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A LIMIT THEOREM FOR WEIGHTED SUMS
OF INFINITE VARIANCE RANDOM VARIABLES
WITH LONG-RANGE DEPENDENCE
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Abstract

Let {&;}jez be a sequence of random variables with long-range dependence belong-
ing to the domain of attraction of a linear fractional stable motion {Ag,(t)} with
infinite variance. We propose a class of deterministic functions f for which stochastic
integrals with respect to linear fractional stable motion are well-defined and provide
sufficient conditions for the convergence of n=# Yjenf (3/n) & to I f(w)dApa(u)
in distribution as n — oo.

Keywords: Linear fractional stable motion. Long-range dependence. Integral with
respect to linear fractional stable motion.

1. INTRODUCTION
Let {Z,(t),t € R} be a symmetric a-stable Lévy process (0 < o < 2) and {&;} ez
i.i.d. random variables, and suppose that n~=/« 2?21 & <, Zo(1) as n — oo, where

—%, means convergence in law. Then, it is proved in Kasahara and Maejima (1986)
that for any deterministic function f bounded on any bounded intervals,

# s (%) & -5 /_Z fw)dZ,(u)  asn — occ. (1.1)

JEZ.

Let 1/2 < H < 1 and let {Bgy(t),t € R} be the fractional Brownian motion with
exponent H in the sense that it is a centered Gaussian H-selfsimilar process with
stationary increments. Let {¢;,j € Z} be a stationary sequence of square integrable
random variables such that E[¢;] = 0 and |E[&&]| < Clk[*2,k € N, for some

C > 0, and such that all finite dimensional distributions of n=# ZEZ]I §; converge to

LCurrent address. Fukoku Mutual Life Insurance Company.
2Corresponding author. e-mail address: maejima@math.keio.ac.jp
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those of By (t) as n — oo. Let

{ ’/ / w|f(v ||U—U|2H_2dudv<oo}.

Then, it is shown in Pipiras and Taqqu (2000) that for any f € F,

n%%f(%) / f)dBy(u)  asn— oo (12)

In (1.1), if & < 2, the variances of {{;} and {Z,(t)} are infinite, but the increments
of {Z,(t)} are independent. On the other hand, in (1.2), {{;} and {Bg(t)} have
long-range dependence, but their variances are finite. The purpose of this paper is
to establish a limit theorem of type (1.1) or (1.2) in the case when {;} have infinite
variances and long-range dependence. For that purpose, we take linear fractional
stable motions {Ay,(¢)} (defined below) instead of {Z,(t)} or {Bu(t)}.

The rest of the paper is organized as follows. In section 2, we propose a class of
deterministic functions f for which stochastic integrals with respect to linear frac-
tional stable motion are well-defined. In section 3, we prove an auxiliary result on
approximation of some Riemann integral which is needed for the proof of our main
theorem, and in section 4, we present and prove our main theorem of type (1.1) or

(1.2), where {Z,(t)} or {Bg(t)} is replace by {Ap.(t)}.

2. STOCHASTIC INTEGRALS WITH RESPECT TO
LINEAR FRACTIONAL STABLE MOTIONS

We call {X(t),t € R} a Lévy process if it has independent and stationary in-
crements, X (0) = 0 a.s., and it is stochastically continuous. If, furthermore, the
distribution of X (1) is symmetric a-stable, 0 < a < 2, in the sense that E[e?X(1)] =
ef% g € R, for some ¢ > 0, we call {X(¢)} a symmetric a-stable Lévy process, and
denote it by {Z,(t),t € R} throughout this paper. Without loss of generality, we also
assume ¢ = 1. When a = 2, it is nothing but the standard Brownian motion.

Let 0 < H < 1,0 <« <2 and H # 1/a. We define linear fractional stable motion
{Ama(t),t € R} by

Amralt) = / (¢ — )77 = (—s) Yz, (s), (2.1)
where z; = max(z,0), z_ = max(—x,0) and 0° = 0 even for s < 0. When a = 2, it

is fractional Brownian motion.

In the following, we always assume a < 2, because we want to extend a known
story for fractional Brownian motion to the case of infinite variances. In this section,
we introduce stochastic integrals with linear fractional stable motions with o < 2. It
is known that if @ < 2 and H < 1/, sample paths of Ap ,(f) are nowhere bounded
(Maejima, 1983). On the other hand, we cannot expect integrals with respect to such
processes with irregular paths. Therefore, we throughout assume H > 1/a. Since
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H < 1, necessarily a > 1. In the following, we put 8 = H — 1/«, for notational
convenience. 3 satisfies 0 < <1 —1/a.
When f(u) is a simple function with the form

flu) = kal[uwkﬂ)(u), fr €R, wp <ugyr, k=1,...,n,
k=1
we define

1(f) = / @A) = 3 fiBaliin) - Apalu)).  (22)

k=1

Denote by £ the set of all simple functions.
Same as (2.5) in Pipiras and Taqqu (2000), we note that for 0 < f <1 — 1/«

-9~ (91 =5 [ Tl — 8 du = Tolpy)(s).  (23)
where

(Isf)(s) = B / ) — ) du, s R,

Then, if follows from (2.1) and (2.3) that

o0

Bialt) = | (Islon)($)2(s) 2.0)

[e.9]

We also have from (2.2) and (2.4) that for f € &,

/ " F)dA () = / T (Lof)($)dZa ()

[e.o] (e 9]

Let

A= {f]/: (T ds <o }.

It is easily seen by an ordinary argument that A is a normed linear space with the

= ([ aners)”

and & is a dense subset of A.

Theorem 2.1. For every f € A, the stochastic integral

/ " F)dA () = / T (Lf)(8)dZa(s)

o0

can be well-defined in the sense of convergence in probability.
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Proof. For any f € A, choose {f,} C & such as || f, — f|| — 0. We have

Mh)—ﬂhnz/mUAh—¢MX$ﬂ%@L

—00

and it follows from a known fact on stable integrals that

B 10100 — exp { o |

—0o0

[e.o]

Kmn—mmww%zmmwwn—MWk

(see, e.g, Samorodnitsky and Taqqu, 1994, Proposition 3.4.1). Since ||f, — fi| — 0
as n,m — oo, we have I(f,) — I(fn) — 0 in distribution and thus in probabil-
ity. Therefore I(f,) converges in probability to a limit I(f), say, which we write as
[Z f(w)dA g q(u). Actually, the value of the limit of I(f,) does not depend on the
choice of {f,}, which can easily be shown by a standard argument. This completes
the proof of the theorem. O

3. AN AUXILIARY STATEMENT

In this section, we prepare a statement on Riemann integral, which will be needed
for the proof of our main theorem in the next section.

Theorem 3.1. Let f be a real valued differentiable function on R . Leta > 1, 1/a <
v < 1 and suppose that
fl <@+, <O+ ul)™,  foranyueR,

where |f(u)| < |h(u)| means that there exists K > 0 satisfying |f(u)| < K|h(u)| for
any u € R. Then we have
n B —0oQ

. . . 7’)/
) J J o1 1
1 Sy (L2 -
m () (G0
€L | j>1

Lemma 3.2. Let g(s,u) = f(u)(u — s)~7. For a sufficiently small € > 0, choose
s, s’ u,u’ such as |s —s'| <e, |Ju—u|<e.

(i) fu—1<s<s <u<s+1, then

/:O () (u— )™ 7du " s,

For the proof, we need several lemmas.

l9(s,u) — g(s" u)| < (L+[s) " (u— )7 s = 5.
(i) If s<u<u <s+1, then
l9(s,u) — g(s,u)| < (L+]s]) 7 (w— )77 Hu — o],

(iii) If u > s+ 1, then

(ii-1) 1g(5, u) — g(s', )| << (1 -+ [ul) (= )]s — '
and

(i5-2) g(s, u) — g5, w)] < (1+ Jul) ™ (w — ) — ]
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Proof. (i) We have

|s = |

/ . ag "
965,10 = o' 0] = | 326",

for some s” such that |s — s”| < |s — §'| < &, where
g

25w < 1l =" < (T ful)Hu = )7 < (L)) (w = )T

(ii) We have

l9(s,u) — g(s,u)] = lu — |

dg,
%(‘97“ )

for some v” such that |u —u”| < |u — /| < e, where

< |F )" =)™ + [ f ")l = 5)7 7

<A+ u) ™ ((w=8)""+ (u—2s)""") < (1+|s)) " (u—s5) """
(iii) We have

g "
s

g
965,00 = 9050 = | 320" ) s =
for some s” such that |s — s"| < |s — §| < &, where
dg e _ _
095 < @l — )70 & (1 )= )77 < (1 ul) )7
since (u — s)~* < 1. Also, we have
dg
|g(S,U) - g(S, u/>| = %(5771’//) ’u - ul|

for some u” such that |u —u”| < |u — /| < e, where

< IF@)I (" = )7+ [F)] (= )7

LA+ ((w=9)7 4+ (w=9)7"") < (1+|ul)H(u—s)7,
since (u — )7t < 1. The proof is thus completed. O

99
(s

In the following, for any € > 0, choose n such that € € [1/n,2/n|. For a € R, [a]
denotes the largest integer less than or equal to a.

Lemma 3.3. For any 6 > 0,

> iy 1 e
du — J) = 1 7+ -
[ ot 3 g (s )L

J>[sn]+1
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Proof.

/:o g(s,u)du— 3 g<s,%)%

J>[sn]+1

([sn]+2)/n 0o i\ 1
(s,u)du +/([ g(s,u)du — Z g (s, E) -

sn]+2)/n j>[sn]+1

(G+1)/n j
+ Z / (g(s,u) —g (s, —)) du
j>[sn]+1 i/n n

g(s,u) — g (S, %)
g(s,u) — g <S7 %)

IN

(s,u)du

/([sn]+2

IN

([S"H?)/n
/ g(s,u)|du

(+1)/n
+ Z /] )

[sn]+1<j<[(s+1)n]

(J+1)/n
+ Y /j/n

3>[(s+1)n]
::Il + ]2 + -[37
say. We first estimate I;. We have

([sn]+2)/ s+2/n
I :/ If(uw)|(u—s)Vdu < / (14 |u)) ™ (u—s)"du
’ s+2/n ’ 9 —y+1
<(1+ \3|)1/ (u—s)du < (1+|s))~* (;)

Since 1/n < e < 2/n, we have
T < (14 s ™ < (1+[s)) 70,

We next estimate I. In Iy, since sn +1 < [sn]+2 < j < [(s + 1)n] < (s + 1)n,
we have s +1/n < j/n < (s+1) and 1/n < j/n —s < 1. By Lemma 3.2 (ii) with
u=j/nu =u

st =g (s 2) [ aais (L) (v-2) < aetsh (£-5) T

since 0 <u —j/n < 1/n < e. Hence

i\ e
IQ <<(1+‘3D71 Z (E—S) E

[sn]+1<j<[(s+1)n]

n Lk —y—1 e
<(+ls) Y (—) — < (L [s) e < (L [s]) T,

n
k=1

du

du,
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since € < 2/n.

In I3, note that j/m > s+ 1. Also, since u € [j/n,(j + 1)/n], it follows that
s+ 1 < j/n < wu. Thus by Lemma 3.2 (iii-2) with v = u,u’ = j/n, noting that
|lu—j/n| < 1/n, we have

o0

(G+1)/n 1
hel Y / (Lt fu) = o) P [ (L) s)

" >l 1)) st

We now need to estimate depending on the range of s.
When s < —2, we have

/H(H'“') (=) 7d“—</ﬂ //sl/z /;2>(1+|U|)_1(U—8)_7du

:. —|— 111

say. Here by the change of variables u = st (t > 0),
1

1+1/s
(i) g/ (14 |st]) " s 7t — 1|77 s]dt < \3\7/ 11— ) 7dt < |s] 7.

1/2 1/2
As to (ii), by noticing (u — s)™7 < |s|77 for |u| < |s|/2,

[s]/2
(i) <« |s|_7/ (1+ |u]) " tdu < |s| " log |s|.
s/2

Finally, as to (iii), by the change of variables u = |s|t (¢ > 0),
(iii) = / (14 |st]) " s 77 (4 1) 7]s|dt < ]s]”’/ 1At < 5|77
1/2 1/2

When |s| < 2, we have

/:1(1 + Ju)) " Hu —s)Vdu = </Sj1 +/300) (1 + Ju]) " (w = 8)du =: (iv)+(v),

say. Here, since u — s > 1, (iv <f+1du<<1 and ( <<f w1 du < 1.
When s > 2, we have, byu—st

/00(1 + ul) M (u — 8) Vdu = /OO (14 st) " ts7(t — 1) Vsdt

s+1 1+1/s

<<s‘”/ Tt —1)7dt < 577,
1+1/s

Altogether, we have, for any d > 0,
1
I; < 5(1 + [s]) " log(e + |s|) < e(1 + |s|) ™,

since 1/n < ¢, and thus I3 < (1 + |s|)77*%!=7. This completes the proof of the
lemma. [
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Lemma 3.4. For any d > 0,

/:o g(s,u)du

Z g (8, %) % < (1+[s])77F, (3.2)

J>[sn]+1

< (1+|s|)77+° (3.1)

and

Due to Lemma 3.3, we only need to show (3.1). However, the proof can essentially
be found in the proof of Lemma 3.3, and so we omit the proof.

Lemma 3.5. For any 0 > 0, we have
i\ 1 sn|+1 7\ 1

o4 E ()<
. n;,n ) n n/n
J>[sn]+1 j>[sn]+1
Proof. We have

J

n
g

—+6
[S’I'L] + 1 ‘) glf'y_
n

_]>[STL J+1

( j>[sn]+1
< 2

j ) ([sn] +1
S, — | —4g ’y
j>[sn]+1 n " n

Z Z J snj+1 7
: n n n
[sn]+1<j<[(s+1)n]  j>[(s+1)n]

::Il + 127

say. In Iy, since s < ([sn]+1)/n < j/n < s+1, by Lemma 3.2 (i) with s’ = ([sn]+1)/n
and u = j/n, we have

b (2) o= D s (1)

Thus, since |s — ([sn] + 1)/n| < &,

I, < 3 (1 +|s)! (% B [sn]n+ 1>—7—1%

[sn]+1<j<[(s+1)n]

A/ S|
|

n ]{} —y—1
<<(1+]s|)_122(—> < (14]s]) " 'ne < (1+|s]) e

n
k=1

since n?” < €77, In I, note again that j/n > s+ 1. Thus we have by Lemma 3.2
(ili-1) with u = j/n,s = 5,8 = ([sn] + 1) /n,

D)o (=) (o) )

[sn]n—i— 1 ‘ '
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Thus, since |s — ([sn] + 1)/n| < ¢,

J

J )1 (% _ 3>7% < g/S:u +lul) " = 5)du

n

L< Y, <1+
)

i>[(s+1)n

<e(1+ |s]) " log(e + |s]) < (1 + |s])77H.

Thus

—y+6
[sn] +1 D ! el
n Y

L+L<(14]s) e « (1 +

which completes the proof.

Lemma 3.6. For any ¢ > 0,

Z g(s,%)%<<(1+

J>[sn]+1

[sn] + 1\ 7"
n )

[sn]n +1 D AN |

> g <[Sn]n+1,%> % < (1+

J>[sn]+1

Proof. By Lemmas 3.3 and 3.4,
i n n)n
[sn]+1 j\ 1 7\ 1 J

< it I I ) = s
< 1g(n,”zgs,nn+zgs,n

j>lsnl+ J>lsnl+1 J>lsnl+1

1 —y+4 1 —+6
< (1 + [Sn]n+ D T (L+]s) T < (1 + [Sn]r: D ,

completing the proof of the lemma.

We are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. We have

o< | o0 e Nl il
I:= — v — S|4 2 Z| =
[ | sl eI ()20l
i€EZL | j>1
</oo /Oog(su)duads—/oo Z g(sl>l ds
P Cw . b | 7n n
J>[sn]+1
00 i\ 1 i i\ 171
" /_oo Z g(s’n)n ds‘Z Zg(n’n)n n
j>[sn]+1 1€Z | j>1

= Il + 127

say. Since ||z]* — |y|?| < |z — y| max{|z|*!, |y|*} for a > 1, we have, by Lemmas
3.3 and 3.4, and by choosing a sufficiently small § > 0,

I < / (14 |s)) 77 0et=7(1 + |s)) 77D Ds « 177,

[e.o]

As to I,

I, =
=12 /<z'1>/n

€7

o

> o(+a)a) -

J>[sn]+1

(i j)

2955

> N
Note here that for s € [(i — 1)/n,i/n),i = [sn] + 1. Thus

i/n . o . o

AW! 1 g\ 1

I, < Y2 A

o) i S CE H IR S CF

ds

€L j>i j>i

i/n i —7+0 i (=v+0)(a—1)
<<Z/ 51‘”<1+—) (1+—) ds
icz Y (i=1)/n n n
. —(y=d)« 1
1= ¢
=c 1 — _
S+ s

1E€EZL

el / (14 [f))-0-9dt < 17,

[e.9]

provided that we choose a sufficiently small § > 0. We thus conclude that I < £!77,
completing the proof. O

4. THE MAIN RESULT

Our main theorem in the present paper is the following.

Theorem 4.1. Leta>1,1/a<H <1,0=H —1/a € (0,1 —1/a), and define

A= {f /Oo (Tl f) ()" ds < OO}

—00

10
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for some 0 < ¢ < a—1. For f € AN A, we assume that f is differentiable,
If(w)] < (14 |u])™ and |f'(u)| < (14 |ul])~. Let {X;, j € Z} be i.i.d. random
variables with E[X;] =0 such that

1 <& d
WZX] —_— Zoz(]-)a (41)
j=1
and let
L _Jo j <0,
T B, >0
Define
fj = ZCka,k, ] .
kcz
Then,

(i) for each n € N, the infinite series ZjeZ f(j/n)&; converges in the sense of the
(av — €)-th mean, and

(i)
nLH > s (%) & L /_Z F)dApa(u),  as n— oo, (4.2)

Proof. For m; < ms,

j - j a—¢€ a—e
Bl X f (5) G| =F| X S (g) 2 Xl | =13 bk ] 7
m1<j<ma m1<j<mo kEZ leZ
where b,y =3, i, [ (i/n)cji. Note that (4.1) implies E[|X;|*7¢] < oo. Since

{Xj,j € Z} are iid., a —e > 1, E[|b,; Xi|*°] < 00 and E[b,;X;] = 0, we have by
Marcinkiewitz-Zygmund inequality,

> baiX

leZ

a—e a—e/2
I(my,my) = E <CE (Z b?%le> : (4.3)

leZ

where C' denotes a positive constant which may differ from one to another. If we
continue to estimate I(mq,ms),

Z ’bn’l‘afs’Xﬂafs
IEZ
J 4 B-1
> (5) BG—1)

m1<j<ma,j>l
) . -1 a—¢
J g 1 1 1
@G-
n n o n n n

Sonﬂ(a—a)-i-l Z (Z

1€z \ j>l

I(my,msy) <CE = CE[|X1|°7°] ) bna|**

IEZ
a—e

:CZ

leZ

11
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Here by Theorem 3.1 with f = |f|,y =1— [, = a — ¢, we have as n — o0,

SRl

1€z | j>1
[o.¢]

—/
—0o0

say, which is finite by the assumption that f € A.. Thus for any n > 0, there exists

ng € N such that
' AR RN
G-
No No o No no

> (2
I(my,me) < C(J 4+ n)ng Blamatl o,

1
n

a—E&

w)|(u—s)°tdu|  ds=:J,

<.

ez \ j>l

Thus for any m; < ma,

By letting m; — —o00, my — 00, we get the statement (i).
We next prove the statement (ii). To this end, we show the convergence of the
corresponding characteristic functions, namely,

exp{w—zf( )@H—w{exp{w)/ F)idnato)

Here, as we have almost seen above,

3 (De-mz (T () o)

leZ 3>l

and by Theorem 2.1 and (2.3) recall

/f JdA o (u ﬁ/ [/ flu ﬁldu}dZ()

In general, we know that

B [exp {i@/_ig(s)dZa(s)H :exp{—|9|°‘ /_Z |g(s)yads}.
Hence
E [exp {@e/:: f(u)dAH@(u)H —exp{—\9|aﬁo‘/

12

B Ldu

ds}.
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On the other hand, if we put ¢(0) = E[exp{if#X,}], then

]::,}LIEOE exp{zQ—Z(Zf( ) ]—l )Xz}]
€2 \ j>1
:JLIEOQE exp{w—;f( ) = 1) le}]
=Jm [T (%%Zf (7)o ”5‘1) |
leZ Jj>l

However, it is known that under (4.1), 1 — () ~ |f|*as |#| — 0. Thus in general, if
lim,, o0 sup; |a;(n)| = 0, then

lim T e(a(n)) = exp {—T}ijgoz Iaz(n)|“} :

leZ

Therefore, we need to show

lim sup =0

n—oo 1

LEiE)or

in our case. However, this is true because (note g=H-1/a)

RO G-

BRI ol

]>sn

by (3.2) in Lemma 3.4. Hence by Theorem 3.1,

f:exp{—wmagggoz H2f< ) (G- 1)°

leZ j>l

=eXp{—|9|“ﬁ“T}g§oZ Zf( ) (j—1)° 711 }

leZ | 3>l
{7 !

which completes the proof of Theorem 4.1. O

sup

1)

S|

*6 Ldu
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