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ABSTRACT

The conformal space 90t was introduced by Dirac in 1936. It is an
algebraic manifold with a spin structure and possesses naturally
an invariant Lorentz metric. By carefully studying the birational
transformations of 91, we obtain explicitly the transition func-
tions of the spin bundle over 9. Since the transition functions
are closely related to the propagator in physics, we get a kind of
solutions of the Dirac equation by integrals constructed from the
propagator. Moreover, we prove that the invariant Lorentz met-
ric together with one of such solutions satisfies the Einstein-Dirac
combine equation.

§1. The main results

In general relativity the 4-dimensional Lorentz manifold is used. It is Penrose [1] who
began to apply 2-component spinor analysis for studying Einstein equation. It implied that
the spin group Spin(1,3) of a Lorentz spin manifold 9 is locally isomorphic to the group
SL(2,C) such that there is a Lie group homeomorphism

t: SL(2,C) — SO(1,3)

which is a two to one covering map. Then a two component Dirac operator D : Vo(z) — Vy'(z)
and D : V5 (xz) — Va(x) can be defined, where Va(z) is the vector space of spinors at z € 9
and V5 (z) is the conjugate vector space of Va(z).

We will use the following lemma for studying the Dirac equation.

Lemma 1 If ¥ is a two component spinor field on 91 and satisfies

D% = DDy = —m*p (1.1)

IThe project partially supported by National Natural Science Foundation of China and Natural
Science Foundation of the Chinese Academy of Sciences, the latter two authors also by 973 project.
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then

m;(”i) o= LDy (1.2)
%) m
is a 4-component spinor on 9 and satisfies the Dirac equation
0 9
= = —1 . 1.
Y ( D 0 > v 1mW¥ (1.3)

The first purpose of this paper is to solve the equation (1.1) in the case that 90 is the
conformal space.

The conformal space 991 was introduced by Dirac [2]. It is a quadratic algebraic 4-
dimensional manifold defined by

H+8-8-5-8-1=0

where t = (z1,22," -+ ,6) is the homogeneous coordinate of the real project space RIP°, and
it is the boundary of the 5-dimensional anti-de-Sitter space AdSs:

n+-n-n--15>0

So to study the field theory of the conformal space would be useful to study the problem
of AdS/CFT corresponding, a research hot point in recent years (see the references in [3]).
It should be noted that AdS is also introduced by Dirac [4] and is one kind of space-time
studied in [5].

We use heavily the birational transformations of algebraic geometry to study in detail
the transition functions of the Lorentz spin manifold 9 so that the solutions ¥ of the Dirac
equation can be expressed explicitly by integrals.

Let
3

ds? = gjkdsjdsk = Z gjkdzjda:k = Popww® (1.4)
J,k=0

be a Lorentz metric on M, where (ng) = {1,—1,—1,—1} is a diagonal matrix and

D gy (a— _ _J 0 -
wt =e;"de’, (¢=0,1,2,3); and Xa*"fa)gzg (a=0,1,2,3) (1.5)
are the Lorentz coframe and the dual frame respectively.

The second purpose of this paper is to find solutions of g;; and ¥ which satisfy the

Einstein-Dirac equation

1 .

Rjr — ijok — Agjr = XTjp, DY = —im¥ (1.6)
where A, X and m(> 0) are constants and T} is the energy-momentum tensor of ¥ such
that

. 1 ——x/ -/ !
= 5?7 v ¥+ e 7 9) — (VTR + 6070 (1)

Here we denote A the complex conjugate of a matrix A and A’ the transpose of A and

m:(i) (1.8)

Besides, v%(a = 0,1,2,3,) are Dirac matrices and v/; is the covariant differentiation of 4-
component spinor such that

'lp = 'ya‘e(a) \VE (19)
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We at first map the conformal space 9 by birational transformation into the compactized
Minkowski space M, which can be mapped by birational transformation [6] to the group
manifold U(2) = U(1) x SU(2), and we will prove that SU(2) = M N Py, where Py is a
hyperplane. It known that U(1) 2 S' and SU(2) = S3. So we can introduce a Lorentz
metric ds®> on 9 such that

ds? = ds? — ds? (1.10)
where

5
ds? = (dz°)? and d.ﬁ:ﬁ%dmadﬁ (1.11)

are the Riemann metrics of U(1) and SU(2) = S3 respectively.
Since SU(2) & M N Py is a Riemann spin manifold, there is a principal bundle

Spin{M NPy, SU(2)}

with base manifold M N Py and structure group SU(2). The transition functions of this
principal bundle can be written out explicitly.

Lemma 2 The isometric automorphism T, : M NPy — M N Py can be expressed by
admissible local coordinates such that

Yoo = UO-HI)(:L',U)UO, O(x,u) = (00 + l'uuudual,)*l(za — 4o,

where Uy € SU(2), o¢ is the 2 x 2 identity matrix and oq(a = 1,2,3) are Pauli matrices.
The transition function associated to T, is

Az, (2) = Uy 'U(z,u)™",

where
Uz, u) = [(1 + zu)? + zz’ud — (zu')?] "2 [(1 + 2w)oo + ix"u’ 8 on 0] s

which belongs to SU(2) and zu’ = Jap7%u”.
U(x,u) is called the propagator.
With the metric (1.10) the 2-component Dirac operator of S! x 2 is

0

where D3 is the Dirac operator of the Riemann spin manifold of S* and 20 the local coordinate
of $' and z = (z!, 22, 23) the admissible local coordinate of S®. Hence, if the spinor P(z)
satisfies the equation R

2312 = —(n? —m?)y (1.13)

then e’ zZ(x) is a solution of the equation
DQ[ei"’ol,//J\(a:)] = —eri"“”Oi/A)(:c). (1.14)

By Weitzenbock formula of S3,
33 = A - %Rsti()'() (115)

where Rgs is the scalar curvature of dsf and A is an elliptic differential operator. Hence to
solve the equation (1.1) on S! x S is reduced to solve the equation on S8,

Piaip(z) = —\p() (1.16)
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where A = n?2 — m? should be an eigen-value of ZP{‘;J The A-eigen kernel is defined by

Ny _
Kalw,u) =Y del@)ie(u) (1.17)
£=0

where {Jg(z)}gzl,rz‘“,’ N, is an orthonormal basis of the vector space of A-eigen functions of
1%,. The eigen values of (1.16) and the corresponding dimensions N are known(c. f. [7])

Then for any spinor 1y on S3,
1?1\(1) = / Kz, w)tho(u)i, (1.18)
53

where 4 is the volume element associated to ds3, is a solution of the equation (1.16). The
problem to solve the Dirac equation on the conformal space M = S x $3 is reduced to
construct the A-eigen kernel Ky of 1,??93 on S3 explicitly.

THEOREM 1 If we choose on $3 2 SU(2) the metric

. 5,
2___TaB _gpedyP
dsj (1+xm’)2dz dzP, (1.19)

then the A-eigen kernel of 2}%3 is
K@, w) = Uz, ) [£ (5@, 0) o0 + h(p* (2, 1) (a, )]
where U(z,u) and ®(x,u) are defined by Lemma 2,

(z — w)(x - u

2 _
p(z,u) = 1+ 22 + z2'uu!’

and f(t) = f(t) and h(t) = —h(t) are functions which satisfy respectively the following
differential equations

4t(1 + t)Q% + (1 +t)[6(01+1) - 4t)]3-’£ — (2t +6)f = -\f

and

d?h dh
2_— —_ —_— = —
4t(1 +t) e + (1 +t)[10(1 + t) — 4¢)] 7 4h Ah.

In fact, the solutions of the equations are respectively
f(t) = coFo(t) + a1 Fi(t) and h(t) = coFa(t) + icgF3(t) (1.20)
where ¢;(j = 0,1,2,3) are real constants,

Vi VA

; X 3
Fo(t) :(1+c)“ﬁ/21r(‘/—x,3+-‘/—X,x+—‘/3,1+z), Fi(t) = (1+c)“ﬂ/2F(—£,~ ~ 221 - 221 41) (1.21)
22" 2 2 2’2 2 2
and
3 VA X X
Fy(t) =(1+z)‘+ﬁ/2p(g+§,1+ §,1+§,1+t), F(t) = (1+z)1—‘/7/2F<§—§,1~l/2—_-,1v‘/7_,1+¢). (1.22)

Here F(a, 3,7, ) is the hypergeometric function. The constants ¢;(j = 0,1,2,) are deter-
mined from the equality

/;;3 IC,\(G,, I)/C,\(IL', b)fI’ = IC,\(a,b). (123)

4
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Since .

IC)\((I, I)) = ’C,\(b, a,), (1.24)
there are four independent equations in (1.23) for determining the four constants c;(j =
0,1,2,3).

A spinor ¢o(z) on S? is said to be orthogonal invariant if Yo(aT) = Uty(z), where
' € SO(3) and U € SU(2) such that I' is the image of U by group homeomorphism ¢
restricted to the group SU(2). The two component spinor

P(a1) = e P(z), 21 = (2%, 2), (1.25)

where 12(3:) defined by (1.19), is orthogonal invariant, provided that @0(17) is orthogonal
invariant. By Lemma 1, the 4-component spinor on S! x S3

(v v _ L
v= (L), e-gme (1.26)

satisfies the Dirac equation and it is orthogonal invariant in the sense that ¢*(2%,zI") =
Uy*(z1) whenever 9 is orthogonal. So

U o
(2, 2l) = ( o U )\Il(xo,x).

THEOREM 2. If g;; are defined by

dap

Ttz a,f=1,2,3,

goo = 1, goa = Gao = ngaﬁ =

and V¥ is defined by the integral (1.20) and is orthogonal invariant and the energy-momentum
tensor Tji of ¥ is not identically zero, then the pair {gjx, ¥} satisfy the Einstein-Dirac
equation with the constants

R]](O) —Too 1

~ Too(0) + 111 (0) A= Too(0) + 111 (0) §R(O)

and m is non-negative and satisfies
m? =n? -\

where n is a positive integer and A is an eigen value of the operator 1233.
§2. The relation between the Dirac operators of 2-component
spinor and 4-component spinor
Let 9 be a four-dimensional Lorentz spin manifold with the Lorentz metric
ds® = g,-jdzj da? = ngyw® (2.1)

where £ = (2°,z!,2%,2%) is an admissible local coordinate of M, 7, is a diagonal matrix

with diagonal elements {1,—1,—1,—1} and
wi=eVdsd,  a=0,1,2,3 (2.2)

is a Lorentz co-frame. Let the dual frame of {w®} be

X, = 0

50 (2.3)

5
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;From the Christoffel symbol associated to ds?

l 1 i 8_(]]'1' (9gki c‘)g]-k
= g% e 2.4
{ Jj ok } 29 (8.1"" Yo T o ) (24)

which is an gi(4, R)-connection, there is a Lorentz connection

ek
@ %0 | () ! k
g] = eka 61:] + Cl { k j } e(b). (25)

We denote the matrix

i = (T8;)ocapes - (2.6)
If we change the local coordinate Z® = 7%(z) and the corresponding Lorentz co-frame as
follows

(1) = f(2)e’(2),  L(@) = (6(2))o<apes € O(1,3) (2.7)

then the Lorentz connection f‘j satisfies the relation

F (g 0L ot .
;= <LFkL asz ) Fh (2.8)
Since I'; for each j belongs to the of Lie algebra of O(1,3) and this algebra is so(1,3), we
have
Tr(I';) = 0. (2.9)
There is a Lie group homeomorphism
t:SL(2,C) — SO(1,3) (2.10)

which is defined by the following manner. Let

10 01 0 —i 1 0
002(0 1), UL=<1 0), 02:<i 0)7 03=(0 _1)’ (2.11)

which forms a base of the vector space of all 2x 2 Hermitian matrices. For any 2 € SL(2,C) we
denote the transpose matrix and the complex conjugate matrix of 2 by 2’ and 2 respectively.
Each matrix %o;2 is a Hermitian matrix, so it can be expressed as a linear combination of

. That is
Ao, A = thoy. (2.12)

It is proved (see [8] Th. 2.4.1) that the corresponding matrix
L=(4

and the homeomorphism ¢ is a two to one covering map and hence a local isomorphism.
Especially, when 2 € SU(2), the corresponding L is of the form

1,3 2.13
)ogj,kge”( ,3) (2.13)

L= ( (1) IO{ > , K is a 3 x 3 orthogonal matrix. (2.14)

Moreover, according to Th. 2.4.2 in [8], associated to the so(1,3)-connection I';, there is
locally a sl(2, C)-connection

1 . 0 1
B, = Zr)“bfgj.aaag, o} = €0pe’, €= ( 10 ) . (2.15)

6
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This means that, when I'; suffers the transformation relation (2.8), the corresponding relation
of B is

B, = (AB A" —-;— (2.16)

!
) 311
where 2 corresponds to the matrix L defined by (2.12). When 9 is a Lorentz spin manifold
B; is globally defined on M. We call B; the 2-component spinor connection derived from
the Lorentz connection of the spin manifold 9.
A two component spinor ¥ on a Lorentz spin manifold 9 is a vector

o= ()
¥ (x)

on each admissible local coordinate neighborhood U and z is the local coordinate of this
neighborhood. Let 1/)(:x) is the vector defined on another admissible local coordinate neigh-
borhood U and 7T is the corresponding local coordinate of ¥. When BN # (@, there a
matrix A € SL(2,C) such that B
¥(@) = Ux)y(z). (2.17)
The matrix 2(zx) is the transition function of the spin manifold 1.
A spinor 3 corresponds to a conjugate spinor

P* = ey (2.18)
Then under the coordinate transformation between two admissible local coordinates,
P (@) = A1t (x) (2.19)
because for any 2 x 2 matrix A
AeA’ = (detA)e. (2.20)
Now we can define the covariant differential ©; of a spinor ¢ by the connection B; such
that 5
D0 = ""’ + B 1), (2.21)
which satisfies
8
D]w = Ql@kw. (2.22)

under admissible coordinate transforma’clon. ThlS means that Djv is still a spinor, but
a covariant vector with respect to the index j. If we operate again to Dj;y by Dy and
wish D,D;1 still be covariant, then it needs in addition a gi(4, R) connection to define the
covariant differentiation of D ;1. In usual tensor calculus, a covariant differentiation V; of a
contravariant vector can be extended to operate on any mixed tensors. We can do the same
to define D, such that it can operate on mixed tensors.
Since
B; =

is derived from the so(1,3)-connection I'y; by (2.15) and I'y; is derived from the 9l(4,R)-

(B3;), <AB< (2.23)

connection { jlk } by (2.5) and (2.4). D; can be extended to operate on mixed tensor of

SL(2,C)-,50(1,3)- and GL(4,R)-type. For example, the components of the spinor ¢ are
¥4 (A =1,2). (2.21) can be rewritten into

Dyf = 81/’ ~ + B0 (2.24)
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which is contravariant with respect to the spinor index A and covariant with respect to the
index j. Then Dk’Djz/)A is defined as

d l
DD = o A4 B8,0,9° - { kj }@lw, (2.25)

which is still a mixed tensor, contravariant with respect to spin index A and GL(2,R) co-
variant with respect to the indices j and k. Moreover, if

JAC
TaBE
is a tensor GL(4,R)-contravariant w.r.t. j, SO(1,3)-covariant w.r.t. a, spin tensor w.r.t.
A, B,C, D, then its covariant differentiation is defined as follows

JAC  _ _‘9_ JAC A jEC _ JAC
Ol = Ok Tsp + BT 55 %BklaED
(2.26)

&=C JAE & jAC b jAC LAC
+%EkTaBT)' - %DkTan - FakaBB + { Ik }TaBD

which is a mixed tensor of the same type plus GL(4,R)-covariant w.r.s. to the index k.
If ¢ is a spinor,

P = e (2.27)

is called the conjugate spinor of ¥. The covariant differentiation can be also extended to the
conjugate spinor ¥* such that

I _
DYt = d o+ Bip* B = eBje'. (2.28)

After this extension of the definition of covariant differentiation we can find its application.
Since the following formula

Nab = ncdﬁzfg, for any L = (€§)o<ap<s € SO(1,3)

means that 7, is an SO(1, 3)-covariant with respect to indices a and b, we have

0
Dyttap = 551" = Tijtleb = Tij7lac = 0.
Similarly, let

Oaq = (U(?F (1'207172737 A= (mg)l<AB<2'

>1§A,Bg2’

(2.12) can be written as
AB ('D(L 1)()2‘0%[)

which is SO(1, 3)-covariant w.r.t. a, spin contravariant w.r.t. to A and complex conjugate
spin contravariant w.r.t. B. Then

5_ 0
;00" = 5=0lP ~ TP + B007 + B0l = 0.

The 2-component Dirac operator is defined by

D= nabe{a)g;@j (229)

8
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If 4 is a spinor 011>SDT, then according to the definition of ¢ and the formula (2.22), we have
DY =A"'Dy, DYt =ADY*. (2.30)
This means that © is a map
D:Vo(z) —» Vo' (z) and D:Vy(z) — Va(z)

where V(z) is the vector space of 2-component spinors of 9t at = and V,'(z) the conjugate
vector space. Obviously,

D2=DD: Viy(z) — Vao(z) and D?:Vy(z) — V(). (2.31)
The equation
D2 = —m?y (2.32)

is called the wave equation of spinor on 1.

A solution v of the wave equation will give a solution of the 4-component Dirac equation.
Before proving this assertion, we at first make clear the relation between the 2-component
spinor and 4-component spinor.

Let
0 o
5% = , a,b=0,1,2,3. (2.33)
o, 0O
According to the relation
00} + 0p0, = 21ap00- (2.34)
we have the relation
Y2+ 4Py = 2™ (2.35)

where I is the 4 x 4 identity matrix and according to (2.12)
Y'RER) = GEARRA) (2.36)
where £2(2) is the element corresponding to 2 by (2.12) and
A 0
RA) = _ (2.37)
o «a-!

is a representation of the group SL(2,C). The relation (2.35) shows that {7°,~7',7%,v%} isa
set of Dirac matrices and the relation (2.36) means that the group

Spin(1,3) = {R(M) }aesr(2,0) (2.38)

is an 2 to 1 homeomorphism to the group SO(1,3). The 4-component vector

v = ( f ) (2.39)

where v is a 2-component spinor and ¢* a conjugate spinor, obviously satisfies the relation
U= R(A)Y (2.40)

and conversely any Spin(1,3) 4-component spinor must be of the form (2.39).
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The Dirac operator I is defined by

0 D D; 0
p= < > and ;= ( ) (2.41)
D0 0 9D

and the Dirac equation is
PY = —imV. (2.42)

If the 2-component spinor ¥ is a solution of the wave equation (2.32), then we set

o= LD (2.43)
m
and obtain .
Dp* = %@21/) = —imy (2.44)
or .
P = —Dp* (2.45)
m
and . 1
D = —D%p* = DY) = Dip = —imy". (2.46)
m m

Hence ¥ defined by (2.39) satisfies the Dirac equation
DY = —imV¥. (2.47)

This proves Lemma 1 in §1.
It should be noted that

Dy Dy nel 03 D50

a * * :
Ty 0 @ﬂp

That is ‘
DY = 'y“e{a) ViV (2.48)
when we define the covariant differentiation of the 4-component spinor ¥ = ( ;b* ) by
D j'l/)
V¥ = . (2.49)
D j (p*

§3. The spin structure of S*

It is well-known that S% is a Riemann spin manifold. For solving the Dirac equation
on $3 we need to describe the transition functions of the principal bundle Spin{S3, SU(2)}

explicitly.
§° ={(a,b) € C*| o]+ [b}* =1}

10
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is equivalent to SU(2) by the map

(a,b)—»(i ‘EE)

The unitary group U(2) is the characteristic manifold of the classical domain
R(22) = {WeC?>? 1-wwi>o0}

where W1 = W'. Since R;(2,2) is a domain in the complex Grassmann manifold §(2, 2), U(2)
is a submanifold of §(2,2). Since SU(2) is a subgroup of U(2), SU(2) is also a submanifold of
5(2,2). The complex Grassmann manifold can be described by complex matrix homogeneous
coordinate 3, which is a 2 x 4 complex matrix satisfying

33T =1,

and two matrix homogeneous coordinates 37 and 3 represent a same point of §(2,2) iff there
is a 2 X 2 unitary matrix U such that 3; = U3s.
5(2,2) is a complex spin manifold because for any T € SU(4) there is a holomorphic

automorphism defined by
W =Ur3T, UreU(2) (3.1),

where Uy is the transition function of the principal bundle F{§(2,2),U(2)} (c.f.[9] ), and the
transition function of the reduced bundle Spin{F(2,2),SU(2)} is

Ap = (detUp)~ 2Ur. (3.2)

Without lose of generality we assume that in 3 = (Z3, Z2) and 20 = (W;, W) the submatrices
Z, and W) are non-singular. We write

T:(; g) (3.3)

where A, B,C, D are 2 x 2 matrices satisfying
AAty+cct =1, AB'+cD'=0, BB +DD' =1 (3.4)

Comparing the submatrices of (3.1) we obtain
Ur = Wi(Z1A+ ZoB)™' = Wy(A+ ZB) 'z 1, (3.5)

where
Z=2;"Z, and W =W 'W, (3.6)

are the local coordinates. From
33t =221+ 2,2} = 201+ 22N 2] = 1

we have a unique positively definite Hermitian matrix Z; = (I + ZZ T)‘; satisfies the above

equation, so that the transition function
Up=(I+WWH")"2(A+ ZB) Y I+ 22Z%)2. (3.7)
When the transformation (3.1) is expressed in local coordinates

W = (A+ ZB)"}C + ZD), (3.8)

11
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we have

I+ WW'=(A+2ZB) YU+ 2zzZYH) A+ zZB)7L. (3.9)

The classical domain R;(2,2) can be transformed to the Siegel domain
1
91(2,2) = {Z € C*? 52 = ZH >0} (3.10)

by the transformation
W=U+iZ)'I-i2) (3.10)

such that the characteristic manifold U(2) is transformed to M by
U=(I+iH)'(I-iH), H'=H. (3.11)
Let G be the subgroup of SU(4) such that the submatrices in (3.3) satisfy
C=-B, D=A, ATA+B'B=1 B'A=A'B. (3.12)
The transformation for T' € G
K =(A+HB) Y (-B+ HA) (3.13)

is an automorphism of M i.e., Kt = K. This transformation must map a certain point, say
H = Hy, to the point K = 0. Then the condition (3.12) becomes

B=HyA, A=(I+H2) Uy Upe SU(2) (3.14)
and (3.13) can be written into
K = Uy I+ H2)3(I + HHy) "' (H — Ho)(I + H3) 2 U (3.15)

SU(2) is a subgroup of U(2). The transformation (3.11) must map SU(2) into a submanifold
of M.

Lemma 3 The necessary and sufficient that U € SU(2) in transformation (3.11) is
Tr(H)=0. A

Proof. Since the Hermitian matrix H can be written into H = 270}, the condition

Tr(H) =0 equivalent z°=0. (3.16)
When the above condition is satisfied we write
H=H, = 1%,
which satisfies the relations
detH, = —za’ and H2=zt'oy, z= (z*, 2%, 2°). (3.17)

The above relation implies that the characteristic roots of H, are vz’ and —vzz’ so that
there is a V € SU(2) such that
H, = Vzz'VasVT. (3.18)

According to (3.11)

detU = det[V (I + iVzz'o3) (I — iVzaloz)Vi] = 1.

12
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This means that U € SU(2). Conversely, if U € SU(2), then the inverse of (3.11) is
_ . PN —1 1+a b l—a b
H=—i(I+U)"( U)_———|1+a{2+|b|2 < -3 1+a) ( 5 1-3 (3.19)

so that Tr(H) = 0 because |a|? + |b|?> = 1. The lemma is proved.

Since z° = 0 is a hyperplane Pg in M, Lemma 3 implied that SU(2) = M NPy and we
can use the admissible local coordinate of M N Py as the local coordinate of SU(2) & S3.
Consequently,

MM =UQR)=U(1)x SU@2) =S x $3=UQ1) xM,

where we set .
M,; = M NPy (320)

Now we take in the transformation (3.15)
Ho= H, = a®04. a=(a',a%a%), (3.21)
Since HZ = aa’0y, the transformation becomes
K =Uy (I + HH,) \(H - H,)U. (3.22)

Lemma 4 The transformation (3.22) is an automorphism of My, in other words, it
transforms T'r(H) = 0 to Tr(K) = 0.
Proof. Since T'r(H) = 0, it can be written into H; = %0, and

1
H.H, = 1"a"0,0, = EJJ/I.(IV[(UUO',, +oy0,) + (0u0y — 0,0,)]

= zMa”[d 00 + ix“a”&iﬁioa] = za'og + if*(z,a)0,, (3.23)
where
fz,a) = :v“a”éi?,i. (3.24)
Since
(I + HoHa) (I + HyHa)! = [(1+ 2)] + iH)))[(1 +2a)] + iH)'
=1 +zd)’I+H} =[I+ad)’ + ff I =x*1
where )
x = x(z,a) = [(1 + za')? + z2'ad’ — zd'zd']?, (3.25)
the matrix
U(x,a) = x I+ H.H,) (3.26)

is a unitary matrix with detU(z,a) = 1 and
I+ HzHa)_l(Hz - H,) = X_Q«1 +aza)l - iHf)H(zq)

=x"?[(1 + xa')H(y_q) — if (z,a)(x — a) o0 + f*(f(2,a),x — a)oa]. (3.27)

Hence
Tr(K)=0

because
f(x,a)(x —a) = x“a"éﬁ%(w"‘ —a%) =0.

The lemma is proved.
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By Lemma 4, we can write
- _a
K =Hy =y%0q4

and according to (3.27) the transformation (3.22) can be written into usual manner
Y’ = x Ha" — " + 2d (2" — a*) + [z(z — a)'a* — a(z — a)' ¥}y, (3.28)

where (v§) € SO(3). Moreover, all such transformations form a group ,which is a group of
automorphism of M, or all the matrices of the form

— n-3i I —Ha UO 0 .
To = (1 +aad’) 2<Ha I )( 0 Uo) (3.29)

form a group G; which is a subgroup of G. So when T, € G; the transition function (3.7)
becomes, according to (3.9) and (3.26),

Ur, = [(A+H,B)"\(I+ H2)(A+ H,B)!"\|"2(A+ H,B) "I+ H2)? = U}U(z,a)™", (3.30)

and detUr, = 1.. Hence
Az, = U, = UJU(z,a)7 L. (3.31)

This proves Lemma 2 in §1.
In S3 there is a natural Riemann metric

. 1
ds? = i(lda]Q + 1) = STr(@Udut), (3.32)
where -
a —b 2 2
J = =1.

L ( b @ ), lal*+ 16" =1

Differentiating (3.11) and substituting dU into (3.32) we have
1 . )
2 _ 2y-1 2y-1 _ v Qe

Differentiating (3.13) we have
dH, = (A+ H,B) 'dH,(A+ H,B)™'. (3.34)

Applying (3.9) and (3.34) we obtain

S L1 _ _
ds? = (1+—‘;/y,)2~dy”dy STl + H}) 'dH,(I + H}) 'dH,))

611'/ WV

= ST{(T + H2) AT + ) dH,
This means that the ds? is invariant under the group G;. When we set
a=8"—ie, b=¢'—i? (3.36)
and use (3.11)

1—zz' — 2%z3  —222 — 2ia! )

a —-5 . . —1 g _ N—1
(b ‘d>_(I+ZH'T) (I —iHz) = (14 z2) ( 222 — 2ig! 1 — zz’ + 2ia®

14
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we obtain the coordinate transformation

1— a2’ 2z
V= —— = a=12: 3.
¢ 1422’ ¢ Ttz &7 0 3 (3.37)
such that . s
2 i 1ck HY ’ v

§4. The harmonic analysis of Dirac spinors on S! x §3

Now we discuss the case that M = S x S3 with the metric (1.4) as its Lorentz metric.
It is obvious that S* x $3 is a Lorentz spin manifold and S® a Riemann spin manifold with

the metric 5
2 _ %
d83 = (1—*——’;‘/3)/.)—2(11:#(1%’, . (41)
Since in St
ds? = (dz°)? (4.2)

the tensor g; in (1.4) is of the form

goo = 17 gO[L:gu0=0> B = 17273:

= 1 5 =1,2,3 *3)
gﬂl/ - [1 +T2(IL'1)]2 yr e N’V— S
and the Christoffel symbol is
l
. =0, when one of the indices [, j, k equals to 0 (4.4)
jk

and

A
2 A7M7V:1:273
nv

is the Christoffel symbol of ds. The coefficients of the Lorentz coframe of ds? are

e(()o) =1, eLO) =0, =123

and
6510) =1+ xx’)~153> (v =1,2,3). (4.5)

The later ones are the coefficients of the Riemann co-frame of ds3. Since guv do not depend
on the coordinate zg , so the Lorentz connection

Zj =0 when one of the indices a, b, j equal to 0

and is a so(1, 3)-connection. So the connection defined by (2.15) is

1 *
B = Zaaogr‘gj because o}, = —0q. (4.7)
So
1
By =0, %H = Zo’aagrgﬂ. (4.8)

15
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Then the covariant differentiation defined by (2.21) is

oY ()l/}

Doy =575  Dup=75+Bu¥ (4.9)

where B, is an su(2)-connection on S3, so from (1.12)
D= o Dg: DPys = el \0,D (4.10)
= a:EO S35 S3 = C(a)O'a m .
where Pgs is the Dirac operator of the Riemann spin manifold of S3. Hence
D% = ~ Py (4.11)

03:0

where 17%3 does not depend on the coordinate z°. So we use the method of separating
variables to solve (1.1). Let

™ (1) = € () (4.12)

where 15 is a spinor on S3 and e’ is defined on S!, then ¢° should be a periodic function
with n being an integer and % should satisfies

Path = —(n® —m?)y (4.13)

if 4 satisfies (1.1). Since the eigen value of 75, is known[7] to be of the form
i
n? —m? = (1 + 5)2 (4.14)
where [ is a positive integer. So the integer n must be sufficiently large so that
n?—m? > 0. (4.15)

Using Weitzenbck formulae for Riemann spin manifold §3, we have

—~ ~ 1 ~
Poatp = Ap — 1Rsad (4.16)

R A\ 99 (0B, [ A -
L = gt ([)x“az"’—{l“/}a-’l?’\)_*_ a (-51—”_.{}“/}%/\>¢

8 9 -
g (% ¢ 0 +8, 2% ) + g" B, B, 0

where

(4.17)

k oav ozt

and Rgs is the scalar curvature of S3. It is known Rgs = 24. Hence, to solve the equation
(1.1) is reduced to solve the following equation

209 = —(n2 — m®)p. (4.18)

Since 1)%3 is an clliptic differential operator and S3 is compact, there is ,in general, no solution
of (4.18) for arbitrary m > 0 unless A\ = n? — m? is an eigenvalue of the operator DSJ n
this case the linear independent solutions of (4.18) is finite. Let

1;5()‘71.171231:3)7 é': 1521"'N/\ (419)
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be an orthonormal base of the A-eigen function space such that
/ @ ¢tyy/—gda da?da® = gy, (4.20)
S3

where g = det(gij)ogi,jgs = —det(gaﬂ)lga,ﬂgs-
Now we let _
T = (zo,z) and Hy =d2'0;

and construct the kernel of A-eigen space

N [

H/\(HItul) = Zwén)(/\7 1 )wén)()‘vrl_) (421)
£=1

which is an 2 x 2 matrix of matrix variables H;, and Hy,. We set

e e (A, ). (4.22)

M) () zy) ==
Tr/}g ( ’ ]) \/2—71_
It should be noted that
A=n%—m? (4.23)

is positive.
According to the (3.22) given in §3, the transformation Tg,

y=2"-a, H,=(A+H,B) '(-B+ H,A), B=H,A, (4.24)

is an automorphism of S x §3 and it transforms the point z; = a; to y; = 0. Since ds? is
invariant under the transformation, the co-frame is changed as follows:

L =1, W) =0 @), (§@))oen pes € SOB)

and the spinor
Y1, (Y1) = Az, (21)9(21) (4.25)
where 27, (z1) = 7, () is defined by (3.31) and belongs to SU(2). Let

Y1, £(W1) = Az, (21) e (1)
Since ) ,
B () o8 Ovmn) = ) P (A, 2), (4.26)

the
{oi) v} (4.27)

is a base of spinors of A-eigenvalue in S* x §3. If u; € S! x S3 is another point which is
mapped to the point v; under the same transformation 7j, , we have

H)\(Hyu Hvl) = QlTal (zl)Hz\(Hm s Hu1 )2(7'01 (ul)il . (428)
According to the definition (4.21), we have
Ha(Hay, Huy) = €N\ (Hy, Hy) (4.29)
where
Ny _ ,
Ka(He, Hu) =Y (X @)t (A, u) (4.30)
=1
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is the kernel of A-eigen functions of the operator 1?%, of the Riemann manifold S with the
metric ds? . Under the transformation (4.24),

Ka(Hy, Hy) = A7, () CA(Hz, Hu)mTa("‘)_l' (4.31)

Since ?2'3 is a covariant differentiation, we have

P () A(Hy, Hy) = 2, (2) P () (Hor, Hu) 2, (w)™ (4.32)
where Pga(x) means that Pgs operates with respect to the variable x.
Since
T,: H,=UlI+ H.H,) '(Hy — Ha)Us (4.33)
we have

(P2 ()KA(Hy, Hy)],_, = ¥7,(2) [P (2)Kr (2, a)] A, (a) 7
= —Mr, (2)Kx(z,a)Ar, (a) 7.

Since 7, () is known explicitly by (3.31) and (3.26), it remains to calculate 72, (z)Kx(H,0)
in (4.34).
We expand Ky (H,0) into power series of the matrix variable H; such that

(4.34)

oo 0o s
Ka(Hg,0) = ZCnH;‘ = ZC'Z"H;Z:" + ZC271+1H37L+1

n=0 n=0 n=0 (4.35)

o0 o0 N
=3 Cour®™ (@I + 3 Con1r™ (@) He = f(r2(@)] + h(r?(2)) He,

n=0 n=0

where C), are complex constants r2(z) = za’ and f and h are functions of 7?(z) but not real
values in general.
We set u = a in (4.31) and have by Lemma 2

’C/\(HT’ HG) = QlTa ("L.)Pll(:z\(Hys O)[]()_‘1 = U(:Lx (L)[f[ + h<I>(1,‘,a, )]7 (436)
where we have written in (3.22) that
H=H, and K =H,

so that (3.22) becomes

Hy, = Uy '®(z,a)lUy, ®(z,a) = (I + HyH,) 'Hyq. (4.37)
By the definition of Ky,
’C/\(Hm Ha)T = ,C)\(Ha:Hx) (438)
and, by (3.26) and H} = H,,
Ulz,a)! = U(a, z). (4.39)

So from (4.36) we have the equality
fU(a,z) + h®(z,a) U(a,z) = fU(a,x) + hU(a,z)®(a, )

or

I+ hd(z,a)t = 1+ hU(a,z)®(a,z)U(a,z)". (4.40)

According to Lemma 4 ®(z,a) is Hermitian and T7[®(z,a)] = 0 . So the trace of (4.40)
implies _

f=f (4.41)

18
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and then _
h®(z,a)! = hU(a,z)®(a, 2)U(a,z)"'.

We let = 0 in (4.42) and have

h(aa')H_, = h(aa')H,

or B
h = —h.
Moreover, we have the following formulas

H
((”C,\r( x> 0) — 2flxp,I + 2h/z;1,Hz + }lou

ozH

and
9K (Hz, 0)

S = (af"ztz” + 2f'6,,)1 + (4h"2"2¥ + 218, )Hy + 2(h' 2t o, + B'2¥o,).

The Christoffel symbol associated to ds3 is

@ 2 usa B sa (e
g |~ T TEam @ 2 a0,

and

ﬁu{ @ } 2(1 ')
= + zz’)x®.
I Bu

The Riemann connection is

2
— 3 ¢
B = T 00 - 2%8))
And the spin connection is
By = 5o [Ha 4] = 5 (a0 — 0 o)
H2(1 + xaf) @ Tul = 2(1 + zz’) 20u = Iutia):

We have the following formulae:

0
32

g TIMH0) (1 122402 4 6)T + (4 4 10K

(i
o { ;tau } 8’C/\<9(511’0) =201+ r?)[2f'r*I + (20'7? + h) HoJ;
(i)
e %‘Hu ~0.
:L-V

(v)

—g" { « } BoKa(Hz,0) = 0;

n

19
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A .

0 /C,\(Hz,O) + %Ui)c/\(HI’O)] = 4(1 + TQ)th?

9" | Bu ox¥ oxt

(vi)
"B, B, K\(H,,0) = —2r f1 — 2hr* H,.

(From (i) to (vi) and the Weizenbock formula we have
PRKa(Hz,0) = AKA(Hy, 0) — 6(71 + hH,)
= {421+ 2" + (L+r)[6(1 +12) — 4] f — (2r° + 6)f} 1
+ {4r2(1 4 r2)2h" + (1 + r2)[10(1 + r2) — 420 + [2(1 +r?) — 2r2 — 6]h} H,

= —\(fI+ hH;).
This means that f(¢) and h(t) (¢ = r2)should satisfy the following differential equations
respectively
41+ "+ Q4+ 8)6(1 +1) —4t]f — (2t +6)f = —Af, (4.50)
and
4t(1 4 t)?h" + (1 + t)[10(1 + t) — 4t]h’ — 4h = —Xh. (4.51)

For simplicity we write Ky(z,a) = Kx(Hy, Hy).
Theorem 1 in §1 is proved.

85. The solution of the Einstein-Dirac equation

Let {/;0(.17) be a spinor in S2 which is orthogonal invariant. Obviously, the spinor
J(w) ::/ IC)‘(:E,u){/;o(u)z'L, o = /—gdu'du?du® (5.1)
SS

is orthogonal invariant. This spinor satisfies

Pistp(z) = —\j(z) (5.2)

where ) is a eigenvalue of ’l)ga, and the spinor

¥(z) = €™ (1) (5.4)

satisfies

DY(z) = —m*y(z) (5.4)

when m is taken as A = n? — m2. Moreover, according to Theorem 1, the 4-component
spinor obtained by the following formula

w(;j) o= —Dy (5.5)

satisfies the Dirac equation
DY = —imV¥ (5.6)

If the energy-momentum tensor 7j; of ¥ is not identically zero, then the tensor at z = 0
must be of the form

(T54(0)) = ( v ) (5.7)
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In fact, since the metric ds? is invariant under G;, the tensor T must be invariant under G;.

That is P
Tjk(yr) = T”"(w’)_@78—zﬂc (5.8)
where y° = 2% — a® and y* is defined by (3.28). Especially, if we choose a; = (a%,a) = 0, we
have
Tj1(0) = Ty (0)24] (5.9)
where

L:(@i):((l) 19) T € SO(3).

Therefore, (5.9) can be written into matrix form

@)= ¢ )@ (g L)

for arbitrary I'. Hence T} (0) must be the form (5.7)

We assert co + ¢; # 0. In fact, ¢¢ and ¢; can be not zero simultaneously, otherwise
Tjk(z1) = 0 according to (5.8), because Gy acts transitively on S? x $3. Moreover, according
to the definition of T}, we have

9* Ty
_l[a*/ b( ac k ] ac,J ) — acok o g ac,.j SO ) A
=2 |¥ e\ Vi Y AT Vi Mlab \11™€(e) VIR 1€ Vi )

= [Tpv - BV)'¥] = —im [T7'¥ - T¥] = 0.

(5.10)
Especially,
(gjijk) =c—3c;=0, or c¢o=3c. (5.11)
=0
SOCQ+C] =4C1 960
Hence the Einstein equation at x =0 is
Rix(0) = 3034(0)R(0) — Agie(0) = XT;u(0) (512)

According to the orthogonal invariant of R;;(0) and Rg; = Rjo = 0, we have (5.12) in form

of matrix
0 0 1 1 0 1 0\ (e O
(0 Ru(O)I)_ER(O)(O —I>_A(0 —1)“"(0 c11>

{ —1R(0) - A= xco
R11(0) + 3R(0) + A = xc1

or

If we choose ]

—co
R11(0), A=
co+ 1 11() ¢+ ci

x= Rut(0) - 3R(0)

then (5.12) is satisfied and the Einstein equation is also satisfied at any point of S! x S3
because it is invariant under G;.
Theorem 2 given in §1 is proved.
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