler numbers of the sets of
all projections that construct the K0 elements when the moduli space is a manifold. So
it is natural to expect the partition function is “topological”.
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Concrete calculation of the partition function will be done for the Moyal plane case,
soon. We are interested in whether the “topological” quantity is invariant under the
continuous changing of the noncommutative parameter. For the S1 model of this section,
it is clear that the partition function is invariant under the θ changing as far as there
is no singularity. A more interesting case is when the lagrangian has kinetic terms. To
investigate the behavior of the partition function whose lagrangian contains kinetic terms,
we slightly deform our models in the following subsections.

4.2 N.C. cohomological scalar model with kinetic terms

Let M be a 2n dimensional Poisson manifold with a Riemannian metric. Let φ and H be
real scalar fields on M and, ψ and χ be φ and H ’s BRS partner fermionic scalar fields.
Let Bµ and Hµ be real vector fields and ψµ and χµ be BRS partner fermionic vector fields
of Bµ and Hµ. In other words, (φ,H, ψ, χ) are elements of Ω0(M) with ghost number
(0, 0, 1,−1) and parity (even, even, odd, odd). (Bµ, Hµ, ψµ, χµ) are elements of Ω1(M)
with ghost number (0, 0, 1,−1) and parity (even, even, odd, odd). The BRS operator
transformation is given by

δ̂φ = ψ, δ̂χ = H, δ̂ψ = δ̂H = 0, δ̂Bµ = ψµ, δ̂χµ = Hµ, δ̂ψµ = δ̂Hµ = 0. (60)

One of our interests is to investigate the behavior of the partition function of N.C.CohFT
under changing of the noncommutative parameter. It is difficult to study the general case
of deformation quantization. Therefore, we put an assumption in this subsection such
that terms including derivatives like kinetic terms become irrelevant in the large non-
commutative parameter limit (θ →∞ ) as far as evaluating perturbative contribution is
concerned. For example, when we consider the deformation of R

d by the Moyal product,
only the potential terms become relevant in the θ →∞ limit [13, 24]. Note that we make
this assumption only for simplicity of calculation, however, the invariance under changing
of θ is essential and this is not affected by our assumption.

Similar to the previous subsection, we consider two types of action :

S1 =

∫

M

dxD
√
gL (61)

S2 = S1 + Stop, (62)

where lagrangian is slightly different from (51),

L = δ̂

(

1

2
χ ∗

(

2(φ ∗ (1− φ)− ∂µBµ) +
2i

g

∫

dnzdnyψ(z)A(z; x, y)χ(y)− iH
))

+δ̂

(

1

2
χµ ∗ (2(∂µφ+Bµ)− iHµ)

)

. (63)

As noted in the previous subsection, the topological term Stop have noncommutative
parameter θ dependence in general. For example, the noncommutative torus have θ de-
pendence. On the other hand, the Moyal plane theory does not depend on the θ. When
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we construct θ independent “topological” invariant Z, we find whether we can add Stop
to the action S1 from the K-theory (cyclic cohomology) information of the base manifold.

The Lagrangian L without Stop part is divided into bosonic part and fermionic part:

L = LB + LF , (64)

LB = |φ ∗ (1− φ)− ∂µBµ|2 + |∂µφ+Bµ|2, (65)

LF = iχ ∗
{

2(ψ ∗ (1− φ)− φ ∗ ψ − ∂µψµ)−

− i

2g

∫

dnzdnwdnyψ(z)ψ(w)F (z, w; x, y)χ(y)
}

+ iχµ ∗ {2∂µψ + 2ψµ} . (66)

Note that this theory is invariant under arbitrary A deformation (A → A + δA) and
coupling constant g deformation. In the following subsections, we investigate moduli space
deformation and invariance of partition function under changing θ. If we observe θ →∞
in the Moyal plane case by using scaling method discussed in section 2, F (z, w; x, y)
contribution to the partition function becomes bigger than the other terms because each
integral measure d2z, d2w and d2y is of order θ. Then, the surviving terms in the limit
are not BRS exact terms. Therefore, we have to tune other parameters in such limit
to use usual convenience methods of CohFT. From the fact that the partition function
has symmetry under arbitrary g and A variation, we can fit g without changing Z for
surviving terms being BRS exact terms in θ →∞.

4.3 Moyal plane case in θ →∞
In this subsection, the partition function of the N.C.cohomological Scalar model is calcu-
lated. To calculate it concretely, we consider the two dimension Moyal plane. There are
two reasons to choose the Moyal plane here. The first reason is the Moyal plane satisfies
the assumption given in the previous subsection that derivative terms like kinetic terms
in the lagrangian become irrelevant in θ → ∞. The other reason is that the rank of a
projection operator is defined by an integer. From this, the solution space of φ is given
by a Grassmann manifold whose properties are well known. In particular, if we represent
our theory by operator representation, the theory is regarded as an infinite dimensional
matrix model. It is possible to represent noncommutative Euclidian plane by a Hilbert
space and we can chose some set of eigenvectors with discrete eigenvalues as the basis of
the Hilbert space, for example a fock state. So if we take cut-off for the Hilbert space, we
can regard our model as the finite matrix model appearing in section 3.

We have used ∗ product representation of noncommutative field theory, but the oper-
ator representation is used in this subsection because it is convenient to see the relation
between the finite matrix model and large θ N.C. cohomological scalar model.

In θ →∞, we can ignore the terms including derivative as we saw in section 2. Then
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the surviving action in operator formalism is

S∞ =
∑

i,j

δ̂{χij(2[φ(1− φ)]ji + i(
∑

m,n,k,l

χmnA kl
ji,mn(φ̂)ψkl)− iHij)} (67)

+Trδ̂{χ̂µ(2B̂µ − iĤµ)},

where φ̂, ψ̂, · · · are operator representation of φ, ψ, · · · that have infinite dimensional
matrix representation φ̂ =

∑

ij |i〉φij〈j| with some complete system {|i〉}.
We introduce some cut-off to restrict the Hilbert space into the finite N dimension

vector space. Let {|i〉|i = 1, · · · , N} be a set of orthonormal basis. Using this repre-
sentation, the operators φ̂, Ĥ, ψ̂, · · · are expressed by N × N Hermitian matrices, i.e.
φ̂ → (φij) and so on. After integrating out Bµ, Hµ, χµ and ψµ, we will find this model is
equivalent to the finite dimensional matrix model appearing in section 3.

The Bosonic part of the action is

Tr{(φ̂(1− φ̂))2 + B̂µB̂
µ}. (68)

The fixed point locus is determined by (φ̂(1− φ̂)) = 0 and B̂µ = 0. The solution is given
by φ = P , where P is an arbitrary projection operator, which is called the GMS soliton.
The moduli space is obtained as a set of Grassman manifolds {Gk(N)} := { U(N)

U(k)×U(N−k)
}

because the rank k projection operator determines the subspace whose codimension is
N − k. This solution of rank k projector is interpreted as symmetry breaking from U(N)
to U(k)× U(N − k).

On the other hand, the integration of Fermionic part generate the Euler numbers of
the Grassmann manifolds that is given in section 3. For the Moyal plane, topological term
Stop (ch2) is g′k when the solution of φ̂ is given by rank k projection operator. Note that
ch2 value is independent of θ for the Moyal plane (see for example [32]).

Using the Euler number of the Grassman manifolds and contribution from the topo-
logical term, the partition function is then

Z2 = lim
N→∞

N
∑

k=0

P−1(Gk(N))eg
′k(−1)N−k

= lim
N→∞

(1− eg′)N , (69)

where we take N →∞ after using the result from the finite matrix model.
If we take S1 as the total action of the theory, the partition function is given by (69)

with the condition g′ = 0, then

Z1 = 0. (70)

It is worth commenting here on taking cut-off above analyses. As is a well known fact,
some kind of properties of noncommutative field theories only come from the characteristic
nature of infinite dimensional Hilbert space. For example, the trace of a commutation
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Tr(AB − BA) does not vanish in noncommutative theories in general. This phenomena
does not exist in the finite matrix model. So one might think we have to add some
collection of the effect from infinite dimension to the above partition functions. But
there are some reasons that we do not have to collect the partition function. At first, we
consider the real scalar field φ and its fixed point is given by a projector in this case. If
the solution is given by a shift operator like the complex scalar field case in [33, 34], then
the calculation is not closed in the finite size matrices even though the trace operation
is done. Meanwhile, our solutions are given by projection operators in this case, then
the calculation is possible to be closed in the finite Hilbert space. Additionally, even if
we treat the shift operator, there is a way of computation to take the infinite dimension
effect into account. The way is to put the cut-off only for the initial states and final states
to define the trace operation for finite matrices. On the other hand, intermediate states
are not restricted by cut-off, (see [3, 4] for detail). Using such methods we can estimate
effects of infinite dimension like the shift operator by finite size computation. The other
reason is that we should discuss partition function in the terms of the weak topology
because the trace operation is done in the partition function calculation. So it is difficult
to distinguish U(H) from U(∞) = limN→∞ U(N) by our calculation. From these facts, it
is reasonable that we can evaluate the partition function by using the finite matrix model.

4.4 finite θ

One of our aims is to confirm that the partition function does not change under a chang-
ing of the noncommutative parameter. The proof of the invariance under the θ-shift is
based on the smoothness for θ. So, we have to check the smoothness for each models. In
the previous subsection, we considered the θ → ∞ case and we calculated the partition
function of the N.C.cohomological scalar model on the 2-dimensional Moyal space by us-
ing the result of the finite matrix model. Obeying the general property of N.C.CohFT,
for finite θ, we expect that the partition function takes the same value as Eq.(69). This
statement is realized when the moduli space smoothly deform and its topology does not
change under the θ changing. Therefore, let us compare the moduli space of large θ limit
with finite θ in this subsection.

It is difficult to analyze the arbitrary finite θ case because derivative terms and non-
linear terms are intertwining, so we analyze moduli space deformation from large θ limit
perturbatively. Let φ0 and Bµ0 be large θ limit solutions of φ and Bµ i.e. φ0 = P, Bµ0 = 0.

We consider that the fields belong to C∞(R2)[[1/
√
θ]]. φ and Bµ are expanded as

φ = φ0 +
1√
θ
φ1 + · · · , Bµ = Bµ0 +

1√
θ
Bµ1 + · · · , (71)

and we substitute them into the action. The leading order bosonic action is then

1

θ
Tr|φ1(φ0 − 1) + φ0φ1|2 +

1

θ
Tr|∂µφ0 +Bµ1|2 (72)

=
1

θ
Tr

{

|φ1(P − 1)|2 + |Pφ1|2 + |∂µP +Bµ1|2
}

(73)

17



Let |P, i〉 be a eigenvector of projector P with eigenvalue 1 i.e. P |P, i〉 = |P, i〉. Using
this vector,

∑

i,j |1 − P, i〉aij〈P, j| + h.c. is a solution of φ1, where (aij) is a Hermitian
matrix. But deformation of the moduli space from {a1,ij} is trivial and retractable.
Meanwhile, Bµ1 = −∂µP . Bµ is deformed but it is determined completely by the given
P . Therefore the moduli space topology is not changed at all. In other words, we can
deform the moduli space smoothly. This result is consistent with the expectation, then
the partition function is invariant under θ deformation.

5 K-theory and Cohomological Scalar model

We discuss the relation between our theory and K-theory in this section.

5.1 Commutative CohFT and Homotopy of Vector bundle

The relation between some model of CohFT on a COMMUTATIVE space and the ho-
motopy of classifying map of a vector bundle is studied in this subsection. The model is
deeply related to the N.C.CohFT models that appeared in section 4. Using the model,
an analogy of correspondence between our N.C.cohomological scalar model and algebraic
K-theory will be found in the correspondence between CohFT and topological K-theory.

Let M be a n dim Riemannian Manifold, V be a rank N trivial vector bundle.

φ : M → H

x 7→ φab(x) ∈ H, a, b ∈ {1, · · · , N} (74)

where H is set of all N ×N Hermitian matrices i.e. H ≡ {h|hab = h̄ba}. In other words,
φ is a N ×N Hermitian matrix valued scalar field on M. N ×N Hermitian matrix valued
scalar fields φab(x) and Hab(x) have the ghost number 0 and fermionic BRS partners
ψab(x) and χab(x) have ghost number 1 and −1. The BRS transformation is similar to
the previous one but there is difference caused by U(N) gauge symmetry. 1 The BRS
operator is nilpotent up to gauge transformation δg, i.e. δ̂2 = δg. When we denote c(x)
as scalar field corresponding to a local gauge parameter with ghost number 2, the explicit
BRS transformation is given by

δ̂φ(x) = ψ(x), δ̂χ(x) = H(x) , δ̂c(x) = 0

δ̂ψ(x) = δgφ(x) = i[c(x), φ(x)] , δ̂H(x) = δgχ(x) = i[c(x), χ(x)]. (75)

We introduce the following action;

S = S0 + Sp + Sg (76)

1The theory of this subsection has U(N) gauge symmetry. But gauge symmetry is not main subject
in this subsection. So, we do not discuss some technical problems caused by gauge symmetry.
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S0 =

∫

M

trδ̂{1
2
χ(2φ(1− φ)− iH)}, (77)

where S0 has U(N) gauge symmetry and we have to project out the pure gauge degrees
of freedom. So we introduce Sp for the projection to the gauge horizontal part and Sg for
the gauge fixing action.

After the Gaussian integral the bosonic part of S0 is

(φ(1− φ))2, (78)

and the fermionic action is

χ(−2ψ(1− φ) + 2φψ − [c, χ]). (79)

The fixed point is determined by (φ(1− φ)) = 0. If this φ is not matrix valued, then the
only nontrivial solution which is a smooth function is φ = 1. But if N > 1 then some
projection operator P which restricts rank N vector space to dimension k for each point
in M is a solution. In other words, the solution of φ is a classification map to the Gk(N)
whose homotopy class classifies the vector bundle.

Following the general method of cohomological gauge theory [21], we can construct
Spro. Let us introduce anti-ghost c̄ whose ghost number is −2 and its BRS partner η.
Then, Spro is given as

Spro = i

∫

Trδ̂((C†ψ)c̄). (80)

Here C† is adjoint operator of C. C is defined by δgφ(x) = i[c, φ] = Cc(x) i.e. C = i[ , φ].
(More precisely speaking, we define a group action of U(N) for some point p in principal
bundle P over the base manifold M . Then we can define C as the differential of the group
action on the point p; C : u(N)→ TpP . The image of C is the vertical tangent space of
p.)

Spro =

∫

Tr{i[φ, [c, φ]]c̄+ [ψ, ψ]c̄− [ψ, c]η} (81)

When we consider the theory near the rank k solution, the gauge symmetry U(N) is
broken to U(k) × U(N − k). Note that for a rank k projection operator φ there are c
satisfying C†Cc = [φ, [c, φ]] = φc(φ − 1) − (1 − φ)cφ = 0 i.e. if c is a generator of the
gauge group of U(N−k)×U(k) then the first term of the right hand side of (81) vanishes.
This zero mode causes other type problems that should be solved by inserting observables
and choosing a good gauge. To inquire further into the matter would lead us into that
specialized area, and such a digression would obscure the outline of our argument. In
the following discussion, 1/C†C operate non-zeromodes and we assume there are some
methods to deal with the zero modes. It is a well known fact of Cohomological gauge
theory, that from the c̄ equation of motion c is given as the curvature of the moduli
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space. But this discussion is not possible to adopt to our case because our case with
non-trivial solution of φ cause symmetry breaking. The moduli space is the coset space
whose equivalent relation is given by left gauge symmetry.

Mk,N = {φ | M → Gk(N)}/Gk,N , (82)

where Gk,N is a group of gauge transformations with gauge group of U(N − k) × U(k).
Meanwhile, from the c̄ equation of motion,

c = − 1

C†C
[ψ, ψ]. (83)

Unlike the usual case, we can not regard c as the curvature on the principal bundle whose
base manifold is the moduli space.

Let us consider fermionic zermo-modes of χ and ψ. Similar to N.C.CohFT and the
finite matrix model, the equations of motion of ψ and χ without nonlinear terms are

ψ(1− P )− Pψ = 0, and χ(1− P )− Pχ = 0. (84)

Note that the solution of both equations represent the cotangent vector of the solution
space of φ. As far as these equations are concerned, the number of the zero modes of
ψ is equal to the one of χ and there is no ghost number anomaly. After nonzeromode
integration that produce some sign factor ǫk,N = ±1, zero-modes integral remains as

Ek,N :=

∫

Mk,N

Dφ0Dχ0e
−

∫

1

C†C
[ψ0,ψ0][χ0,χ0]. (85)

Now we recall that our theory has a symmetry that allows arbitrary infinitesimal φ de-
formation i.e. φ → φ + δφ, where δφ is arbitrary infinitesimal N × N Hermite matrix
valued scalar field. This is the since we can regard the BRS exact action as gauge fixing
action of this local symmetry. This symmetry means that the partition function is homo-
topy invariant. Therefore, the equivalent class of this symmetry corresponds to homotopy
equivalent class of φ. So the zero-mode integral (85) is summed up by the homotopy class
[M,Gk(N)].

In the end, the partition function is given as

Z ∼
∑

[M,Gk(N)]

ǫk,N Ek,N (86)

To interpret this partition function from the point of view of classifying homotopy of
vector bundles, note that φ is a classifying map for complex vector bundles when N is
enough large (see [30]). (Note that there are no non-trivial vector bundle with fiber space
whose dimension is larger than n+ 2.)

We introduce homotopy class V ectk(M) = [M,BU(k)], where

BU(k) ≡
∞
⋃

m=k+n+1

Grk(m);m > k + n,
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and consider the case when N is sufficiently large. Using this, the partition function is
represented as

Z ∼
∑

V ectk(M)

ǫk,N Ek,N . (87)

Note that this homotopy class is related to the K ′(M) group whose virtuarl dimmension is
0 where K ′(M) = [M,BU(∞)] (see for example [31]). In particular, when M is connected
K(M) = Z ⊕ K̃ and K ′ = K̃. For stable range k > 1

2
dimM , we can put the relation

between the homotopy class and K ′(M) as K ′(M) = [M,BU(k)]. Therefore the partition
function is in proportion to the sum of ǫk,N Ek,N over the K ′(M) elements for large enough
N . This is analogous to the N.C.CohFT partition function which is given as a sum over
the elements of the algebraic K-group. (See also the next subsection.)

To compare with the noncommutative theory with kinetic terms, we consider the
model (77) with kinetic terms and investigate its large scale limit and finite scale case.
The lagrangian is similar to the N.C.CohFT in section 4.3;

L = δ̂

(

1

2
χ (2(φ(1− φ)− ∂µBµ)− iH)

)

+δ̂

(

1

2
χµ(∂µφ+Bµ − iHµ)

)

. (88)

Since U(N) gauge symmetry is not main subject, so we break gauge symmetry here, i.e.
we do not introduce gauge fields and gauge covariant derivatives. In the N.C.CohFT case,
we take large θ limit. We can introduce a similar discussion by scaling

gµν → (1 + ǫ2)gµν , gµν → (1− ǫ2)gµν . (89)

Since the partition function is invariant under this transformation, when we take the large
scale limit the kinetic terms become irrelevant and Bµ becomes an auxiliary field. After
integrating out, the theory is equivalent to the one with above action (77). This observa-
tion is similar to the N.C.CohFT case in θ →∞.

The N.C.CohFT in the previous section is naive extension of the model dealt with
in this section. If we consider the noncommutative deformation of the model of this
subsection, after renumbering the U(N) indices and Hilbert space indices so that we do
not distinguish these indices, then we can identify this model with the N.C.CohoFT model
of section 4. Alternatively, the N.C.CohFT model is obtained by dimentional reduction
to zero dimention and large N limit.

5.2 K0 and N.C.CohFT

In this subsection, we disscuss the correspondence with K0-theory. As mentioned in
section 1, one of our purposes is to construct a less sensitive topology than K-theory,
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where the term “topology” is used as vacuum expectation value of the field theory is
invariant under continuous deformation of the theory. It is natural to expect that our
partition function is invariant under deformations which do not change the K-theory. In
a sense, θ independence of the partition function implies this fact. To see this closely, we
consider not the general case, but the Moyal plane and noncommutative torus.

For the Moyal plane, as we saw in the previous section, the partition function (69) is
expressed as summation over the projection operators that are identified by their rank.
The rank of the projection can be identified τ0(Pk) = k or τ2(Pk) = k (see for example
[35] and [32]). Furthermore the Euler number of the Grassmann manifolds is determined
essentially only by k because we take N →∞ in the end. Therefore, the partition func-
tion is determined by K0 data alone.

Next, we consider the N.C.torus T 2
θ . The classification by Morita equivalence corre-

sponds to one by the K-theory and the equivalence is determined by a noncommutative
parameter θ up to SL(2,Z) transformation. If T 2

θ and T 2
θ′ are Morita equivalence, θ′ should

be written as

θ′ =
aθ + b

cθ + d
, ad− bc = 1, a, b, c, d ∈ Z. (90)

For arbitrary θ we can transform T 2
θ to a non-Morita equivalent noncommutative torus

by infinitesimal θ deformation. So, the θ shift changes the K-group. On the other hand,
the model whose action is given by (49) or (61) is invariant under the θ shift when there
is no singular point. (Note that the one with the action (50) or (62) is not invariant under
the arbitally θ deformation but it is invariant under SL(2,Z) transformation.) At least, if
some deformation of noncommutative manifolds does not change K-theory, it is expected
that the partition function of N.C.CohFT will not change. This fact implies that the
partition function satisfies the condition of the object of our desire, that is less sensitive
topological invariant than K-theory.

6 N.C. Cohomological Yang-Mills Theory

In this section, Cohomological Yang-Mills theories on noncommutative manifolds are dis-
cussed. If there is gauge symmetry, BRS-like symmetry is slight different from (48). The
BRS-like symmetry is not nilpotent but

δ2 = δg,θ, (91)

where δg,θ is gauge transformation operator deformed by the star product ∗θ. The parti-
tion function of the N.C.CohFT is invariant under changing noncommutative parameter
when the BRS transformation is nilpotent, because the BRS transformation δ and θ de-
formation δθ commute. Conversely, when definition of BRS-like operator (91) depends on
the noncommutative parameter θ, then δ and δθ do not commute;

δθδ 6= δδθ ⇒ δθδ = δ′δθ, (92)
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where δ′ is BRS-like operator that generates the same transformations as the original
BRS-like operator δ without the square

δ′
2

= δg,θ+δθ. (93)

This fact makes a little complex problem to prove the θ-shift invariance of N.C.cohomological
Yang-Mills theory.

After deformation from θ to θ′, the action functional becomes not δ-exact but δ′-exact.
Then the partition function is invariant when its path integral measure is invariant under
both δ and δ′, because we can regard δ′ as a redefined BRS-like operator. We can prove
the invariance of the measure by direct observation. Furthermore, the gauge transfor-
mation itself is changed to δg,θ+δθ, but it is possible to define the path integral measure
to be invariant under both δg,θ and δg,θ+δθ transformation. So changing the gauge trans-
formation does not break the symmetry generated by δθ. Therefore, N.C.cohomological
Yang-Mills theory is invariant under the θ deformation, as similar to the N.C.CohFT like
one appearing in the section 4. 2

From applying this fact for several physical models, some interesting information can
be found. For example, the partition function of the N.C. Cohomological Yang-Mills The-
ory on 10-dim Moyal space and the partition function of the IKKT matrix model have a
correspondence, because the IKKT matrix model is constructed as dimensional reduction
of the 10 dimensional super U(N) Yang-Mills theory with large N limit [36] [37]. This
dimensional reduction is regarded as the large noncommutative parameter limit (θ →∞
in section 4). Taking the large N limit of the matrix model is equivalent to considering the
Yang-Mills theories on noncommutative Moyal space, i.e. matrices are regarded as linear
transformation of the Hilbert space caused from noncommutativity in similar manner to
the case of N.C.CohFT on the Moyal plane. Particularly, the Noncommutative Cohomo-
logical Yang-Mills model on 10 dimensional Moyal space in the large θ limit is almost
the same as the model of Moore, Nekrasov and Shatashvili [38]. Moore et al. show that
the partition function is calculated by the chomological matrix model in [38] and related
works are seen in [39, 40, 41]. We can be fairly certain that we can reproduce their result
by using N.C.cohomological Yang-Mills theories.

Another example is an application to N=4 d=4 Vafa-Witten theory [29]. The theory
is constructed as balanced CohFT (see [42] and [43]). The partition function of Vafa-
Witten theory is given by the sum of the Euler numbers of the instanton moduli space
over all instanton numbers, if the vanishing theorem is true. Here the vanishing theorem
guaranties the fixed point locus of the theory is the instanton moduli space. On com-
mutative manifolds, one of the conditions for vanishing theorem being true is that there
is no U(1) instanton. On the other hand existence of U(1) instantons is well-known in
noncommutative Moyal space [44, 45], so it is likely that U(1) instantons exist on the
other noncommutative manifolds even if the manifolds do not have U(1) instantons be-
fore noncommutative deformation. Therefore if we consider the Vafa-Witten theory on

2More details will be given by the author of this article.
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noncommutative manifolds, the U(1) instanton effect appears as difference to the commu-
tative manifold case. The results is a sum of Euler numbers of instanton moduli spaces
and moduli space deformed by U(1) instanton effect. In this case, it is expected that its
partition function on a commutative manifold is computed by the matrix theory calcula-
tion like [38]. By comparing this partition function, it is reasonable to suppose that the
Euler number of deformed moduli space is given, and we obtain a partition function on
manifold that does not satisfy the vanishing theorem. Such difference from CohFT on
the commutative manifold will emphasize that N.C.CohFT is non-trivial though it is less
sensitive than K-theory.

In this way, there are many interesting subjects to be studied by using N.C.chomological
Yang-Mills theory. With all of these subjects, concrete analysis and calculations are left
for our future work.

7 Summary

Let us summarize this article. We have studied topological aspects of N.C.CohFT and
matrix models. At first, we reviewed the N.C.CohFT and its properties. Particularly,
through this article we have used the property that the N.C.CohFT have symmetry un-
der the arbitrary infinitesimal noncommutative parameter deformation. This symmetry
implies that the partition function of N.C.CohFT is an insensitive “topological” invariant.
In section 3, we introduced a Hermitian finite size matrix model of CohFT and calculated
its partition function. The calculation was done by using only topological information of
its moduli space. The partition function was given as the sum of the Euler numbers of
Grassman manifolds with sign and we showed that the partition function vanished. This
calculation of the partition is the first example of determining its partition function by
only moduli space topology of a matrix model. The scalar field models of N.C.CohFT
were discussed in section 4. The variations of the models are caused by adding kinetic
terms or topological action that correspond to Connes’s Chern character. The fixed point
loci of the scalar fields were given by the set of all projection operators on the noncom-
mutative manifold. From the analogy of the finite size matrix model, we introduced a
connection functional in these N.C.CohFT models. Using curvature obtained from the
connections, the partition functions were represented as sum of Euler numbers of the set
of all projection operators. As an example, we calculated the partition function of the
model including kinetic terms on the Moyal plane in the large noncommutative parameter
limit. Through the operator formulation, this calculation boiled down to the calculation
of Hermitian finite size matrix model of CohFT in section 3. Additionally, to confirm the
independence of the noncommutative parameter of the N.C.CohFT we studied moduli
space for finite θ. If the partition function of CohFT is “topological”, then it should have
some relation with K-theory and the partition function should not change under defor-
mation that do not change the K-group. Therefore we investigated the models of CohFT
and N.C.CohFT from the point of view of K-theory. At first, one CohFT was constructed.
This model and N.C.CohFT model in section 4 are related by dimensional reduction or
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noncommutative deformation. The partition function is invariant under scaling and this
scaling is similar to the θ-shift. In the large scaling limit, kinetic terms become irrelevant
and the fixed point loci are given by a classifying map. The partition function was given
by sum of topological invariants with sign. This sum is taken over all the homotopy equiv-
alent classes of the classifying map of the vector bundle. This homotopy class is regarded
as K ′. From comparing the connection between the CohFT model and K-theory with the
relation between the N.C.cohomological scalar model and algebraic K-theory, we found an
analogy. Furthermore, we studied the correspondence with the K0-theory for the Moyal
plane and noncommutative torus. It was verified that our partition function is invariant
under deformations which do not change the K0, at least for the Moyal plane and non-
commutative torus. Finally, we considered the noncommutative cohomological Yang-Mills
theory. The noncommutative parameter independence is non trivial for noncommutative
gauge theory but it is possible to prove. Therefore we can remove kinetic terms in the
large θ limit on the Moyal spaces as same as N.C.CohFT studied in section 4. The ob-
servations of the N.C.CohFT of scalar models give us a general correspondence between
N.C.CohFT and Matrix models. As an example the connection between the IKKT matrix
model and noncommutative cohomological Yang-Mills theory was discussed. For another
example, we considered the Vafa-Witten theory. The contribution from noncommutative
solitons like U(1) instantons may make expectation value of N.C.CohFT different from
expectation value of CohFT on a commutative manifold. In such case, N.C.CohFT gives
a different topological invariant from commutative topological invariant and that is less
sensitive than algebraic K-theory. In other words, there will be new nontrivial global
characterization of the geometry though its classification is less sensitive than K-theory.
It is likely that the Vafa-Witten theory is one of such examples. A detailed analysis of
similar variations for noncommutative cohomological Yang-Mills theory corresponding to
matrix model will be carried out in future work.

The other unsettled question is as follows. As we have seen, there is evidence to
suggest the partition function of N.C.CohFT is insensitive but nontrivial topological in-
variant. But a more strict topological discussion about N.C.CohFT for the general case
should be done, because there are many ambiguous problems concerning the relation to
the K-theory. This subject is also left for future works.
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